xref: /linux/drivers/spi/spi-s3c64xx.c (revision 566ab427f827b0256d3e8ce0235d088e6a9c28bd)
1 // SPDX-License-Identifier: GPL-2.0+
2 //
3 // Copyright (c) 2009 Samsung Electronics Co., Ltd.
4 //      Jaswinder Singh <jassi.brar@samsung.com>
5 
6 #include <linux/bitops.h>
7 #include <linux/bits.h>
8 #include <linux/clk.h>
9 #include <linux/delay.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/init.h>
13 #include <linux/interrupt.h>
14 #include <linux/io.h>
15 #include <linux/module.h>
16 #include <linux/of.h>
17 #include <linux/platform_data/spi-s3c64xx.h>
18 #include <linux/platform_device.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/spi/spi.h>
21 #include <linux/types.h>
22 
23 #define MAX_SPI_PORTS		12
24 #define S3C64XX_SPI_QUIRK_CS_AUTO	(1 << 1)
25 #define AUTOSUSPEND_TIMEOUT	2000
26 
27 /* Registers and bit-fields */
28 
29 #define S3C64XX_SPI_CH_CFG		0x00
30 #define S3C64XX_SPI_CLK_CFG		0x04
31 #define S3C64XX_SPI_MODE_CFG		0x08
32 #define S3C64XX_SPI_CS_REG		0x0C
33 #define S3C64XX_SPI_INT_EN		0x10
34 #define S3C64XX_SPI_STATUS		0x14
35 #define S3C64XX_SPI_TX_DATA		0x18
36 #define S3C64XX_SPI_RX_DATA		0x1C
37 #define S3C64XX_SPI_PACKET_CNT		0x20
38 #define S3C64XX_SPI_PENDING_CLR		0x24
39 #define S3C64XX_SPI_SWAP_CFG		0x28
40 #define S3C64XX_SPI_FB_CLK		0x2C
41 
42 #define S3C64XX_SPI_CH_HS_EN		(1<<6)	/* High Speed Enable */
43 #define S3C64XX_SPI_CH_SW_RST		(1<<5)
44 #define S3C64XX_SPI_CH_SLAVE		(1<<4)
45 #define S3C64XX_SPI_CPOL_L		(1<<3)
46 #define S3C64XX_SPI_CPHA_B		(1<<2)
47 #define S3C64XX_SPI_CH_RXCH_ON		(1<<1)
48 #define S3C64XX_SPI_CH_TXCH_ON		(1<<0)
49 
50 #define S3C64XX_SPI_CLKSEL_SRCMSK	(3<<9)
51 #define S3C64XX_SPI_CLKSEL_SRCSHFT	9
52 #define S3C64XX_SPI_ENCLK_ENABLE	(1<<8)
53 #define S3C64XX_SPI_PSR_MASK		0xff
54 
55 #define S3C64XX_SPI_MODE_CH_TSZ_BYTE		(0<<29)
56 #define S3C64XX_SPI_MODE_CH_TSZ_HALFWORD	(1<<29)
57 #define S3C64XX_SPI_MODE_CH_TSZ_WORD		(2<<29)
58 #define S3C64XX_SPI_MODE_CH_TSZ_MASK		(3<<29)
59 #define S3C64XX_SPI_MODE_BUS_TSZ_BYTE		(0<<17)
60 #define S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD	(1<<17)
61 #define S3C64XX_SPI_MODE_BUS_TSZ_WORD		(2<<17)
62 #define S3C64XX_SPI_MODE_BUS_TSZ_MASK		(3<<17)
63 #define S3C64XX_SPI_MODE_RX_RDY_LVL		GENMASK(16, 11)
64 #define S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT	11
65 #define S3C64XX_SPI_MODE_SELF_LOOPBACK		(1<<3)
66 #define S3C64XX_SPI_MODE_RXDMA_ON		(1<<2)
67 #define S3C64XX_SPI_MODE_TXDMA_ON		(1<<1)
68 #define S3C64XX_SPI_MODE_4BURST			(1<<0)
69 
70 #define S3C64XX_SPI_CS_NSC_CNT_2		(2<<4)
71 #define S3C64XX_SPI_CS_AUTO			(1<<1)
72 #define S3C64XX_SPI_CS_SIG_INACT		(1<<0)
73 
74 #define S3C64XX_SPI_INT_TRAILING_EN		(1<<6)
75 #define S3C64XX_SPI_INT_RX_OVERRUN_EN		(1<<5)
76 #define S3C64XX_SPI_INT_RX_UNDERRUN_EN		(1<<4)
77 #define S3C64XX_SPI_INT_TX_OVERRUN_EN		(1<<3)
78 #define S3C64XX_SPI_INT_TX_UNDERRUN_EN		(1<<2)
79 #define S3C64XX_SPI_INT_RX_FIFORDY_EN		(1<<1)
80 #define S3C64XX_SPI_INT_TX_FIFORDY_EN		(1<<0)
81 
82 #define S3C64XX_SPI_ST_RX_FIFO_RDY_V2		GENMASK(23, 15)
83 #define S3C64XX_SPI_ST_TX_FIFO_RDY_V2		GENMASK(14, 6)
84 #define S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT	6
85 #define S3C64XX_SPI_ST_RX_OVERRUN_ERR		(1<<5)
86 #define S3C64XX_SPI_ST_RX_UNDERRUN_ERR		(1<<4)
87 #define S3C64XX_SPI_ST_TX_OVERRUN_ERR		(1<<3)
88 #define S3C64XX_SPI_ST_TX_UNDERRUN_ERR		(1<<2)
89 #define S3C64XX_SPI_ST_RX_FIFORDY		(1<<1)
90 #define S3C64XX_SPI_ST_TX_FIFORDY		(1<<0)
91 
92 #define S3C64XX_SPI_PACKET_CNT_EN		(1<<16)
93 #define S3C64XX_SPI_PACKET_CNT_MASK		GENMASK(15, 0)
94 
95 #define S3C64XX_SPI_PND_TX_UNDERRUN_CLR		(1<<4)
96 #define S3C64XX_SPI_PND_TX_OVERRUN_CLR		(1<<3)
97 #define S3C64XX_SPI_PND_RX_UNDERRUN_CLR		(1<<2)
98 #define S3C64XX_SPI_PND_RX_OVERRUN_CLR		(1<<1)
99 #define S3C64XX_SPI_PND_TRAILING_CLR		(1<<0)
100 
101 #define S3C64XX_SPI_SWAP_RX_HALF_WORD		(1<<7)
102 #define S3C64XX_SPI_SWAP_RX_BYTE		(1<<6)
103 #define S3C64XX_SPI_SWAP_RX_BIT			(1<<5)
104 #define S3C64XX_SPI_SWAP_RX_EN			(1<<4)
105 #define S3C64XX_SPI_SWAP_TX_HALF_WORD		(1<<3)
106 #define S3C64XX_SPI_SWAP_TX_BYTE		(1<<2)
107 #define S3C64XX_SPI_SWAP_TX_BIT			(1<<1)
108 #define S3C64XX_SPI_SWAP_TX_EN			(1<<0)
109 
110 #define S3C64XX_SPI_FBCLK_MSK			(3<<0)
111 
112 #define FIFO_LVL_MASK(i) ((i)->port_conf->fifo_lvl_mask[i->port_id])
113 #define S3C64XX_SPI_ST_TX_DONE(v, i) (((v) & \
114 				(1 << (i)->port_conf->tx_st_done)) ? 1 : 0)
115 #define TX_FIFO_LVL(v, sdd)	(((v) & (sdd)->tx_fifomask) >>		\
116 				 __ffs((sdd)->tx_fifomask))
117 #define RX_FIFO_LVL(v, sdd)	(((v) & (sdd)->rx_fifomask) >>		\
118 				 __ffs((sdd)->rx_fifomask))
119 #define FIFO_DEPTH(i) ((FIFO_LVL_MASK(i) >> 1) + 1)
120 
121 #define S3C64XX_SPI_MAX_TRAILCNT	0x3ff
122 #define S3C64XX_SPI_TRAILCNT_OFF	19
123 
124 #define S3C64XX_SPI_POLLING_SIZE	32
125 
126 #define msecs_to_loops(t) (loops_per_jiffy / 1000 * HZ * t)
127 #define is_polling(x)	(x->cntrlr_info->polling)
128 
129 #define RXBUSY    (1<<2)
130 #define TXBUSY    (1<<3)
131 
132 struct s3c64xx_spi_dma_data {
133 	struct dma_chan *ch;
134 	dma_cookie_t cookie;
135 	enum dma_transfer_direction direction;
136 };
137 
138 /**
139  * struct s3c64xx_spi_port_config - SPI Controller hardware info
140  * @fifo_lvl_mask: [DEPRECATED] use @{rx, tx}_fifomask instead.
