xref: /linux/drivers/spi/spi-s3c64xx.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Copyright (C) 2009 Samsung Electronics Ltd.
3  *	Jaswinder Singh <jassi.brar@samsung.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  *
15  * You should have received a copy of the GNU General Public License
16  * along with this program; if not, write to the Free Software
17  * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
18  */
19 
20 #include <linux/init.h>
21 #include <linux/module.h>
22 #include <linux/workqueue.h>
23 #include <linux/interrupt.h>
24 #include <linux/delay.h>
25 #include <linux/clk.h>
26 #include <linux/dma-mapping.h>
27 #include <linux/dmaengine.h>
28 #include <linux/platform_device.h>
29 #include <linux/pm_runtime.h>
30 #include <linux/spi/spi.h>
31 #include <linux/gpio.h>
32 #include <linux/of.h>
33 #include <linux/of_gpio.h>
34 
35 #include <linux/platform_data/spi-s3c64xx.h>
36 
37 #ifdef CONFIG_S3C_DMA
38 #include <mach/dma.h>
39 #endif
40 
41 #define MAX_SPI_PORTS		3
42 #define S3C64XX_SPI_QUIRK_POLL		(1 << 0)
43 
44 /* Registers and bit-fields */
45 
46 #define S3C64XX_SPI_CH_CFG		0x00
47 #define S3C64XX_SPI_CLK_CFG		0x04
48 #define S3C64XX_SPI_MODE_CFG	0x08
49 #define S3C64XX_SPI_SLAVE_SEL	0x0C
50 #define S3C64XX_SPI_INT_EN		0x10
51 #define S3C64XX_SPI_STATUS		0x14
52 #define S3C64XX_SPI_TX_DATA		0x18
53 #define S3C64XX_SPI_RX_DATA		0x1C
54 #define S3C64XX_SPI_PACKET_CNT	0x20
55 #define S3C64XX_SPI_PENDING_CLR	0x24
56 #define S3C64XX_SPI_SWAP_CFG	0x28
57 #define S3C64XX_SPI_FB_CLK		0x2C
58 
59 #define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
60 #define S3C64XX_SPI_CH_SW_RST		(1<<5)
61 #define S3C64XX_SPI_CH_SLAVE		(1<<4)
62 #define S3C64XX_SPI_CPOL_L		(1<<3)
63 #define S3C64XX_SPI_CPHA_B		(1<<2)
64 #define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
65 #define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
66 
67 #define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
68 #define S3C64XX_SPI_CLKSEL_SRCSHFT	9
69 #define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
70 #define S3C64XX_SPI_PSR_MASK		0xff
71 
72 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
73 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
74 #define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
75 #define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
76 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
77 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
78 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
79 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
80 #define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
81 #define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
82 #define S3C64XX_SPI_MODE_4BURST			(1<<0)
83 
84 #define S3C64XX_SPI_SLAVE_AUTO			(1<<1)
85 #define S3C64XX_SPI_SLAVE_SIG_INACT		(1<<0)
86 
87 #define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
88 #define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
89 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
90 #define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
91 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
92 #define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
93 #define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
94 
95 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
96 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR	(1<<4)
97 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
98 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR	(1<<2)
99 #define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
100 #define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
101 
102 #define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
103 
104 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
105 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
106 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
107 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
108 #define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
109 
110 #define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
111 #define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
112 #define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
113 #define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
114 #define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
115 #define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
116 #define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
117 #define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
118 
119 #define S3C64XX_SPI_FBCLK_MSK		(3<<0)
120 
121 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
122 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
123 				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
124 #define TX_FIFO_LVL(v, i) (((v) >> 6) & FIFO_LVL_MASK(i))
125 #define RX_FIFO_LVL(v, i) (((v) >> (i)->port_conf->rx_lvl_offset) & \
126 					FIFO_LVL_MASK(i))
127 
128 #define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
129 #define S3C64XX_SPI_TRAILCNT_OFF	19
130 
131 #define S3C64XX_SPI_TRAILCNT		S3C64XX_SPI_MAX_TRAILCNT
132 
133 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
134 #define is_polling(x)	(x->port_conf->quirks & S3C64XX_SPI_QUIRK_POLL)
135 
136 #define RXBUSY    (1<<2)
137 #define TXBUSY    (1<<3)
138 
139 struct s3c64xx_spi_dma_data {
140 	struct dma_chan *ch;
141 	enum dma_transfer_direction direction;
142 	unsigned int dmach;
143 };
144 
145 /**
146  * struct s3c64xx_spi_info - SPI Controller hardware info
147  * @fifo_lvl_mask: Bit-mask for {TX|RX}_FIFO_LVL bits in SPI_STATUS register.
148  * @rx_lvl_offset: Bit offset of RX_FIFO_LVL bits in SPI_STATUS regiter.
149  * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
150  * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
151  * @clk_from_cmu: True, if the controller does not include a clock mux and
152  *	prescaler unit.
153  *
154  * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
155  * differ in some aspects such as the size of the fifo and spi bus clock
156  * setup. Such differences are specified to the driver using this structure
157  * which is provided as driver data to the driver.
158  */
159 struct s3c64xx_spi_port_config {
160 	int	fifo_lvl_mask[MAX_SPI_PORTS];
161 	int	rx_lvl_offset;
162 	int	tx_st_done;
163 	int	quirks;
164 	bool	high_speed;
165 	bool	clk_from_cmu;
166 };
167 
168 /**
169  * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
170  * @clk: Pointer to the spi clock.
171  * @src_clk: Pointer to the clock used to generate SPI signals.
172  * @master: Pointer to the SPI Protocol master.
173  * @cntrlr_info: Platform specific data for the controller this driver manages.
174  * @tgl_spi: Pointer to the last CS left untoggled by the cs_change hint.
175  * @queue: To log SPI xfer requests.
176  * @lock: Controller specific lock.
177  * @state: Set of FLAGS to indicate status.
178  * @rx_dmach: Controller's DMA channel for Rx.
179  * @tx_dmach: Controller's DMA channel for Tx.
180  * @sfr_start: BUS address of SPI controller regs.
181  * @regs: Pointer to ioremap'ed controller registers.
182  * @irq: interrupt
183  * @xfer_completion: To indicate completion of xfer task.
184  * @cur_mode: Stores the active configuration of the controller.
185  * @cur_bpw: Stores the active bits per word settings.
186  * @cur_speed: Stores the active xfer clock speed.