141  * @rx_lvl_offset: [DEPRECATED] use @{rx,tx}_fifomask instead.
142  * @fifo_depth: depth of the FIFO.
143  * @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's
144  *               length and position.
145  * @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's
146  *               length and position.
147  * @tx_st_done: Bit offset of TX_DONE bit in SPI_STATUS regiter.
148  * @clk_div: Internal clock divider
149  * @quirks: Bitmask of known quirks
150  * @high_speed: True, if the controller supports HIGH_SPEED_EN bit.
151  * @clk_from_cmu: True, if the controller does not include a clock mux and
152  *	prescaler unit.
153  * @clk_ioclk: True if clock is present on this device
154  * @has_loopback: True if loopback mode can be supported
155  * @use_32bit_io: True if the SoC allows only 32-bit register accesses.
156  *
157  * The Samsung s3c64xx SPI controller are used on various Samsung SoC's but
158  * differ in some aspects such as the size of the fifo and spi bus clock
159  * setup. Such differences are specified to the driver using this structure
160  * which is provided as driver data to the driver.
161  */
162 struct s3c64xx_spi_port_config {
163 	int	fifo_lvl_mask[MAX_SPI_PORTS];
164 	int	rx_lvl_offset;
165 	unsigned int fifo_depth;
166 	u32	rx_fifomask;
167 	u32	tx_fifomask;
168 	int	tx_st_done;
169 	int	quirks;
170 	int	clk_div;
171 	bool	high_speed;
172 	bool	clk_from_cmu;
173 	bool	clk_ioclk;
174 	bool	has_loopback;
175 	bool	use_32bit_io;
176 };
177 
178 /**
179  * struct s3c64xx_spi_driver_data - Runtime info holder for SPI driver.
180  * @clk: Pointer to the spi clock.
181  * @src_clk: Pointer to the clock used to generate SPI signals.
182  * @ioclk: Pointer to the i/o clock between host and target
183  * @pdev: Pointer to device's platform device data
184  * @host: Pointer to the SPI Protocol host.
185  * @cntrlr_info: Platform specific data for the controller this driver manages.
186  * @lock: Controller specific lock.
187  * @state: Set of FLAGS to indicate status.
188  * @sfr_start: BUS address of SPI controller regs.
189  * @regs: Pointer to ioremap'ed controller registers.
190  * @xfer_completion: To indicate completion of xfer task.
191  * @cur_mode: Stores the active configuration of the controller.
192  * @cur_bpw: Stores the active bits per word settings.
193  * @cur_speed: Current clock speed
194  * @rx_dma: Local receive DMA data (e.g. chan and direction)
195  * @tx_dma: Local transmit DMA data (e.g. chan and direction)
196  * @port_conf: Local SPI port configuration data
197  * @port_id: [DEPRECATED] use @{rx,tx}_fifomask instead.
198  * @fifo_depth: depth of the FIFO.
199  * @rx_fifomask: SPI_STATUS.RX_FIFO_LVL mask. Shifted mask defining the field's
200  *               length and position.
201  * @tx_fifomask: SPI_STATUS.TX_FIFO_LVL mask. Shifted mask defining the field's
202  *               length and position.
203  */
204 struct s3c64xx_spi_driver_data {
205 	void __iomem                    *regs;
206 	struct clk                      *clk;
207 	struct clk                      *src_clk;
208 	struct clk                      *ioclk;
209 	struct platform_device          *pdev;
210 	struct spi_controller           *host;
211 	struct s3c64xx_spi_info         *cntrlr_info;
212 	spinlock_t                      lock;
213 	unsigned long                   sfr_start;
214 	struct completion               xfer_completion;
215 	unsigned                        state;
216 	unsigned                        cur_mode, cur_bpw;
217 	unsigned                        cur_speed;
218 	struct s3c64xx_spi_dma_data	rx_dma;
219 	struct s3c64xx_spi_dma_data	tx_dma;
220 	const struct s3c64xx_spi_port_config	*port_conf;
221 	unsigned int			port_id;
222 	unsigned int			fifo_depth;
223 	u32				rx_fifomask;
224 	u32				tx_fifomask;
225 };
226 
227 static void s3c64xx_flush_fifo(struct s3c64xx_spi_driver_data *sdd)
228 {
229 	void __iomem *regs = sdd->regs;
230 	unsigned long loops;
231 	u32 val;
232 
233 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
234 
235 	val = readl(regs + S3C64XX_SPI_CH_CFG);
236 	val &= ~(S3C64XX_SPI_CH_RXCH_ON | S3C64XX_SPI_CH_TXCH_ON);
237 	writel(val, regs + S3C64XX_SPI_CH_CFG);
238 
239 	val = readl(regs + S3C64XX_SPI_CH_CFG);
240 	val |= S3C64XX_SPI_CH_SW_RST;
241 	val &= ~S3C64XX_SPI_CH_HS_EN;
242 	writel(val, regs + S3C64XX_SPI_CH_CFG);
243 
244 	/* Flush TxFIFO*/
245 	loops = msecs_to_loops(1);
246 	do {
247 		val = readl(regs + S3C64XX_SPI_STATUS);
248 	} while (TX_FIFO_LVL(val, sdd) && --loops);
249 
250 	if (loops == 0)
251 		dev_warn(&sdd->pdev->dev, "Timed out flushing TX FIFO\n");
252 
253 	/* Flush RxFIFO*/
254 	loops = msecs_to_loops(1);
255 	do {
256 		val = readl(regs + S3C64XX_SPI_STATUS);
257 		if (RX_FIFO_LVL(val, sdd))
258 			readl(regs + S3C64XX_SPI_RX_DATA);
259 		else
260 			break;
261 	} while (--loops);
262 
263 	if (loops == 0)
264 		dev_warn(&sdd->pdev->dev, "Timed out flushing RX FIFO\n");
265 
266 	val = readl(regs + S3C64XX_SPI_CH_CFG);
267 	val &= ~S3C64XX_SPI_CH_SW_RST;
268 	writel(val, regs + S3C64XX_SPI_CH_CFG);
269 
270 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
271 	val &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
272 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
273 }
274 
275 static void s3c64xx_spi_dmacb(void *data)
276 {
277 	struct s3c64xx_spi_driver_data *sdd;
278 	struct s3c64xx_spi_dma_data *dma = data;
279 	unsigned long flags;
280 
281 	if (dma->direction == DMA_DEV_TO_MEM)
282 		sdd = container_of(data,
283 			struct s3c64xx_spi_driver_data, rx_dma);
284 	else
285 		sdd = container_of(data,
286 			struct s3c64xx_spi_driver_data, tx_dma);
287 
288 	spin_lock_irqsave(&sdd->lock, flags);
289 
290 	if (dma->direction == DMA_DEV_TO_MEM) {
291 		sdd->state &= ~RXBUSY;
292 		if (!(sdd->state & TXBUSY))
293 			complete(&sdd->xfer_completion);
294 	} else {
295 		sdd->state &= ~TXBUSY;
296 		if (!(sdd->state & RXBUSY))
297 			complete(&sdd->xfer_completion);