187  */
188 struct s3c64xx_spi_driver_data {
189 	void __iomem                    *regs;
190 	struct clk                      *clk;
191 	struct clk                      *src_clk;
192 	struct platform_device          *pdev;
193 	struct spi_master               *master;
194 	struct s3c64xx_spi_info  *cntrlr_info;
195 	struct spi_device               *tgl_spi;
196 	struct list_head                queue;
197 	spinlock_t                      lock;
198 	unsigned long                   sfr_start;
199 	struct completion               xfer_completion;
200 	unsigned                        state;
201 	unsigned                        cur_mode, cur_bpw;
202 	unsigned                        cur_speed;
203 	struct s3c64xx_spi_dma_data	rx_dma;
204 	struct s3c64xx_spi_dma_data	tx_dma;
205 #ifdef CONFIG_S3C_DMA
206 	struct samsung_dma_ops		*ops;
207 #endif
208 	struct s3c64xx_spi_port_config	*port_conf;
209 	unsigned int			port_id;
210 	unsigned long			gpios[4];
211 	bool				cs_gpio;
212 };
213 
214 static void flush_fifo(struct s3c64xx_spi_driver_data *sdd)
215 {
216 	void __iomem *regs = sdd->regs;
217 	unsigned long loops;
218 	u32 val;
219 
220 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
221 
222 	val = readl(regs + S3C64XX_SPI_CH_CFG);
223 	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
224 	writel(val, regs + S3C64XX_SPI_CH_CFG);
225 
226 	val = readl(regs + S3C64XX_SPI_CH_CFG);
227 	val |= S3C64XX_SPI_CH_SW_RST;
228 	val &= ~S3C64XX_SPI_CH_HS_EN;
229 	writel(val, regs + S3C64XX_SPI_CH_CFG);
230 
231 	/* Flush TxFIFO*/
232 	loops = msecs_to_loops(1);
233 	do {
234 		val = readl(regs + S3C64XX_SPI_STATUS);
235 	} while (TX_FIFO_LVL(val, sdd) && loops--);
236 
237 	if (loops == 0)
238 		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
239 
240 	/* Flush RxFIFO*/
241 	loops = msecs_to_loops(1);
242 	do {
243 		val = readl(regs + S3C64XX_SPI_STATUS);
244 		if (RX_FIFO_LVL(val, sdd))
245 			readl(regs + S3C64XX_SPI_RX_DATA);
246 		else
247 			break;
248 	} while (loops--);
249 
250 	if (loops == 0)
251 		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
252 
253 	val = readl(regs + S3C64XX_SPI_CH_CFG);
254 	val &= ~S3C64XX_SPI_CH_SW_RST;
255 	writel(val, regs + S3C64XX_SPI_CH_CFG);
256 
257 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
258 	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
259 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
260 }
261 
262 static void s3c64xx_spi_dmacb(void *data)
263 {
264 	struct s3c64xx_spi_driver_data *sdd;
265 	struct s3c64xx_spi_dma_data *dma = data;
266 	unsigned long flags;
267 
268 	if (dma->direction == DMA_DEV_TO_MEM)
269 		sdd = container_of(data,
270 			struct s3c64xx_spi_driver_data, rx_dma);
271 	else
272 		sdd = container_of(data,
273 			struct s3c64xx_spi_driver_data, tx_dma);
274 
275 	spin_lock_irqsave(&sdd->lock, flags);
276 
277 	if (dma->direction == DMA_DEV_TO_MEM) {
278 		sdd->state &= ~RXBUSY;
279 		if (!(sdd->state & TXBUSY))
280 			complete(&sdd->xfer_completion);
281 	} else {
282 		sdd->state &= ~TXBUSY;
283 		if (!(sdd->state & RXBUSY))
284 			complete(&sdd->xfer_completion);
285 	}
286 
287 	spin_unlock_irqrestore(&sdd->lock, flags);
288 }
289 
290 #ifdef CONFIG_S3C_DMA
291 /* FIXME: remove this section once arch/arm/mach-s3c64xx uses dmaengine */
292 
293 static struct s3c2410_dma_client s3c64xx_spi_dma_client = {
294 	.name = "samsung-spi-dma",
295 };
296 
297 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
298 					unsigned len, dma_addr_t buf)
299 {
300 	struct s3c64xx_spi_driver_data *sdd;
301 	struct samsung_dma_prep info;
302 	struct samsung_dma_config config;
303 
304 	if (dma->direction == DMA_DEV_TO_MEM) {
305 		sdd = container_of((void *)dma,
306 			struct s3c64xx_spi_driver_data, rx_dma);
307 		config.direction = sdd->rx_dma.direction;
308 		config.fifo = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
309 		config.width = sdd->cur_bpw / 8;
310 		sdd->ops->config((enum dma_ch)sdd->rx_dma.ch, &config);
311 	} else {
312 		sdd = container_of((void *)dma,
313 			struct s3c64xx_spi_driver_data, tx_dma);
314 		config.direction =  sdd->tx_dma.direction;
315 		config.fifo = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
316 		config.width = sdd->cur_bpw / 8;
317 		sdd->ops->config((enum dma_ch)sdd->tx_dma.ch, &config);
318 	}
319 
320 	info.cap = DMA_SLAVE;
321 	info.len = len;
322 	info.fp = s3c64xx_spi_dmacb;
323 	info.fp_param = dma;
324 	info.direction = dma->direction;
325 	info.buf = buf;
326 
327 	sdd->ops->prepare((enum dma_ch)dma->ch, &info);
328 	sdd->ops->trigger((enum dma_ch)dma->ch);
329 }
330 
331 static int acquire_dma(struct s3c64xx_spi_driver_data *sdd)
332 {
333 	struct samsung_dma_req req;
334 	struct device *dev = &sdd->pdev->dev;
335 
336 	sdd->ops = samsung_dma_get_ops();
337 
338 	req.cap = DMA_SLAVE;
339 	req.client = &s3c64xx_spi_dma_client;
340 
341 	sdd->rx_dma.ch = (void *)sdd->ops->request(sdd->rx_dma.dmach, &req, dev, "rx");
342 	sdd->tx_dma.ch = (void *)sdd->ops->request(sdd->tx_dma.dmach, &req, dev, "tx");
343 
344 	return 1;
345 }
346 
347 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
348 {
349 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
350 
351 	/*
352 	 * If DMA resource was not available during
353 	 * probe, no need to continue with dma requests
354 	 * else Acquire DMA channels
355 	 */
356 	while (!is_polling(sdd) && !acquire_dma(sdd))
357 		usleep_range(10000, 11000);
358 
359 	pm_runtime_get_sync(&sdd->pdev->dev);
360 
361 	return 0;
362 }
363 
364 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
365 {
366 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
367 
368 	/* Free DMA channels */
369 	if (!is_polling(sdd)) {
370 		sdd->ops->release((enum dma_ch)sdd->rx_dma.ch,
371 					&s3c64xx_spi_dma_client);
372 		sdd->ops->release((enum dma_ch)sdd->tx_dma.ch,
373 					&s3c64xx_spi_dma_client);
374 	}
375 	pm_runtime_put(&sdd->pdev->dev);
376 
377 	return 0;
378 }
379 
380 static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
381 				 struct s3c64xx_spi_dma_data *dma)
382 {
383 	sdd->ops->stop((enum dma_ch)dma->ch);
384 }
385 #else
386 
387 static void prepare_dma(struct s3c64xx_spi_dma_data *dma,
388 					unsigned len, dma_addr_t buf)
389 {
390 	struct s3c64xx_spi_driver_data *sdd;
391 	struct dma_slave_config config;
392 	struct scatterlist sg;
393 	struct dma_async_tx_descriptor *desc;
394 
395 	if (dma->direction == DMA_DEV_TO_MEM) {
396 		sdd = container_of((void *)dma,
397 			struct s3c64xx_spi_driver_data, rx_dma);
398 		config.direction = dma->direction;
399 		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
400 		config.src_addr_width = sdd->cur_bpw / 8;
401 		config.src_maxburst = 1;
402 		dmaengine_slave_config(dma->ch, &config);
403 	} else {
404 		sdd = container_of((void *)dma,
405 			struct s3c64xx_spi_driver_data, tx_dma);
406 		config.direction = dma->direction;