298 	}
299 
300 	spin_unlock_irqrestore(&sdd->lock, flags);
301 }
302 
303 static int s3c64xx_prepare_dma(struct s3c64xx_spi_dma_data *dma,
304 			       struct sg_table *sgt)
305 {
306 	struct s3c64xx_spi_driver_data *sdd;
307 	struct dma_slave_config config;
308 	struct dma_async_tx_descriptor *desc;
309 	int ret;
310 
311 	memset(&config, 0, sizeof(config));
312 
313 	if (dma->direction == DMA_DEV_TO_MEM) {
314 		sdd = container_of((void *)dma,
315 			struct s3c64xx_spi_driver_data, rx_dma);
316 		config.src_addr = sdd->sfr_start + S3C64XX_SPI_RX_DATA;
317 		config.src_addr_width = sdd->cur_bpw / 8;
318 		config.src_maxburst = 1;
319 	} else {
320 		sdd = container_of((void *)dma,
321 			struct s3c64xx_spi_driver_data, tx_dma);
322 		config.dst_addr = sdd->sfr_start + S3C64XX_SPI_TX_DATA;
323 		config.dst_addr_width = sdd->cur_bpw / 8;
324 		config.dst_maxburst = 1;
325 	}
326 	config.direction = dma->direction;
327 	ret = dmaengine_slave_config(dma->ch, &config);
328 	if (ret)
329 		return ret;
330 
331 	desc = dmaengine_prep_slave_sg(dma->ch, sgt->sgl, sgt->nents,
332 				       dma->direction, DMA_PREP_INTERRUPT);
333 	if (!desc) {
334 		dev_err(&sdd->pdev->dev, "unable to prepare %s scatterlist",
335 			dma->direction == DMA_DEV_TO_MEM ? "rx" : "tx");
336 		return -ENOMEM;
337 	}
338 
339 	desc->callback = s3c64xx_spi_dmacb;
340 	desc->callback_param = dma;
341 
342 	dma->cookie = dmaengine_submit(desc);
343 	ret = dma_submit_error(dma->cookie);
344 	if (ret) {
345 		dev_err(&sdd->pdev->dev, "DMA submission failed");
346 		return ret;
347 	}
348 
349 	dma_async_issue_pending(dma->ch);
350 	return 0;
351 }
352 
353 static void s3c64xx_spi_set_cs(struct spi_device *spi, bool enable)
354 {
355 	struct s3c64xx_spi_driver_data *sdd =
356 					spi_controller_get_devdata(spi->controller);
357 
358 	if (sdd->cntrlr_info->no_cs)
359 		return;
360 
361 	if (enable) {
362 		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO)) {
363 			writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
364 		} else {
365 			u32 ssel = readl(sdd->regs + S3C64XX_SPI_CS_REG);
366 
367 			ssel |= (S3C64XX_SPI_CS_AUTO |
368 						S3C64XX_SPI_CS_NSC_CNT_2);
369 			writel(ssel, sdd->regs + S3C64XX_SPI_CS_REG);
370 		}
371 	} else {
372 		if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
373 			writel(S3C64XX_SPI_CS_SIG_INACT,
374 			       sdd->regs + S3C64XX_SPI_CS_REG);
375 	}
376 }
377 
378 static int s3c64xx_spi_prepare_transfer(struct spi_controller *spi)
379 {
380 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
381 
382 	if (is_polling(sdd))
383 		return 0;
384 
385 	/* Requests DMA channels */
386 	sdd->rx_dma.ch = dma_request_chan(&sdd->pdev->dev, "rx");
387 	if (IS_ERR(sdd->rx_dma.ch)) {
388 		dev_err(&sdd->pdev->dev, "Failed to get RX DMA channel\n");
389 		sdd->rx_dma.ch = NULL;
390 		return 0;
391 	}
392 
393 	sdd->tx_dma.ch = dma_request_chan(&sdd->pdev->dev, "tx");
394 	if (IS_ERR(sdd->tx_dma.ch)) {
395 		dev_err(&sdd->pdev->dev, "Failed to get TX DMA channel\n");
396 		dma_release_channel(sdd->rx_dma.ch);
397 		sdd->tx_dma.ch = NULL;
398 		sdd->rx_dma.ch = NULL;
399 		return 0;
400 	}
401 
402 	spi->dma_rx = sdd->rx_dma.ch;
403 	spi->dma_tx = sdd->tx_dma.ch;
404 
405 	return 0;
406 }
407 
408 static int s3c64xx_spi_unprepare_transfer(struct spi_controller *spi)
409 {
410 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(spi);
411 
412 	if (is_polling(sdd))
413 		return 0;
414 
415 	/* Releases DMA channels if they are allocated */
416 	if (sdd->rx_dma.ch && sdd->tx_dma.ch) {
417 		dma_release_channel(sdd->rx_dma.ch);
418 		dma_release_channel(sdd->tx_dma.ch);
419 		sdd->rx_dma.ch = NULL;
420 		sdd->tx_dma.ch = NULL;
421 	}
422 
423 	return 0;
424 }
425 
426 static bool s3c64xx_spi_can_dma(struct spi_controller *host,
427 				struct spi_device *spi,
428 				struct spi_transfer *xfer)
429 {
430 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
431 
432 	if (sdd->rx_dma.ch && sdd->tx_dma.ch)
433 		return xfer->len >= sdd->fifo_depth;
434 
435 	return false;
436 }
437 
438 static void s3c64xx_iowrite8_32_rep(volatile void __iomem *addr,
439 				    const void *buffer, unsigned int count)
440 {
441 	if (count) {
442 		const u8 *buf = buffer;
443 
444 		do {
445 			__raw_writel(*buf++, addr);
446 		} while (--count);
447 	}
448 }
449 
450 static void s3c64xx_iowrite16_32_rep(volatile void __iomem *addr,
451 				     const void *buffer, unsigned int count)
452 {
453 	if (count) {
454 		const u16 *buf = buffer;
455 
456 		do {
457 			__raw_writel(*buf++, addr);
458 		} while (--count);
459 	}
460 }
461 
462 static void s3c64xx_iowrite_rep(const struct s3c64xx_spi_driver_data *sdd,
463 				struct spi_transfer *xfer)
464 {
465 	void __iomem *addr = sdd->regs + S3C64XX_SPI_TX_DATA;
466 	const void *buf = xfer->tx_buf;
467 	unsigned int len = xfer->len;
468 
469 	switch (sdd->cur_bpw) {
470 	case 32:
471 		iowrite32_rep(addr, buf, len / 4);
472 		break;
473 	case 16:
474 		if (sdd->port_conf->use_32bit_io)
475 			s3c64xx_iowrite16_32_rep(addr, buf, len / 2);
476 		else
477 			iowrite16_rep(addr, buf, len / 2);
478 		break;
479 	default:
480 		if (sdd->port_conf->use_32bit_io)
481 			s3c64xx_iowrite8_32_rep(addr, buf, len);
482 		else
483 			iowrite8_rep(addr, buf, len);
484 		break;
485 	}
486 }
487 
488 static int s3c64xx_enable_datapath(struct s3c64xx_spi_driver_data *sdd,
489 				    struct spi_transfer *xfer, int dma_mode)
490 {
491 	void __iomem *regs = sdd->regs;
492 	u32 modecfg, chcfg;
493 	int ret = 0;
494 
495 	modecfg = readl(regs + S3C64XX_SPI_MODE_CFG);
496 	modecfg &= ~(S3C64XX_SPI_MODE_TXDMA_ON | S3C64XX_SPI_MODE_RXDMA_ON);
497 
498 	chcfg = readl(regs + S3C64XX_SPI_CH_CFG);
499 	chcfg &= ~S3C64XX_SPI_CH_TXCH_ON;
500 
501 	if (dma_mode) {
502 		chcfg &= ~S3C64XX_SPI_CH_RXCH_ON;
503 	} else {
504 		/* Always shift in data in FIFO, even if xfer is Tx only,
505 		 * this helps setting PCKT_CNT value for generating clocks
506 		 * as exactly needed.