407 		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
408 		config.dst_addr_width = sdd->cur_bpw / 8;
409 		config.dst_maxburst = 1;
410 		dmaengine_slave_config(dma->ch, &config);
411 	}
412 
413 	sg_init_table(&sg, 1);
414 	sg_dma_len(&sg) = len;
415 	sg_set_page(&sg, pfn_to_page(PFN_DOWN(buf)),
416 		    len, offset_in_page(buf));
417 	sg_dma_address(&sg) = buf;
418 
419 	desc = dmaengine_prep_slave_sg(dma->ch,
420 		&sg, 1, dma->direction, DMA_PREP_INTERRUPT);
421 
422 	desc->callback = s3c64xx_spi_dmacb;
423 	desc->callback_param = dma;
424 
425 	dmaengine_submit(desc);
426 	dma_async_issue_pending(dma->ch);
427 }
428 
429 static int s3c64xx_spi_prepare_transfer(struct spi_master *spi)
430 {
431 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
432 	dma_filter_fn filter = sdd->cntrlr_info->filter;
433 	struct device *dev = &sdd->pdev->dev;
434 	dma_cap_mask_t mask;
435 	int ret;
436 
437 	dma_cap_zero(mask);
438 	dma_cap_set(DMA_SLAVE, mask);
439 
440 	/* Acquire DMA channels */
441 	sdd->rx_dma.ch = dma_request_slave_channel_compat(mask, filter,
442 				(void*)sdd->rx_dma.dmach, dev, "rx");
443 	if (!sdd->rx_dma.ch) {
444 		dev_err(dev, "Failed to get RX DMA channel\n");
445 		ret = -EBUSY;
446 		goto out;
447 	}
448 
449 	sdd->tx_dma.ch = dma_request_slave_channel_compat(mask, filter,
450 				(void*)sdd->tx_dma.dmach, dev, "tx");
451 	if (!sdd->tx_dma.ch) {
452 		dev_err(dev, "Failed to get TX DMA channel\n");
453 		ret = -EBUSY;
454 		goto out_rx;
455 	}
456 
457 	ret = pm_runtime_get_sync(&sdd->pdev->dev);
458 	if (ret < 0) {
459 		dev_err(dev, "Failed to enable device: %d\n", ret);
460 		goto out_tx;
461 	}
462 
463 	return 0;
464 
465 out_tx:
466 	dma_release_channel(sdd->tx_dma.ch);
467 out_rx:
468 	dma_release_channel(sdd->rx_dma.ch);
469 out:
470 	return ret;
471 }
472 
473 static int s3c64xx_spi_unprepare_transfer(struct spi_master *spi)
474 {
475 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(spi);
476 
477 	/* Free DMA channels */
478 	if (!is_polling(sdd)) {
479 		dma_release_channel(sdd->rx_dma.ch);
480 		dma_release_channel(sdd->tx_dma.ch);
481 	}
482 
483 	pm_runtime_put(&sdd->pdev->dev);
484 	return 0;
485 }
486 
487 static void s3c64xx_spi_dma_stop(struct s3c64xx_spi_driver_data *sdd,
488 				 struct s3c64xx_spi_dma_data *dma)
489 {
490 	dmaengine_terminate_all(dma->ch);
491 }
492 #endif
493 
494 static void enable_datapath(struct s3c64xx_spi_driver_data *sdd,
495 				struct spi_device *spi,
496 				struct spi_transfer *xfer, int dma_mode)
497 {
498 	void __iomem *regs = sdd->regs;
499 	u32 modecfg, chcfg;
500 
501 	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
502 	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
503 
504 	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
505 	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
506 
507 	if (dma_mode) {
508 		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
509 	} else {
510 		/* Always shift in data in FIFO, even if xfer is Tx only,
511 		 * this helps setting PCKT_CNT value for generating clocks
512 		 * as exactly needed.
513 		 */
514 		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
515 		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
516 					| S3C64XX_SPI_PACKET_CNT_EN,
517 					regs + S3C64XX_SPI_PACKET_CNT);
518 	}
519 
520 	if (xfer->tx_buf != NULL) {
521 		sdd->state |= TXBUSY;
522 		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
523 		if (dma_mode) {
524 			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
525 			prepare_dma(&sdd->tx_dma, xfer->len, xfer->tx_dma);
526 		} else {
527 			switch (sdd->cur_bpw) {
528 			case 32:
529 				iowrite32_rep(regs + S3C64XX_SPI_TX_DATA,
530 					xfer->tx_buf, xfer->len / 4);
531 				break;
532 			case 16:
533 				iowrite16_rep(regs + S3C64XX_SPI_TX_DATA,
534 					xfer->tx_buf, xfer->len / 2);
535 				break;
536 			default:
537 				iowrite8_rep(regs + S3C64XX_SPI_TX_DATA,
538 					xfer->tx_buf, xfer->len);
539 				break;
540 			}
541 		}
542 	}
543 
544 	if (xfer->rx_buf != NULL) {
545 		sdd->state |= RXBUSY;
546 
547 		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
548 					&& !(sdd->cur_mode & SPI_CPHA))
549 			chcfg |= S3C64XX_SPI_CH_HS_EN;
550 
551 		if (dma_mode) {
552 			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
553 			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
554 			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
555 					| S3C64XX_SPI_PACKET_CNT_EN,
556 					regs + S3C64XX_SPI_PACKET_CNT);
557 			prepare_dma(&sdd->rx_dma, xfer->len, xfer->rx_dma);
558 		}
559 	}
560 
561 	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
562 	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
563 }
564 
565 static inline void enable_cs(struct s3c64xx_spi_driver_data *sdd,
566 						struct spi_device *spi)
567 {
568 	struct s3c64xx_spi_csinfo *cs;
569 
570 	if (sdd->tgl_spi != NULL) { /* If last device toggled after mssg */
571 		if (sdd->tgl_spi != spi) { /* if last mssg on diff device */
572 			/* Deselect the last toggled device */
573 			cs = sdd->tgl_spi->controller_data;
574 			if (sdd->cs_gpio)
575 				gpio_set_value(cs->line,
576 					spi->mode & SPI_CS_HIGH ? 0 : 1);
577 		}
578 		sdd->tgl_spi = NULL;
579 	}
580 
581 	cs = spi->controller_data;
582 	if (sdd->cs_gpio)
583 		gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 1 : 0);
584 
585 	/* Start the signals */
586 	writel(0, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
587 }
588 
589 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
590 					int timeout_ms)
591 {
592 	void __iomem *regs = sdd->regs;
593 	unsigned long val = 1;
594 	u32 status;
595 
596 	/* max fifo depth available */
597 	u32 max_fifo = (FIFO_LVL_MASK(sdd) >> 1) + 1;
598 
599 	if (timeout_ms)
600 		val = msecs_to_loops(timeout_ms);
601 
602 	do {
603 		status = readl(regs + S3C64XX_SPI_STATUS);
604 	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
605 
606 	/* return the actual received data length */
607 	return RX_FIFO_LVL(status, sdd);
608 }
609 
610 static int wait_for_xfer(struct s3c64xx_spi_driver_data *sdd,
611 				struct spi_transfer *xfer, int dma_mode)
612 {
613 	void __iomem *regs = sdd->regs;
614 	unsigned long val;
615 	int ms;
616 
617 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
618 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
619 	ms += 10; /* some tolerance */
620 
621 	if (dma_mode) {
622 		val = msecs_to_jiffies(ms) + 10;
623 		val = wait_for_completion_timeout(&sdd->xfer_completion, val);
624 	} else {
625 		u32 status;
626 		val = msecs_to_loops(ms);
627 		do {
628 			status = readl(regs + S3C64XX_SPI_STATUS);
629 		} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
630 	}
631 
632 	if (dma_mode) {
633 		u32 status;
634 
635 		/*
636 		 * If the previous xfer was completed within timeout, then
637 		 * proceed further else return -EIO.