507 		 */
508 		chcfg |= S3C64XX_SPI_CH_RXCH_ON;
509 		writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
510 					| S3C64XX_SPI_PACKET_CNT_EN,
511 					regs + S3C64XX_SPI_PACKET_CNT);
512 	}
513 
514 	if (xfer->tx_buf != NULL) {
515 		sdd->state |= TXBUSY;
516 		chcfg |= S3C64XX_SPI_CH_TXCH_ON;
517 		if (dma_mode) {
518 			modecfg |= S3C64XX_SPI_MODE_TXDMA_ON;
519 			ret = s3c64xx_prepare_dma(&sdd->tx_dma, &xfer->tx_sg);
520 		} else {
521 			s3c64xx_iowrite_rep(sdd, xfer);
522 		}
523 	}
524 
525 	if (xfer->rx_buf != NULL) {
526 		sdd->state |= RXBUSY;
527 
528 		if (sdd->port_conf->high_speed && sdd->cur_speed >= 30000000UL
529 					&& !(sdd->cur_mode & SPI_CPHA))
530 			chcfg |= S3C64XX_SPI_CH_HS_EN;
531 
532 		if (dma_mode) {
533 			modecfg |= S3C64XX_SPI_MODE_RXDMA_ON;
534 			chcfg |= S3C64XX_SPI_CH_RXCH_ON;
535 			writel(((xfer->len * 8 / sdd->cur_bpw) & 0xffff)
536 					| S3C64XX_SPI_PACKET_CNT_EN,
537 					regs + S3C64XX_SPI_PACKET_CNT);
538 			ret = s3c64xx_prepare_dma(&sdd->rx_dma, &xfer->rx_sg);
539 		}
540 	}
541 
542 	if (ret)
543 		return ret;
544 
545 	writel(modecfg, regs + S3C64XX_SPI_MODE_CFG);
546 	writel(chcfg, regs + S3C64XX_SPI_CH_CFG);
547 
548 	return 0;
549 }
550 
551 static u32 s3c64xx_spi_wait_for_timeout(struct s3c64xx_spi_driver_data *sdd,
552 					int timeout_ms)
553 {
554 	void __iomem *regs = sdd->regs;
555 	unsigned long val = 1;
556 	u32 status;
557 	u32 max_fifo = sdd->fifo_depth;
558 
559 	if (timeout_ms)
560 		val = msecs_to_loops(timeout_ms);
561 
562 	do {
563 		status = readl(regs + S3C64XX_SPI_STATUS);
564 	} while (RX_FIFO_LVL(status, sdd) < max_fifo && --val);
565 
566 	/* return the actual received data length */
567 	return RX_FIFO_LVL(status, sdd);
568 }
569 
570 static int s3c64xx_wait_for_dma(struct s3c64xx_spi_driver_data *sdd,
571 				struct spi_transfer *xfer)
572 {
573 	void __iomem *regs = sdd->regs;
574 	unsigned long val;
575 	u32 status;
576 	int ms;
577 
578 	/* millisecs to xfer 'len' bytes @ 'cur_speed' */
579 	ms = xfer->len * 8 * 1000 / sdd->cur_speed;
580 	ms += 30;               /* some tolerance */
581 	ms = max(ms, 100);      /* minimum timeout */
582 
583 	val = msecs_to_jiffies(ms) + 10;
584 	val = wait_for_completion_timeout(&sdd->xfer_completion, val);
585 
586 	/*
587 	 * If the previous xfer was completed within timeout, then
588 	 * proceed further else return -ETIMEDOUT.
589 	 * DmaTx returns after simply writing data in the FIFO,
590 	 * w/o waiting for real transmission on the bus to finish.
591 	 * DmaRx returns only after Dma read data from FIFO which
592 	 * needs bus transmission to finish, so we don't worry if
593 	 * Xfer involved Rx(with or without Tx).
594 	 */
595 	if (val && !xfer->rx_buf) {
596 		val = msecs_to_loops(10);
597 		status = readl(regs + S3C64XX_SPI_STATUS);
598 		while ((TX_FIFO_LVL(status, sdd)
599 			|| !S3C64XX_SPI_ST_TX_DONE(status, sdd))
600 		       && --val) {
601 			cpu_relax();
602 			status = readl(regs + S3C64XX_SPI_STATUS);
603 		}
604 
605 	}
606 
607 	/* If timed out while checking rx/tx status return error */
608 	if (!val)
609 		return -ETIMEDOUT;
610 
611 	return 0;
612 }
613 
614 static int s3c64xx_wait_for_pio(struct s3c64xx_spi_driver_data *sdd,
615 				struct spi_transfer *xfer, bool use_irq)
616 {
617 	void __iomem *regs = sdd->regs;
618 	unsigned long val;
619 	u32 status;
620 	int loops;
621 	u32 cpy_len;
622 	u8 *buf;
623 	int ms;
624 	unsigned long time_us;
625 
626 	/* microsecs to xfer 'len' bytes @ 'cur_speed' */
627 	time_us = (xfer->len * 8 * 1000 * 1000) / sdd->cur_speed;
628 	ms = (time_us / 1000);
629 	ms += 10; /* some tolerance */
630 
631 	/* sleep during signal transfer time */
632 	status = readl(regs + S3C64XX_SPI_STATUS);
633 	if (RX_FIFO_LVL(status, sdd) < xfer->len)
634 		usleep_range(time_us / 2, time_us);
635 
636 	if (use_irq) {
637 		val = msecs_to_jiffies(ms);
638 		if (!wait_for_completion_timeout(&sdd->xfer_completion, val))
639 			return -ETIMEDOUT;
640 	}
641 
642 	val = msecs_to_loops(ms);
643 	do {
644 		status = readl(regs + S3C64XX_SPI_STATUS);
645 	} while (RX_FIFO_LVL(status, sdd) < xfer->len && --val);
646 
647 	if (!val)
648 		return -EIO;
649 
650 	/* If it was only Tx */
651 	if (!xfer->rx_buf) {
652 		sdd->state &= ~TXBUSY;
653 		return 0;
654 	}
655 
656 	/*
657 	 * If the receive length is bigger than the controller fifo
658 	 * size, calculate the loops and read the fifo as many times.
659 	 * loops = length / max fifo size (calculated by using the
660 	 * fifo mask).
661 	 * For any size less than the fifo size the below code is
662 	 * executed atleast once.