638 		 * DmaTx returns after simply writing data in the FIFO,
639 		 * w/o waiting for real transmission on the bus to finish.
640 		 * DmaRx returns only after Dma read data from FIFO which
641 		 * needs bus transmission to finish, so we don't worry if
642 		 * Xfer involved Rx(with or without Tx).
643 		 */
644 		if (val && !xfer->rx_buf) {
645 			val = msecs_to_loops(10);
646 			status = readl(regs + S3C64XX_SPI_STATUS);
647 			while ((TX_FIFO_LVL(status, sdd)
648 				|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
649 					&& --val) {
650 				cpu_relax();
651 				status = readl(regs + S3C64XX_SPI_STATUS);
652 			}
653 
654 		}
655 
656 		/* If timed out while checking rx/tx status return error */
657 		if (!val)
658 			return -EIO;
659 	} else {
660 		int loops;
661 		u32 cpy_len;
662 		u8 *buf;
663 
664 		/* If it was only Tx */
665 		if (!xfer->rx_buf) {
666 			sdd->state &= ~TXBUSY;
667 			return 0;
668 		}
669 
670 		/*
671 		 * If the receive length is bigger than the controller fifo
672 		 * size, calculate the loops and read the fifo as many times.
673 		 * loops = length / max fifo size (calculated by using the
674 		 * fifo mask).
675 		 * For any size less than the fifo size the below code is
676 		 * executed atleast once.
677 		 */
678 		loops = xfer->len / ((FIFO_LVL_MASK(sdd) >> 1) + 1);
679 		buf = xfer->rx_buf;
680 		do {
681 			/* wait for data to be received in the fifo */
682 			cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
683 						(loops ? ms : 0));
684 
685 			switch (sdd->cur_bpw) {
686 			case 32:
687 				ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
688 					buf, cpy_len / 4);
689 				break;
690 			case 16:
691 				ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
692 					buf, cpy_len / 2);
693 				break;
694 			default:
695 				ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
696 					buf, cpy_len);
697 				break;
698 			}
699 
700 			buf = buf + cpy_len;
701 		} while (loops--);
702 		sdd->state &= ~RXBUSY;
703 	}
704 
705 	return 0;
706 }
707 
708 static inline void disable_cs(struct s3c64xx_spi_driver_data *sdd,
709 						struct spi_device *spi)
710 {
711 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
712 
713 	if (sdd->tgl_spi == spi)
714 		sdd->tgl_spi = NULL;
715 
716 	if (sdd->cs_gpio)
717 		gpio_set_value(cs->line, spi->mode & SPI_CS_HIGH ? 0 : 1);
718 
719 	/* Quiese the signals */
720 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
721 }
722 
723 static void s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
724 {
725 	void __iomem *regs = sdd->regs;
726 	u32 val;
727 
728 	/* Disable Clock */
729 	if (sdd->port_conf->clk_from_cmu) {
730 		clk_disable_unprepare(sdd->src_clk);
731 	} else {
732 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
733 		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
734 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
735 	}
736 
737 	/* Set Polarity and Phase */
738 	val = readl(regs + S3C64XX_SPI_CH_CFG);
739 	val &= ~(S3C64XX_SPI_CH_SLAVE |
740 			S3C64XX_SPI_CPOL_L |
741 			S3C64XX_SPI_CPHA_B);
742 
743 	if (sdd->cur_mode & SPI_CPOL)
744 		val |= S3C64XX_SPI_CPOL_L;
745 
746 	if (sdd->cur_mode & SPI_CPHA)
747 		val |= S3C64XX_SPI_CPHA_B;
748 
749 	writel(val, regs + S3C64XX_SPI_CH_CFG);
750 
751 	/* Set Channel & DMA Mode */
752 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
753 	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
754 			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
755 
756 	switch (sdd->cur_bpw) {
757 	case 32:
758 		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
759 		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
760 		break;
761 	case 16:
762 		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
763 		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
764 		break;
765 	default:
766 		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
767 		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
768 		break;
769 	}
770 
771 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
772 
773 	if (sdd->port_conf->clk_from_cmu) {
774 		/* Configure Clock */
775 		/* There is half-multiplier before the SPI */
776 		clk_set_rate(sdd->src_clk, sdd->cur_speed * 2);
777 		/* Enable Clock */
778 		clk_prepare_enable(sdd->src_clk);
779 	} else {
780 		/* Configure Clock */
781 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
782 		val &= ~S3C64XX_SPI_PSR_MASK;
783 		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / 2 - 1)
784 				& S3C64XX_SPI_PSR_MASK);
785 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
786 
787 		/* Enable Clock */
788 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
789 		val |= S3C64XX_SPI_ENCLK_ENABLE;
790 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
791 	}
792 }
793 
794 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
795 
796 static int s3c64xx_spi_map_mssg(struct s3c64xx_spi_driver_data *sdd,
797 						struct spi_message *msg)
798 {
799 	struct device *dev = &sdd->pdev->dev;
800 	struct spi_transfer *xfer;
801 
802 	if (is_polling(sdd) || msg->is_dma_mapped)
803 		return 0;
804 
805 	/* First mark all xfer unmapped */
806 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
807 		xfer->rx_dma = XFER_DMAADDR_INVALID;
808 		xfer->tx_dma = XFER_DMAADDR_INVALID;
809 	}
810 
811 	/* Map until end or first fail */
812 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
813 
814 		if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
815 			continue;
816 
817 		if (xfer->tx_buf != NULL) {
818 			xfer->tx_dma = dma_map_single(dev,
819 					(void *)xfer->tx_buf, xfer->len,
820 					DMA_TO_DEVICE);
821 			if (dma_mapping_error(dev, xfer->tx_dma)) {
822 				dev_err(dev, "dma_map_single Tx failed\n");
823 				xfer->tx_dma = XFER_DMAADDR_INVALID;
824 				return -ENOMEM;
825 			}
826 		}
827 
828 		if (xfer->rx_buf != NULL) {
829 			xfer->rx_dma = dma_map_single(dev, xfer->rx_buf,
830 						xfer->len, DMA_FROM_DEVICE);
831 			if (dma_mapping_error(dev, xfer->rx_dma)) {
832 				dev_err(dev, "dma_map_single Rx failed\n");
833 				dma_unmap_single(dev, xfer->tx_dma,
834 						xfer->len, DMA_TO_DEVICE);
835 				xfer->tx_dma = XFER_DMAADDR_INVALID;
836 				xfer->rx_dma = XFER_DMAADDR_INVALID;
837 				return -ENOMEM;
838 			}
839 		}
840 	}
841 
842 	return 0;
843 }
844 
845 static void s3c64xx_spi_unmap_mssg(struct s3c64xx_spi_driver_data *sdd,
846 						struct spi_message *msg)
847 {
848 	struct device *dev = &sdd->pdev->dev;
849 	struct spi_transfer *xfer;
850 
851 	if (is_polling(sdd) || msg->is_dma_mapped)
852 		return;
853 
854 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
855 
856 		if (xfer->len <= ((FIFO_LVL_MASK(sdd) >> 1) + 1))
857 			continue;
858 
859 		if (xfer->rx_buf != NULL
860 				&& xfer->rx_dma != XFER_DMAADDR_INVALID)
861 			dma_unmap_single(dev, xfer->rx_dma,
862 						xfer->len, DMA_FROM_DEVICE);
863 
864 		if (xfer->tx_buf != NULL
865 				&& xfer->tx_dma != XFER_DMAADDR_INVALID)
866 			dma_unmap_single(dev, xfer->tx_dma,
867 						xfer->len, DMA_TO_DEVICE);
868 	}
869 }
870 
871 static int s3c64xx_spi_transfer_one_message(struct spi_master *master,
872 					    struct spi_message *msg)
873 {
874 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
875 	struct spi_device *spi = msg->spi;
876 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
877 	struct spi_transfer *xfer;
878 	int status = 0, cs_toggle = 0;
879 	u32 speed;
880 	u8 bpw;
881 
882 	/* If Master's(controller) state differs from that needed by Slave */
883 	if (sdd->cur_speed != spi->max_speed_hz
884 			|| sdd->cur_mode != spi->mode
885 			|| sdd->cur_bpw != spi->bits_per_word) {
886 		sdd->cur_bpw = spi->bits_per_word;
887 		sdd->cur_speed = spi->max_speed_hz;
888 		sdd->cur_mode = spi->mode;
889 		s3c64xx_spi_config(sdd);
890 	}
891 
892 	/* Map all the transfers if needed */
893 	if (s3c64xx_spi_map_mssg(sdd, msg)) {
894 		dev_err(&spi->dev,
895 			"Xfer: Unable to map message buffers!\n");
896 		status = -ENOMEM;
897 		goto out;
898 	}
899 
900 	/* Configure feedback delay */
901 	writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
902 
903 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
904 
905 		unsigned long flags;
906 		int use_dma;
907 
908 		INIT_COMPLETION(sdd->xfer_completion);
909 
910 		/* Only BPW and Speed may change across transfers */
911 		bpw = xfer->bits_per_word;
912 		speed = xfer->speed_hz ? : spi->max_speed_hz;
913 
914 		if (xfer->len % (bpw / 8)) {
915 			dev_err(&spi->dev,
916 				"Xfer length(%u) not a multiple of word size(%u)\n",
917 				xfer->len, bpw / 8);
918 			status = -EIO;
919 			goto out;
920 		}
921 
922 		if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
923 			sdd->cur_bpw = bpw;
924 			sdd->cur_speed = speed;
925 			s3c64xx_spi_config(sdd);
926 		}
927 
928 		/* Polling method for xfers not bigger than FIFO capacity */
929 		use_dma = 0;
930 		if (!is_polling(sdd) &&
931 			(sdd->rx_dma.ch && sdd->tx_dma.ch &&
932 			(xfer->len > ((FIFO_LVL_MASK(sdd) >> 1) + 1))))
933 			use_dma = 1;
934 
935 		spin_lock_irqsave(&sdd->lock, flags);
936 
937 		/* Pending only which is to be done */
938 		sdd->state &= ~RXBUSY;
939 		sdd->state &= ~TXBUSY;
940 
941 		enable_datapath(sdd, spi, xfer, use_dma);
942 
943 		/* Slave Select */
944 		enable_cs(sdd, spi);
945 
946 		spin_unlock_irqrestore(&sdd->lock, flags);
947 
948 		status = wait_for_xfer(sdd, xfer, use_dma);
949 
950 		if (status) {
951 			dev_err(&spi->dev, "I/O Error: rx-%d tx-%d res:rx-%c tx-%c len-%d\n",
952 				xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
953 				(sdd->state & RXBUSY) ? 'f' : 'p',
954 				(sdd->state & TXBUSY) ? 'f' : 'p',
955 				xfer->len);
956 
957 			if (use_dma) {
958 				if (xfer->tx_buf != NULL
959 						&& (sdd->state & TXBUSY))
960 					s3c64xx_spi_dma_stop(sdd, &sdd->tx_dma);
961 				if (xfer->rx_buf != NULL
962 						&& (sdd->state & RXBUSY))
963 					s3c64xx_spi_dma_stop(sdd, &sdd->rx_dma);
964 			}
965 
966 			goto out;
967 		}
968 
969 		if (xfer->delay_usecs)
970 			udelay(xfer->delay_usecs);
971 
972 		if (xfer->cs_change) {
973 			/* Hint that the next mssg is gonna be
974 			   for the same device */
975 			if (list_is_last(&xfer->transfer_list,
976 						&msg->transfers))
977 				cs_toggle = 1;
978 		}
979 
980 		msg->actual_length += xfer->len;
981 
982 		flush_fifo(sdd);
983 	}
984 
985 out:
986 	if (!cs_toggle || status)
987 		disable_cs(sdd, spi);
988 	else
989 		sdd->tgl_spi = spi;
990 
991 	s3c64xx_spi_unmap_mssg(sdd, msg);
992 
993 	msg->status = status;
994 
995 	spi_finalize_current_message(master);
996 
997 	return 0;
998 }
999 
1000 static struct s3c64xx_spi_csinfo *s3c64xx_get_slave_ctrldata(
1001 				struct spi_device *spi)
1002 {
1003 	struct s3c64xx_spi_csinfo *cs;
1004 	struct device_node *slave_np, *data_np = NULL;
1005 	struct s3c64xx_spi_driver_data *sdd;
1006 	u32 fb_delay = 0;
1007 
1008 	sdd = spi_master_get_devdata(spi->master);
1009 	slave_np = spi->dev.of_node;
1010 	if (!slave_np) {
1011 		dev_err(&spi->dev, "device node not found\n");
1012 		return ERR_PTR(-EINVAL);
1013 	}
1014 
1015 	data_np = of_get_child_by_name(slave_np, "controller-data");
1016 	if (!data_np) {
1017 		dev_err(&spi->dev, "child node 'controller-data' not found\n");
1018 		return ERR_PTR(-EINVAL);
1019 	}
1020 
1021 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1022 	if (!cs) {
1023 		dev_err(&spi->dev, "could not allocate memory for controller data\n");
1024 		of_node_put(data_np);
1025 		return ERR_PTR(-ENOMEM);
1026 	}
1027 
1028 	/* The CS line is asserted/deasserted by the gpio pin */
1029 	if (sdd->cs_gpio)
1030 		cs->line = of_get_named_gpio(data_np, "cs-gpio", 0);
1031 
1032 	if (!gpio_is_valid(cs->line)) {
1033 		dev_err(&spi->dev, "chip select gpio is not specified or invalid\n");
1034 		kfree(cs);
1035 		of_node_put(data_np);
1036 		return ERR_PTR(-EINVAL);
1037 	}
1038 
1039 	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
1040 	cs->fb_delay = fb_delay;
1041 	of_node_put(data_np);
1042 	return cs;
1043 }
1044 
1045 /*
1046  * Here we only check the validity of requested configuration
1047  * and save the configuration in a local data-structure.