663 	 */
664 	loops = xfer->len / sdd->fifo_depth;
665 	buf = xfer->rx_buf;
666 	do {
667 		/* wait for data to be received in the fifo */
668 		cpy_len = s3c64xx_spi_wait_for_timeout(sdd,
669 						       (loops ? ms : 0));
670 
671 		switch (sdd->cur_bpw) {
672 		case 32:
673 			ioread32_rep(regs + S3C64XX_SPI_RX_DATA,
674 				     buf, cpy_len / 4);
675 			break;
676 		case 16:
677 			ioread16_rep(regs + S3C64XX_SPI_RX_DATA,
678 				     buf, cpy_len / 2);
679 			break;
680 		default:
681 			ioread8_rep(regs + S3C64XX_SPI_RX_DATA,
682 				    buf, cpy_len);
683 			break;
684 		}
685 
686 		buf = buf + cpy_len;
687 	} while (loops--);
688 	sdd->state &= ~RXBUSY;
689 
690 	return 0;
691 }
692 
693 static int s3c64xx_spi_config(struct s3c64xx_spi_driver_data *sdd)
694 {
695 	void __iomem *regs = sdd->regs;
696 	int ret;
697 	u32 val;
698 	int div = sdd->port_conf->clk_div;
699 
700 	/* Disable Clock */
701 	if (!sdd->port_conf->clk_from_cmu) {
702 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
703 		val &= ~S3C64XX_SPI_ENCLK_ENABLE;
704 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
705 	}
706 
707 	/* Set Polarity and Phase */
708 	val = readl(regs + S3C64XX_SPI_CH_CFG);
709 	val &= ~(S3C64XX_SPI_CH_SLAVE |
710 			S3C64XX_SPI_CPOL_L |
711 			S3C64XX_SPI_CPHA_B);
712 
713 	if (sdd->cur_mode & SPI_CPOL)
714 		val |= S3C64XX_SPI_CPOL_L;
715 
716 	if (sdd->cur_mode & SPI_CPHA)
717 		val |= S3C64XX_SPI_CPHA_B;
718 
719 	writel(val, regs + S3C64XX_SPI_CH_CFG);
720 
721 	/* Set Channel & DMA Mode */
722 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
723 	val &= ~(S3C64XX_SPI_MODE_BUS_TSZ_MASK
724 			| S3C64XX_SPI_MODE_CH_TSZ_MASK);
725 
726 	switch (sdd->cur_bpw) {
727 	case 32:
728 		val |= S3C64XX_SPI_MODE_BUS_TSZ_WORD;
729 		val |= S3C64XX_SPI_MODE_CH_TSZ_WORD;
730 		break;
731 	case 16:
732 		val |= S3C64XX_SPI_MODE_BUS_TSZ_HALFWORD;
733 		val |= S3C64XX_SPI_MODE_CH_TSZ_HALFWORD;
734 		break;
735 	default:
736 		val |= S3C64XX_SPI_MODE_BUS_TSZ_BYTE;
737 		val |= S3C64XX_SPI_MODE_CH_TSZ_BYTE;
738 		break;
739 	}
740 
741 	if ((sdd->cur_mode & SPI_LOOP) && sdd->port_conf->has_loopback)
742 		val |= S3C64XX_SPI_MODE_SELF_LOOPBACK;
743 	else
744 		val &= ~S3C64XX_SPI_MODE_SELF_LOOPBACK;
745 
746 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
747 
748 	if (sdd->port_conf->clk_from_cmu) {
749 		ret = clk_set_rate(sdd->src_clk, sdd->cur_speed * div);
750 		if (ret)
751 			return ret;
752 		sdd->cur_speed = clk_get_rate(sdd->src_clk) / div;
753 	} else {
754 		/* Configure Clock */
755 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
756 		val &= ~S3C64XX_SPI_PSR_MASK;
757 		val |= ((clk_get_rate(sdd->src_clk) / sdd->cur_speed / div - 1)
758 				& S3C64XX_SPI_PSR_MASK);
759 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
760 
761 		/* Enable Clock */
762 		val = readl(regs + S3C64XX_SPI_CLK_CFG);
763 		val |= S3C64XX_SPI_ENCLK_ENABLE;
764 		writel(val, regs + S3C64XX_SPI_CLK_CFG);
765 	}
766 
767 	return 0;
768 }
769 
770 #define XFER_DMAADDR_INVALID DMA_BIT_MASK(32)
771 
772 static int s3c64xx_spi_prepare_message(struct spi_controller *host,
773 				       struct spi_message *msg)
774 {
775 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
776 	struct spi_device *spi = msg->spi;
777 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
778 
779 	/* Configure feedback delay */
780 	if (!cs)
781 		/* No delay if not defined */
782 		writel(0, sdd->regs + S3C64XX_SPI_FB_CLK);
783 	else
784 		writel(cs->fb_delay & 0x3, sdd->regs + S3C64XX_SPI_FB_CLK);
785 
786 	return 0;
787 }
788 
789 static size_t s3c64xx_spi_max_transfer_size(struct spi_device *spi)
790 {
791 	struct spi_controller *ctlr = spi->controller;
792 
793 	return ctlr->can_dma ? S3C64XX_SPI_PACKET_CNT_MASK : SIZE_MAX;
794 }
795 
796 static int s3c64xx_spi_transfer_one(struct spi_controller *host,
797 				    struct spi_device *spi,
798 				    struct spi_transfer *xfer)
799 {
800 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
801 	const unsigned int fifo_len = sdd->fifo_depth;
802 	const void *tx_buf = NULL;
803 	void *rx_buf = NULL;
804 	int target_len = 0, origin_len = 0;
805 	int use_dma = 0;
806 	bool use_irq = false;
807 	int status;
808 	u32 speed;
809 	u8 bpw;
810 	unsigned long flags;
811 	u32 rdy_lv;
812 	u32 val;
813 
814 	reinit_completion(&sdd->xfer_completion);
815 
816 	/* Only BPW and Speed may change across transfers */
817 	bpw = xfer->bits_per_word;
818 	speed = xfer->speed_hz;
819 
820 	if (bpw != sdd->cur_bpw || speed != sdd->cur_speed) {
821 		sdd->cur_bpw = bpw;
822 		sdd->cur_speed = speed;
823 		sdd->cur_mode = spi->mode;
824 		status = s3c64xx_spi_config(sdd);
825 		if (status)
826 			return status;
827 	}
828 
829 	if (!is_polling(sdd) && xfer->len >= fifo_len &&
830 	    sdd->rx_dma.ch && sdd->tx_dma.ch) {
831 		use_dma = 1;
832 	} else if (xfer->len >= fifo_len) {
833 		tx_buf = xfer->tx_buf;
834 		rx_buf = xfer->rx_buf;
835 		origin_len = xfer->len;
836 		target_len = xfer->len;
837 		xfer->len = fifo_len - 1;
838 	}
839 
840 	do {
841 		/* transfer size is greater than 32, change to IRQ mode */
842 		if (!use_dma && xfer->len > S3C64XX_SPI_POLLING_SIZE)
843 			use_irq = true;
844 
845 		if (use_irq) {
846 			reinit_completion(&sdd->xfer_completion);
847 
848 			rdy_lv = xfer->len;
849 			/* Setup RDY_FIFO trigger Level
850 			 * RDY_LVL =
851 			 * fifo_lvl up to 64 byte -> N bytes
852 			 *               128 byte -> RDY_LVL * 2 bytes
853 			 *               256 byte -> RDY_LVL * 4 bytes
854 			 */
855 			if (fifo_len == 128)
856 				rdy_lv /= 2;
857 			else if (fifo_len == 256)
858 				rdy_lv /= 4;
859 
860 			val = readl(sdd->regs + S3C64XX_SPI_MODE_CFG);
861 			val &= ~S3C64XX_SPI_MODE_RX_RDY_LVL;
862 			val |= (rdy_lv << S3C64XX_SPI_MODE_RX_RDY_LVL_SHIFT);
863 			writel(val, sdd->regs + S3C64XX_SPI_MODE_CFG);
864 
865 			/* Enable FIFO_RDY_EN IRQ */
866 			val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
867 			writel((val | S3C64XX_SPI_INT_RX_FIFORDY_EN),
868 					sdd->regs + S3C64XX_SPI_INT_EN);
869 
870 		}
871 
872 		spin_lock_irqsave(&sdd->lock, flags);
873 
874 		/* Pending only which is to be done */
875 		sdd->state &= ~RXBUSY;
876 		sdd->state &= ~TXBUSY;
877 
878 		/* Start the signals */
879 		s3c64xx_spi_set_cs(spi, true);
880 
881 		status = s3c64xx_enable_datapath(sdd, xfer, use_dma);
882 
883 		spin_unlock_irqrestore(&sdd->lock, flags);
884 
885 		if (status) {
886 			dev_err(&spi->dev, "failed to enable data path for transfer: %d\n", status);
887 			break;
888 		}
889 
890 		if (use_dma)
891 			status = s3c64xx_wait_for_dma(sdd, xfer);
892 		else
893 			status = s3c64xx_wait_for_pio(sdd, xfer, use_irq);
894 
895 		if (status) {
896 			dev_err(&spi->dev,
897 				"I/O Error: rx-%d tx-%d rx-%c tx-%c len-%d dma-%d res-(%d)\n",
898 				xfer->rx_buf ? 1 : 0, xfer->tx_buf ? 1 : 0,
899 				(sdd->state & RXBUSY) ? 'f' : 'p',
900 				(sdd->state & TXBUSY) ? 'f' : 'p',
901 				xfer->len, use_dma ? 1 : 0, status);
902 
903 			if (use_dma) {
904 				struct dma_tx_state s;
905 
906 				if (xfer->tx_buf && (sdd->state & TXBUSY)) {
907 					dmaengine_pause(sdd->tx_dma.ch);
908 					dmaengine_tx_status(sdd->tx_dma.ch, sdd->tx_dma.cookie, &s);
909 					dmaengine_terminate_all(sdd->tx_dma.ch);
910 					dev_err(&spi->dev, "TX residue: %d\n", s.residue);
911 
912 				}
913 				if (xfer->rx_buf && (sdd->state & RXBUSY)) {
914 					dmaengine_pause(sdd->rx_dma.ch);
915 					dmaengine_tx_status(sdd->rx_dma.ch, sdd->rx_dma.cookie, &s);
916 					dmaengine_terminate_all(sdd->rx_dma.ch);
917 					dev_err(&spi->dev, "RX residue: %d\n", s.residue);
918 				}
919 			}
920 		} else {
921 			s3c64xx_flush_fifo(sdd);
922 		}
923 		if (target_len > 0) {
924 			target_len -= xfer->len;
925 
926 			if (xfer->tx_buf)
927 				xfer->tx_buf += xfer->len;
928 
929 			if (xfer->rx_buf)
930 				xfer->rx_buf += xfer->len;
931 
932 			if (target_len >= fifo_len)
933 				xfer->len = fifo_len - 1;
934 			else
935 				xfer->len = target_len;
936 		}
937 	} while (target_len > 0);
938 
939 	if (origin_len) {
940 		/* Restore original xfer buffers and length */
941 		xfer->tx_buf = tx_buf;
942 		xfer->rx_buf = rx_buf;
943 		xfer->len = origin_len;
944 	}
945 
946 	return status;
947 }
948 
949 static struct s3c64xx_spi_csinfo *s3c64xx_get_target_ctrldata(
950 				struct spi_device *spi)
951 {
952 	struct s3c64xx_spi_csinfo *cs;
953 	struct device_node *target_np;
954 	u32 fb_delay = 0;
955 
956 	target_np = spi->dev.of_node;
957 	if (!target_np) {
958 		dev_err(&spi->dev, "device node not found\n");
959 		return ERR_PTR(-EINVAL);
960 	}
961 
962 	cs = kzalloc(sizeof(*cs), GFP_KERNEL);
963 	if (!cs)
964 		return ERR_PTR(-ENOMEM);
965 
966 	struct device_node *data_np __free(device_node) =
967 			of_get_child_by_name(target_np, "controller-data");
968 	if (!data_np) {
969 		dev_info(&spi->dev, "feedback delay set to default (0)\n");
970 		return cs;
971 	}
972 
973 	of_property_read_u32(data_np, "samsung,spi-feedback-delay", &fb_delay);
974 	cs->fb_delay = fb_delay;
975 	return cs;
976 }
977 
978 /*
979  * Here we only check the validity of requested configuration
980  * and save the configuration in a local data-structure.
981  * The controller is actually configured only just before we
982  * get a message to transfer.
983  */
984 static int s3c64xx_spi_setup(struct spi_device *spi)
985 {
986 	struct s3c64xx_spi_csinfo *cs = spi->controller_data;
987 	struct s3c64xx_spi_driver_data *sdd;
988 	int err;
989 	int div;
990 
991 	sdd = spi_controller_get_devdata(spi->controller);
992 	if (spi->dev.of_node) {
993 		cs = s3c64xx_get_target_ctrldata(spi);
994 		spi->controller_data = cs;
995 	}
996 
997 	/* NULL is fine, we just avoid using the FB delay (=0) */
998 	if (IS_ERR(cs)) {
999 		dev_err(&spi->dev, "No CS for SPI(%d)\n", spi_get_chipselect(spi, 0));
1000 		return -ENODEV;
1001 	}
1002 
1003 	if (!spi_get_ctldata(spi))
1004 		spi_set_ctldata(spi, cs);
1005 
1006 	pm_runtime_get_sync(&sdd->pdev->dev);
1007 
1008 	div = sdd->port_conf->clk_div;
1009 
1010 	/* Check if we can provide the requested rate */
1011 	if (!sdd->port_conf->clk_from_cmu) {
1012 		u32 psr, speed;
1013 
1014 		/* Max possible */
1015 		speed = clk_get_rate(sdd->src_clk) / div / (0 + 1);
1016 
1017 		if (spi->max_speed_hz > speed)
1018 			spi->max_speed_hz = speed;
1019 
1020 		psr = clk_get_rate(sdd->src_clk) / div / spi->max_speed_hz - 1;
1021 		psr &= S3C64XX_SPI_PSR_MASK;
1022 		if (psr == S3C64XX_SPI_PSR_MASK)
1023 			psr--;
1024 
1025 		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
1026 		if (spi->max_speed_hz < speed) {
1027 			if (psr+1 < S3C64XX_SPI_PSR_MASK) {
1028 				psr++;
1029 			} else {
1030 				err = -EINVAL;
1031 				goto setup_exit;
1032 			}
1033 		}
1034 
1035 		speed = clk_get_rate(sdd->src_clk) / div / (psr + 1);
1036 		if (spi->max_speed_hz >= speed) {
1037 			spi->max_speed_hz = speed;
1038 		} else {
1039 			dev_err(&spi->dev, "Can't set %dHz transfer speed\n",
1040 				spi->max_speed_hz);
1041 			err = -EINVAL;
1042 			goto setup_exit;
1043 		}
1044 	}
1045 
1046 	pm_runtime_mark_last_busy(&sdd->pdev->dev);
1047 	pm_runtime_put_autosuspend(&sdd->pdev->dev);
1048 	s3c64xx_spi_set_cs(spi, false);
1049 
1050 	return 0;
1051 
1052 setup_exit:
1053 	pm_runtime_mark_last_busy(&sdd->pdev->dev);
1054 	pm_runtime_put_autosuspend(&sdd->pdev->dev);
1055 	/* setup() returns with device de-selected */
1056 	s3c64xx_spi_set_cs(spi, false);
1057 
1058 	spi_set_ctldata(spi, NULL);
1059 
1060 	/* This was dynamically allocated on the DT path */
1061 	if (spi->dev.of_node)
1062 		kfree(cs);
1063 
1064 	return err;
1065 }
1066 
1067 static void s3c64xx_spi_cleanup(struct spi_device *spi)
1068 {
1069 	struct s3c64xx_spi_csinfo *cs = spi_get_ctldata(spi);
1070 
1071 	/* This was dynamically allocated on the DT path */
1072 	if (spi->dev.of_node)
1073 		kfree(cs);
1074 
1075 	spi_set_ctldata(spi, NULL);
1076 }
1077 
1078 static irqreturn_t s3c64xx_spi_irq(int irq, void *data)
1079 {
1080 	struct s3c64xx_spi_driver_data *sdd = data;
1081 	struct spi_controller *spi = sdd->host;
1082 	unsigned int val, clr = 0;
1083 