1048  * The controller is actually configured only just before we
1049  * get a message to transfer.
1050  */
1051 static int s3c64xx_spi_setup(struct spi_device *spi)
1052 {
1053 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
1054 	struct s3c64xx_spi_driver_data *sdd;
1055 	struct s3c64xx_spi_info *sci;
1056 	struct spi_message *msg;
1057 	unsigned long flags;
1058 	int err;
1059 
1060 	sdd = spi_master_get_devdata(spi->master);
1061 	if (!cs && spi->dev.of_node) {
1062 		cs = s3c64xx_get_slave_ctrldata(spi);
1063 		spi->controller_data = cs;
1064 	}
1065 
1066 	if (IS_ERR_OR_NULL(cs)) {
1067 		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi->chip_select);
1068 		return -ENODEV;
1069 	}
1070 
1071 	/* Request gpio only if cs line is asserted by gpio pins */
1072 	if (sdd->cs_gpio) {
1073 		err = gpio_request_one(cs->line, GPIOF_OUT_INIT_HIGH,
1074 				       dev_name(&spi->dev));
1075 		if (err) {
1076 			dev_err(&spi->dev,
1077 				"Failed to get /CS gpio [%d]: %d\n",
1078 				cs->line, err);
1079 			goto err_gpio_req;
1080 		}
1081 	}
1082 
1083 	if (!spi_get_ctldata(spi))
1084 		spi_set_ctldata(spi, cs);
1085 
1086 	sci = sdd->cntrlr_info;
1087 
1088 	spin_lock_irqsave(&sdd->lock, flags);
1089 
1090 	list_for_each_entry(msg, &sdd->queue, queue) {
1091 		/* Is some mssg is already queued for this device */
1092 		if (msg->spi == spi) {
1093 			dev_err(&spi->dev,
1094 				"setup: attempt while mssg in queue!\n");
1095 			spin_unlock_irqrestore(&sdd->lock, flags);
1096 			err = -EBUSY;
1097 			goto err_msgq;
1098 		}
1099 	}
1100 
1101 	spin_unlock_irqrestore(&sdd->lock, flags);
1102 
1103 	pm_runtime_get_sync(&sdd->pdev->dev);
1104 
1105 	/* Check if we can provide the requested rate */
1106 	if (!sdd->port_conf->clk_from_cmu) {
1107 		u32 psr, speed;
1108 
1109 		/* Max possible */
1110 		speed = clk_get_rate(sdd->src_clk) / 2 / (0 + 1);
1111 
1112 		if (spi->max_speed_hz > speed)
1113 			spi->max_speed_hz = speed;
1114 
1115 		psr = clk_get_rate(sdd->src_clk) / 2 / spi->max_speed_hz - 1;
1116 		psr &= S3C64XX_SPI_PSR_MASK;
1117 		if (psr == S3C64XX_SPI_PSR_MASK)
1118 			psr--;
1119 
1120 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
1121 		if (spi->max_speed_hz < speed) {
1122 			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
1123 				psr++;
1124 			} else {
1125 				err = -EINVAL;
1126 				goto setup_exit;
1127 			}
1128 		}
1129 
1130 		speed = clk_get_rate(sdd->src_clk) / 2 / (psr + 1);
1131 		if (spi->max_speed_hz >= speed) {
1132 			spi->max_speed_hz = speed;
1133 		} else {
1134 			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
1135 				spi->max_speed_hz);
1136 			err = -EINVAL;
1137 			goto setup_exit;
1138 		}
1139 	}
1140 
1141 	pm_runtime_put(&sdd->pdev->dev);
1142 	disable_cs(sdd, spi);
1143 	return 0;
1144 
1145 setup_exit:
1146 	/* setup() returns with device de-selected */
1147 	disable_cs(sdd, spi);
1148 
1149 err_msgq:
1150 	gpio_free(cs->line);
1151 	spi_set_ctldata(spi, NULL);
1152 
1153 err_gpio_req:
1154 	if (spi->dev.of_node)
1155 		kfree(cs);
1156 
1157 	return err;
1158 }
1159 
1160 static void s3c64xx_spi_cleanup(struct spi_device *spi)
1161 {
1162 	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
1163 	struct s3c64xx_spi_driver_data *sdd;
1164 
1165 	sdd = spi_master_get_devdata(spi->master);
1166 	if (cs && sdd->cs_gpio) {
1167 		gpio_free(cs->line);
1168 		if (spi->dev.of_node)
1169 			kfree(cs);
1170 	}
1171 	spi_set_ctldata(spi, NULL);
1172 }
1173 
1174 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
1175 {
1176 	struct s3c64xx_spi_driver_data *sdd = data;
1177 	struct spi_master *spi = sdd->master;
1178 	unsigned int val, clr = 0;
1179 
1180 	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
1181 
1182 	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
1183 		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
1184 		dev_err(&spi->dev, "RX overrun\n");
1185 	}
1186 	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
1187 		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
1188 		dev_err(&spi->dev, "RX underrun\n");
1189 	}
1190 	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
1191 		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
1192 		dev_err(&spi->dev, "TX overrun\n");
1193 	}
1194 	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
1195 		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1196 		dev_err(&spi->dev, "TX underrun\n");
1197 	}
1198 
1199 	/* Clear the pending irq by setting and then clearing it */
1200 	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1201 	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1202 
1203 	return IRQ_HANDLED;
1204 }
1205 
1206 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd, int channel)
1207 {
1208 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1209 	void __iomem *regs = sdd->regs;
1210 	unsigned int val;
1211 
1212 	sdd->cur_speed = 0;
1213 
1214 	writel(S3C64XX_SPI_SLAVE_SIG_INACT, sdd->regs + S3C64XX_SPI_SLAVE_SEL);
1215 
1216 	/* Disable Interrupts - we use Polling if not DMA mode */
1217 	writel(0, regs + S3C64XX_SPI_INT_EN);
1218 
1219 	if (!sdd->port_conf->clk_from_cmu)
1220 		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1221 				regs + S3C64XX_SPI_CLK_CFG);
1222 	writel(0, regs + S3C64XX_SPI_MODE_CFG);
1223 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1224 
1225 	/* Clear any irq pending bits, should set and clear the bits */
1226 	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1227 		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1228 		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1229 		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1230 	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
1231 	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
1232 
1233 	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1234 
1235 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
1236 	val &= ~S3C64XX_SPI_MODE_4BURST;
1237 	val &= ~(S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1238 	val |= (S3C64XX_SPI_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1239 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
1240 
1241 	flush_fifo(sdd);
1242 }
1243 
1244 #ifdef CONFIG_OF
1245 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1246 {
1247 	struct s3c64xx_spi_info *sci;
1248 	u32 temp;
1249 
1250 	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1251 	if (!sci) {
1252 		dev_err(dev, "memory allocation for spi_info failed\n");
1253 		return ERR_PTR(-ENOMEM);
1254 	}
1255 
1256 	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1257 		dev_warn(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1258 		sci->src_clk_nr = 0;
1259 	} else {
1260 		sci->src_clk_nr = temp;
1261 	}
1262 
1263 	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1264 		dev_warn(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1265 		sci->num_cs = 1;
1266 	} else {
1267 		sci->num_cs = temp;
1268 	}
1269 
1270 	return sci;
1271 }
1272 #else
1273 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1274 {
1275 	return dev->platform_data;
1276 }
1277 #endif
1278 
1279 static const struct of_device_id s3c64xx_spi_dt_match[];
1280 
1281 static inline struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1282 						struct platform_device *pdev)
1283 {
1284 #ifdef CONFIG_OF
1285 	if (pdev->dev.of_node) {
1286 		const struct of_device_id *match;
1287 		match = of_match_node(s3c64xx_spi_dt_match, pdev->dev.of_node);
1288 		return (struct s3c64xx_spi_port_config *)match->data;
1289 	}
1290 #endif
1291 	return (struct s3c64xx_spi_port_config *)
1292 			 platform_get_device_id(pdev)->driver_data;
1293 }
1294 
1295 static int s3c64xx_spi_probe(struct platform_device *pdev)
1296 {
1297 	struct resource	*mem_res;
1298 	struct resource	*res;
1299 	struct s3c64xx_spi_driver_data *sdd;
1300 	struct s3c64xx_spi_info *sci = pdev->dev.platform_data;
1301 	struct spi_master *master;
1302 	int ret, irq;
1303 	char clk_name[16];
1304 
1305 	if (!sci && pdev->dev.of_node) {
1306 		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1307 		if (IS_ERR(sci))
1308 			return PTR_ERR(sci);
1309 	}
1310 
1311 	if (!sci) {
1312 		dev_err(&pdev->dev, "platform_data missing!\n");
1313 		return -ENODEV;
1314 	}
1315 
1316 	mem_res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1317 	if (mem_res == NULL) {
1318 		dev_err(&pdev->dev, "Unable to get SPI MEM resource\n");
1319 		return -ENXIO;
1320 	}
1321 
1322 	irq = platform_get_irq(pdev, 0);
1323 	if (irq < 0) {
1324 		dev_warn(&pdev->dev, "Failed to get IRQ: %d\n", irq);
1325 		return irq;
1326 	}
1327 
1328 	master = spi_alloc_master(&pdev->dev,
1329 				sizeof(struct s3c64xx_spi_driver_data));
1330 	if (master == NULL) {
1331 		dev_err(&pdev->dev, "Unable to allocate SPI Master\n");
1332 		return -ENOMEM;
1333 	}
1334 
1335 	platform_set_drvdata(pdev, master);
1336 
1337 	sdd = spi_master_get_devdata(master);
1338 	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1339 	sdd->master = master;
1340 	sdd->cntrlr_info = sci;
1341 	sdd->pdev = pdev;
1342 	sdd->sfr_start = mem_res->start;
1343 	sdd->cs_gpio = true;
1344 	if (pdev->dev.of_node) {
1345 		if (!of_find_property(pdev->dev.of_node, "cs-gpio", NULL))
1346 			sdd->cs_gpio = false;
1347 
1348 		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1349 		if (ret < 0) {
1350 			dev_err(&pdev->dev, "failed to get alias id, errno %d\n",
1351 				ret);
1352 			goto err0;
1353 		}
1354 		sdd->port_id = ret;
1355 	} else {
1356 		sdd->port_id = pdev->id;
1357 	}
1358 
1359 	sdd->cur_bpw = 8;
1360 
1361 	if (!sdd->pdev->dev.of_node) {
1362 		res = platform_get_resource(pdev, IORESOURCE_DMA,  0);
1363 		if (!res) {
1364 			dev_warn(&pdev->dev, "Unable to get SPI tx dma "
1365 					"resource. Switching to poll mode\n");
1366 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1367 		} else
1368 			sdd->tx_dma.dmach = res->start;
1369 
1370 		res = platform_get_resource(pdev, IORESOURCE_DMA,  1);
1371 		if (!res) {
1372 			dev_warn(&pdev->dev, "Unable to get SPI rx dma "
1373 					"resource. Switching to poll mode\n");
1374 			sdd->port_conf->quirks = S3C64XX_SPI_QUIRK_POLL;
1375 		} else
1376 			sdd->rx_dma.dmach = res->start;
1377 	}
1378 
1379 	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1380 	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1381 
1382 	master->dev.of_node = pdev->dev.of_node;
1383 	master->bus_num = sdd->port_id;
1384 	master->setup = s3c64xx_spi_setup;
1385 	master->cleanup = s3c64xx_spi_cleanup;
1386 	master->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1387 	master->transfer_one_message = s3c64xx_spi_transfer_one_message;
1388 	master->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1389 	master->num_chipselect = sci->num_cs;
1390 	master->dma_alignment = 8;
1391 	master->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1392 					SPI_BPW_MASK(8);
1393 	/* the spi->mode bits understood by this driver: */
1394 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1395 
1396 	sdd->regs = devm_ioremap_resource(&pdev->dev, mem_res);
1397 	if (IS_ERR(sdd->regs)) {
1398 		ret = PTR_ERR(sdd->regs);
1399 		goto err0;
1400 	}
1401 
1402 	if (sci->cfg_gpio && sci->cfg_gpio()) {
1403 		dev_err(&pdev->dev, "Unable to config gpio\n");
1404 		ret = -EBUSY;
1405 		goto err0;
1406 	}
1407 
1408 	/* Setup clocks */
1409 	sdd->clk = devm_clk_get(&pdev->dev, "spi");
1410 	if (IS_ERR(sdd->clk)) {
1411 		dev_err(&pdev->dev, "Unable to acquire clock 'spi'\n");
1412 		ret = PTR_ERR(sdd->clk);
1413 		goto err0;
1414 	}
1415 
1416 	if (clk_prepare_enable(sdd->clk)) {
1417 		dev_err(&pdev->dev, "Couldn't enable clock 'spi'\n");
1418 		ret = -EBUSY;
1419 		goto err0;
1420 	}
1421 
1422 	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1423 	sdd->src_clk = devm_clk_get(&pdev->dev, clk_name);
1424 	if (IS_ERR(sdd->src_clk)) {
1425 		dev_err(&pdev->dev,
1426 			"Unable to acquire clock '%s'\n", clk_name);
1427 		ret = PTR_ERR(sdd->src_clk);
1428 		goto err2;
1429 	}
1430 
1431 	if (clk_prepare_enable(sdd->src_clk)) {
1432 		dev_err(&pdev->dev, "Couldn't enable clock '%s'\n", clk_name);
1433 		ret = -EBUSY;
1434 		goto err2;
1435 	}
1436 
1437 	/* Setup Deufult Mode */
1438 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1439 
1440 	spin_lock_init(&sdd->lock);
1441 	init_completion(&sdd->xfer_completion);
1442 	INIT_LIST_HEAD(&sdd->queue);
1443 
1444 	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1445 				"spi-s3c64xx", sdd);
1446 	if (ret != 0) {
1447 		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1448 			irq, ret);
1449 		goto err3;
1450 	}
1451 
1452 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1453 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1454 	       sdd->regs + S3C64XX_SPI_INT_EN);
1455 
1456 	if (spi_register_master(master)) {
1457 		dev_err(&pdev->dev, "cannot register SPI master\n");
1458 		ret = -EBUSY;
1459 		goto err3;
1460 	}
1461 