1084 	val = readl(sdd->regs + S3C64XX_SPI_STATUS);
1085 
1086 	if (val & S3C64XX_SPI_ST_RX_OVERRUN_ERR) {
1087 		clr = S3C64XX_SPI_PND_RX_OVERRUN_CLR;
1088 		dev_err(&spi->dev, "RX overrun\n");
1089 	}
1090 	if (val & S3C64XX_SPI_ST_RX_UNDERRUN_ERR) {
1091 		clr |= S3C64XX_SPI_PND_RX_UNDERRUN_CLR;
1092 		dev_err(&spi->dev, "RX underrun\n");
1093 	}
1094 	if (val & S3C64XX_SPI_ST_TX_OVERRUN_ERR) {
1095 		clr |= S3C64XX_SPI_PND_TX_OVERRUN_CLR;
1096 		dev_err(&spi->dev, "TX overrun\n");
1097 	}
1098 	if (val & S3C64XX_SPI_ST_TX_UNDERRUN_ERR) {
1099 		clr |= S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1100 		dev_err(&spi->dev, "TX underrun\n");
1101 	}
1102 
1103 	if (val & S3C64XX_SPI_ST_RX_FIFORDY) {
1104 		complete(&sdd->xfer_completion);
1105 		/* No pending clear irq, turn-off INT_EN_RX_FIFO_RDY */
1106 		val = readl(sdd->regs + S3C64XX_SPI_INT_EN);
1107 		writel((val & ~S3C64XX_SPI_INT_RX_FIFORDY_EN),
1108 				sdd->regs + S3C64XX_SPI_INT_EN);
1109 	}
1110 
1111 	/* Clear the pending irq by setting and then clearing it */
1112 	writel(clr, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1113 	writel(0, sdd->regs + S3C64XX_SPI_PENDING_CLR);
1114 
1115 	return IRQ_HANDLED;
1116 }
1117 
1118 static void s3c64xx_spi_hwinit(struct s3c64xx_spi_driver_data *sdd)
1119 {
1120 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1121 	void __iomem *regs = sdd->regs;
1122 	unsigned int val;
1123 
1124 	sdd->cur_speed = 0;
1125 
1126 	if (sci->no_cs)
1127 		writel(0, sdd->regs + S3C64XX_SPI_CS_REG);
1128 	else if (!(sdd->port_conf->quirks & S3C64XX_SPI_QUIRK_CS_AUTO))
1129 		writel(S3C64XX_SPI_CS_SIG_INACT, sdd->regs + S3C64XX_SPI_CS_REG);
1130 
1131 	/* Disable Interrupts - we use Polling if not DMA mode */
1132 	writel(0, regs + S3C64XX_SPI_INT_EN);
1133 
1134 	if (!sdd->port_conf->clk_from_cmu)
1135 		writel(sci->src_clk_nr << S3C64XX_SPI_CLKSEL_SRCSHFT,
1136 				regs + S3C64XX_SPI_CLK_CFG);
1137 	writel(0, regs + S3C64XX_SPI_MODE_CFG);
1138 	writel(0, regs + S3C64XX_SPI_PACKET_CNT);
1139 
1140 	/* Clear any irq pending bits, should set and clear the bits */
1141 	val = S3C64XX_SPI_PND_RX_OVERRUN_CLR |
1142 		S3C64XX_SPI_PND_RX_UNDERRUN_CLR |
1143 		S3C64XX_SPI_PND_TX_OVERRUN_CLR |
1144 		S3C64XX_SPI_PND_TX_UNDERRUN_CLR;
1145 	writel(val, regs + S3C64XX_SPI_PENDING_CLR);
1146 	writel(0, regs + S3C64XX_SPI_PENDING_CLR);
1147 
1148 	writel(0, regs + S3C64XX_SPI_SWAP_CFG);
1149 
1150 	val = readl(regs + S3C64XX_SPI_MODE_CFG);
1151 	val &= ~S3C64XX_SPI_MODE_4BURST;
1152 	val |= (S3C64XX_SPI_MAX_TRAILCNT << S3C64XX_SPI_TRAILCNT_OFF);
1153 	writel(val, regs + S3C64XX_SPI_MODE_CFG);
1154 
1155 	s3c64xx_flush_fifo(sdd);
1156 }
1157 
1158 #ifdef CONFIG_OF
1159 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1160 {
1161 	struct s3c64xx_spi_info *sci;
1162 	u32 temp;
1163 
1164 	sci = devm_kzalloc(dev, sizeof(*sci), GFP_KERNEL);
1165 	if (!sci)
1166 		return ERR_PTR(-ENOMEM);
1167 
1168 	if (of_property_read_u32(dev->of_node, "samsung,spi-src-clk", &temp)) {
1169 		dev_dbg(dev, "spi bus clock parent not specified, using clock at index 0 as parent\n");
1170 		sci->src_clk_nr = 0;
1171 	} else {
1172 		sci->src_clk_nr = temp;
1173 	}
1174 
1175 	if (of_property_read_u32(dev->of_node, "num-cs", &temp)) {
1176 		dev_dbg(dev, "number of chip select lines not specified, assuming 1 chip select line\n");
1177 		sci->num_cs = 1;
1178 	} else {
1179 		sci->num_cs = temp;
1180 	}
1181 
1182 	sci->no_cs = of_property_read_bool(dev->of_node, "no-cs-readback");
1183 	sci->polling = !of_property_present(dev->of_node, "dmas");
1184 
1185 	return sci;
1186 }
1187 #else
1188 static struct s3c64xx_spi_info *s3c64xx_spi_parse_dt(struct device *dev)
1189 {
1190 	return dev_get_platdata(dev);
1191 }
1192 #endif
1193 
1194 static inline const struct s3c64xx_spi_port_config *s3c64xx_spi_get_port_config(
1195 						struct platform_device *pdev)
1196 {
1197 #ifdef CONFIG_OF
1198 	if (pdev->dev.of_node)
1199 		return of_device_get_match_data(&pdev->dev);
1200 #endif
1201 	return (const struct s3c64xx_spi_port_config *)platform_get_device_id(pdev)->driver_data;
1202 }
1203 
1204 static int s3c64xx_spi_set_port_id(struct platform_device *pdev,
1205 				   struct s3c64xx_spi_driver_data *sdd)
1206 {
1207 	const struct s3c64xx_spi_port_config *port_conf = sdd->port_conf;
1208 	int ret;
1209 
1210 	if (port_conf->rx_fifomask && port_conf->tx_fifomask)
1211 		return 0;
1212 
1213 	if (pdev->dev.of_node) {
1214 		ret = of_alias_get_id(pdev->dev.of_node, "spi");
1215 		if (ret < 0)
1216 			return dev_err_probe(&pdev->dev, ret,
1217 					     "Failed to get alias id\n");
1218 		sdd->port_id = ret;
1219 	} else {
1220 		if (pdev->id < 0)
1221 			return dev_err_probe(&pdev->dev, -EINVAL,
1222 					     "Negative platform ID is not allowed\n");
1223 		sdd->port_id = pdev->id;
1224 	}
1225 
1226 	return 0;
1227 }
1228 
1229 static void s3c64xx_spi_set_fifomask(struct s3c64xx_spi_driver_data *sdd)
1230 {
1231 	const struct s3c64xx_spi_port_config *port_conf = sdd->port_conf;
1232 
1233 	if (port_conf->rx_fifomask)
1234 		sdd->rx_fifomask = port_conf->rx_fifomask;
1235 	else
1236 		sdd->rx_fifomask = FIFO_LVL_MASK(sdd) <<
1237 			port_conf->rx_lvl_offset;
1238 
1239 	if (port_conf->tx_fifomask)
1240 		sdd->tx_fifomask = port_conf->tx_fifomask;
1241 	else
1242 		sdd->tx_fifomask = FIFO_LVL_MASK(sdd) <<
1243 			S3C64XX_SPI_ST_TX_FIFO_LVL_SHIFT;
1244 }
1245 
1246 static int s3c64xx_spi_probe(struct platform_device *pdev)
1247 {
1248 	struct resource	*mem_res;
1249 	struct s3c64xx_spi_driver_data *sdd;
1250 	struct s3c64xx_spi_info *sci = dev_get_platdata(&pdev->dev);
1251 	struct spi_controller *host;
1252 	int ret, irq;
1253 	char clk_name[16];
1254 
1255 	if (!sci && pdev->dev.of_node) {
1256 		sci = s3c64xx_spi_parse_dt(&pdev->dev);
1257 		if (IS_ERR(sci))
1258 			return PTR_ERR(sci);
1259 	}
1260 
1261 	if (!sci)
1262 		return dev_err_probe(&pdev->dev, -ENODEV,
1263 				     "Platform_data missing!\n");
1264 
1265 	irq = platform_get_irq(pdev, 0);
1266 	if (irq < 0)
1267 		return irq;
1268 