1462 	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Slaves attached\n",
1463 					sdd->port_id, master->num_chipselect);
1464 	dev_dbg(&pdev->dev, "\tIOmem=[0x%x-0x%x]\tDMA=[Rx-%d, Tx-%d]\n",
1465 					mem_res->end, mem_res->start,
1466 					sdd->rx_dma.dmach, sdd->tx_dma.dmach);
1467 
1468 	pm_runtime_enable(&pdev->dev);
1469 
1470 	return 0;
1471 
1472 err3:
1473 	clk_disable_unprepare(sdd->src_clk);
1474 err2:
1475 	clk_disable_unprepare(sdd->clk);
1476 err0:
1477 	spi_master_put(master);
1478 
1479 	return ret;
1480 }
1481 
1482 static int s3c64xx_spi_remove(struct platform_device *pdev)
1483 {
1484 	struct spi_master *master = spi_master_get(platform_get_drvdata(pdev));
1485 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1486 
1487 	pm_runtime_disable(&pdev->dev);
1488 
1489 	spi_unregister_master(master);
1490 
1491 	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1492 
1493 	clk_disable_unprepare(sdd->src_clk);
1494 
1495 	clk_disable_unprepare(sdd->clk);
1496 
1497 	spi_master_put(master);
1498 
1499 	return 0;
1500 }
1501 
1502 #ifdef CONFIG_PM_SLEEP
1503 static int s3c64xx_spi_suspend(struct device *dev)
1504 {
1505 	struct spi_master *master = dev_get_drvdata(dev);
1506 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1507 
1508 	spi_master_suspend(master);
1509 
1510 	/* Disable the clock */
1511 	clk_disable_unprepare(sdd->src_clk);
1512 	clk_disable_unprepare(sdd->clk);
1513 
1514 	sdd->cur_speed = 0; /* Output Clock is stopped */
1515 
1516 	return 0;
1517 }
1518 
1519 static int s3c64xx_spi_resume(struct device *dev)
1520 {
1521 	struct spi_master *master = dev_get_drvdata(dev);
1522 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1523 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1524 
1525 	if (sci->cfg_gpio)
1526 		sci->cfg_gpio();
1527 
1528 	/* Enable the clock */
1529 	clk_prepare_enable(sdd->src_clk);
1530 	clk_prepare_enable(sdd->clk);
1531 
1532 	s3c64xx_spi_hwinit(sdd, sdd->port_id);
1533 
1534 	spi_master_resume(master);
1535 
1536 	return 0;
1537 }
1538 #endif /* CONFIG_PM_SLEEP */
1539 
1540 #ifdef CONFIG_PM_RUNTIME
1541 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1542 {
1543 	struct spi_master *master = dev_get_drvdata(dev);
1544 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1545 
1546 	clk_disable_unprepare(sdd->clk);
1547 	clk_disable_unprepare(sdd->src_clk);
1548 
1549 	return 0;
1550 }
1551 
1552 static int s3c64xx_spi_runtime_resume(struct device *dev)
1553 {
1554 	struct spi_master *master = dev_get_drvdata(dev);
1555 	struct s3c64xx_spi_driver_data *sdd = spi_master_get_devdata(master);
1556 
1557 	clk_prepare_enable(sdd->src_clk);
1558 	clk_prepare_enable(sdd->clk);
1559 
1560 	return 0;
1561 }
1562 #endif /* CONFIG_PM_RUNTIME */
1563 
1564 static const struct dev_pm_ops s3c64xx_spi_pm = {
1565 	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1566 	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1567 			   s3c64xx_spi_runtime_resume, NULL)
1568 };
1569 
1570 static struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1571 	.fifo_lvl_mask	= { 0x7f },
1572 	.rx_lvl_offset	= 13,
1573 	.tx_st_done	= 21,
1574 	.high_speed	= true,
1575 };
1576 
1577 static struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1578 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1579 	.rx_lvl_offset	= 13,
1580 	.tx_st_done	= 21,
1581 };
1582 
1583 static struct s3c64xx_spi_port_config s5p64x0_spi_port_config = {
1584 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1585 	.rx_lvl_offset	= 15,
1586 	.tx_st_done	= 25,
1587 };
1588 
1589 static struct s3c64xx_spi_port_config s5pc100_spi_port_config = {
1590 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1591 	.rx_lvl_offset	= 13,
1592 	.tx_st_done	= 21,
1593 	.high_speed	= true,
1594 };
1595 
1596 static struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1597 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1598 	.rx_lvl_offset	= 15,
1599 	.tx_st_done	= 25,
1600 	.high_speed	= true,
1601 };
1602 
1603 static struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1604 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1605 	.rx_lvl_offset	= 15,
1606 	.tx_st_done	= 25,
1607 	.high_speed	= true,
1608 	.clk_from_cmu	= true,
1609 };
1610 
1611 static struct s3c64xx_spi_port_config exynos5440_spi_port_config = {
1612 	.fifo_lvl_mask	= { 0x1ff },
1613 	.rx_lvl_offset	= 15,
1614 	.tx_st_done	= 25,
1615 	.high_speed	= true,
1616 	.clk_from_cmu	= true,
1617 	.quirks		= S3C64XX_SPI_QUIRK_POLL,
1618 };
1619 
1620 static struct platform_device_id s3c64xx_spi_driver_ids[] = {
1621 	{
1622 		.name		= "s3c2443-spi",
1623 		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1624 	}, {
1625 		.name		= "s3c6410-spi",
1626 		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1627 	}, {
1628 		.name		= "s5p64x0-spi",
1629 		.driver_data	= (kernel_ulong_t)&s5p64x0_spi_port_config,
1630 	}, {
1631 		.name		= "s5pc100-spi",
1632 		.driver_data	= (kernel_ulong_t)&s5pc100_spi_port_config,
1633 	}, {
1634 		.name		= "s5pv210-spi",
1635 		.driver_data	= (kernel_ulong_t)&s5pv210_spi_port_config,
1636 	}, {
1637 		.name		= "exynos4210-spi",
1638 		.driver_data	= (kernel_ulong_t)&exynos4_spi_port_config,
1639 	},
1640 	{ },
1641 };
1642 
1643 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1644 	{ .compatible = "samsung,exynos4210-spi",
1645 			.data = (void *)&exynos4_spi_port_config,
1646 	},
1647 	{ .compatible = "samsung,exynos5440-spi",
1648 			.data = (void *)&exynos5440_spi_port_config,
1649 	},
1650 	{ },
1651 };
1652 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1653 
1654 static struct platform_driver s3c64xx_spi_driver = {
1655 	.driver = {
1656 		.name	= "s3c64xx-spi",
1657 		.owner = THIS_MODULE,
1658 		.pm = &s3c64xx_spi_pm,
1659 		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1660 	},
1661 	.remove = s3c64xx_spi_remove,
1662 	.id_table = s3c64xx_spi_driver_ids,
1663 };
1664 MODULE_ALIAS("platform:s3c64xx-spi");
1665 
1666 static int __init s3c64xx_spi_init(void)
1667 {
1668 	return platform_driver_probe(&s3c64xx_spi_driver, s3c64xx_spi_probe);
1669 }
1670 subsys_initcall(s3c64xx_spi_init);
1671 
1672 static void __exit s3c64xx_spi_exit(void)
1673 {
1674 	platform_driver_unregister(&s3c64xx_spi_driver);
1675 }
1676 module_exit(s3c64xx_spi_exit);
1677 
1678 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1679 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1680 MODULE_LICENSE("GPL");
1681