1269 	host = devm_spi_alloc_host(&pdev->dev, sizeof(*sdd));
1270 	if (!host)
1271 		return dev_err_probe(&pdev->dev, -ENOMEM,
1272 				     "Unable to allocate SPI Host\n");
1273 
1274 	platform_set_drvdata(pdev, host);
1275 
1276 	sdd = spi_controller_get_devdata(host);
1277 	sdd->port_conf = s3c64xx_spi_get_port_config(pdev);
1278 	sdd->host = host;
1279 	sdd->cntrlr_info = sci;
1280 	sdd->pdev = pdev;
1281 
1282 	ret = s3c64xx_spi_set_port_id(pdev, sdd);
1283 	if (ret)
1284 		return ret;
1285 
1286 	if (sdd->port_conf->fifo_depth)
1287 		sdd->fifo_depth = sdd->port_conf->fifo_depth;
1288 	else if (of_property_read_u32(pdev->dev.of_node, "fifo-depth",
1289 				      &sdd->fifo_depth))
1290 		sdd->fifo_depth = FIFO_DEPTH(sdd);
1291 
1292 	s3c64xx_spi_set_fifomask(sdd);
1293 
1294 	sdd->cur_bpw = 8;
1295 
1296 	sdd->tx_dma.direction = DMA_MEM_TO_DEV;
1297 	sdd->rx_dma.direction = DMA_DEV_TO_MEM;
1298 
1299 	host->dev.of_node = pdev->dev.of_node;
1300 	host->bus_num = -1;
1301 	host->setup = s3c64xx_spi_setup;
1302 	host->cleanup = s3c64xx_spi_cleanup;
1303 	host->prepare_transfer_hardware = s3c64xx_spi_prepare_transfer;
1304 	host->unprepare_transfer_hardware = s3c64xx_spi_unprepare_transfer;
1305 	host->prepare_message = s3c64xx_spi_prepare_message;
1306 	host->transfer_one = s3c64xx_spi_transfer_one;
1307 	host->max_transfer_size = s3c64xx_spi_max_transfer_size;
1308 	host->num_chipselect = sci->num_cs;
1309 	host->use_gpio_descriptors = true;
1310 	host->dma_alignment = 8;
1311 	host->bits_per_word_mask = SPI_BPW_MASK(32) | SPI_BPW_MASK(16) |
1312 				   SPI_BPW_MASK(8);
1313 	/* the spi->mode bits understood by this driver: */
1314 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1315 	if (sdd->port_conf->has_loopback)
1316 		host->mode_bits |= SPI_LOOP;
1317 	host->auto_runtime_pm = true;
1318 	if (!is_polling(sdd))
1319 		host->can_dma = s3c64xx_spi_can_dma;
1320 
1321 	sdd->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem_res);
1322 	if (IS_ERR(sdd->regs))
1323 		return PTR_ERR(sdd->regs);
1324 	sdd->sfr_start = mem_res->start;
1325 
1326 	if (sci->cfg_gpio && sci->cfg_gpio())
1327 		return dev_err_probe(&pdev->dev, -EBUSY,
1328 				     "Unable to config gpio\n");
1329 
1330 	/* Setup clocks */
1331 	sdd->clk = devm_clk_get_enabled(&pdev->dev, "spi");
1332 	if (IS_ERR(sdd->clk))
1333 		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->clk),
1334 				     "Unable to acquire clock 'spi'\n");
1335 
1336 	sprintf(clk_name, "spi_busclk%d", sci->src_clk_nr);
1337 	sdd->src_clk = devm_clk_get_enabled(&pdev->dev, clk_name);
1338 	if (IS_ERR(sdd->src_clk))
1339 		return dev_err_probe(&pdev->dev, PTR_ERR(sdd->src_clk),
1340 				     "Unable to acquire clock '%s'\n",
1341 				     clk_name);
1342 
1343 	if (sdd->port_conf->clk_ioclk) {
1344 		sdd->ioclk = devm_clk_get_enabled(&pdev->dev, "spi_ioclk");
1345 		if (IS_ERR(sdd->ioclk))
1346 			return dev_err_probe(&pdev->dev, PTR_ERR(sdd->ioclk),
1347 					     "Unable to acquire 'ioclk'\n");
1348 	}
1349 
1350 	pm_runtime_set_autosuspend_delay(&pdev->dev, AUTOSUSPEND_TIMEOUT);
1351 	pm_runtime_use_autosuspend(&pdev->dev);
1352 	pm_runtime_set_active(&pdev->dev);
1353 	pm_runtime_enable(&pdev->dev);
1354 	pm_runtime_get_sync(&pdev->dev);
1355 
1356 	/* Setup Deufult Mode */
1357 	s3c64xx_spi_hwinit(sdd);
1358 
1359 	spin_lock_init(&sdd->lock);
1360 	init_completion(&sdd->xfer_completion);
1361 
1362 	ret = devm_request_irq(&pdev->dev, irq, s3c64xx_spi_irq, 0,
1363 				"spi-s3c64xx", sdd);
1364 	if (ret != 0) {
1365 		dev_err(&pdev->dev, "Failed to request IRQ %d: %d\n",
1366 			irq, ret);
1367 		goto err_pm_put;
1368 	}
1369 
1370 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1371 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1372 	       sdd->regs + S3C64XX_SPI_INT_EN);
1373 
1374 	ret = devm_spi_register_controller(&pdev->dev, host);
1375 	if (ret != 0) {
1376 		dev_err(&pdev->dev, "cannot register SPI host: %d\n", ret);
1377 		goto err_pm_put;
1378 	}
1379 
1380 	dev_dbg(&pdev->dev, "Samsung SoC SPI Driver loaded for Bus SPI-%d with %d Targets attached\n",
1381 		host->bus_num, host->num_chipselect);
1382 	dev_dbg(&pdev->dev, "\tIOmem=[%pR]\tFIFO %dbytes\n",
1383 		mem_res, sdd->fifo_depth);
1384 
1385 	pm_runtime_mark_last_busy(&pdev->dev);
1386 	pm_runtime_put_autosuspend(&pdev->dev);
1387 
1388 	return 0;
1389 
1390 err_pm_put:
1391 	pm_runtime_put_noidle(&pdev->dev);
1392 	pm_runtime_disable(&pdev->dev);
1393 	pm_runtime_set_suspended(&pdev->dev);
1394 
1395 	return ret;
1396 }
1397 
1398 static void s3c64xx_spi_remove(struct platform_device *pdev)
1399 {
1400 	struct spi_controller *host = platform_get_drvdata(pdev);
1401 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1402 
1403 	pm_runtime_get_sync(&pdev->dev);
1404 
1405 	writel(0, sdd->regs + S3C64XX_SPI_INT_EN);
1406 
1407 	if (!is_polling(sdd)) {
1408 		dma_release_channel(sdd->rx_dma.ch);
1409 		dma_release_channel(sdd->tx_dma.ch);
1410 	}
1411 
1412 	pm_runtime_put_noidle(&pdev->dev);
1413 	pm_runtime_disable(&pdev->dev);
1414 	pm_runtime_set_suspended(&pdev->dev);
1415 }
1416 
1417 #ifdef CONFIG_PM_SLEEP
1418 static int s3c64xx_spi_suspend(struct device *dev)
1419 {
1420 	struct spi_controller *host = dev_get_drvdata(dev);
1421 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1422 	int ret;
1423 
1424 	ret = spi_controller_suspend(host);
1425 	if (ret)
1426 		return ret;
1427 
1428 	ret = pm_runtime_force_suspend(dev);
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	sdd->cur_speed = 0; /* Output Clock is stopped */
1433 
1434 	return 0;
1435 }
1436 
1437 static int s3c64xx_spi_resume(struct device *dev)
1438 {
1439 	struct spi_controller *host = dev_get_drvdata(dev);
1440 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1441 	struct s3c64xx_spi_info *sci = sdd->cntrlr_info;
1442 	int ret;
1443 
1444 	if (sci->cfg_gpio)
1445 		sci->cfg_gpio();
1446 
1447 	ret = pm_runtime_force_resume(dev);
1448 	if (ret < 0)
1449 		return ret;
1450 
1451 	return spi_controller_resume(host);
1452 }
1453 #endif /* CONFIG_PM_SLEEP */
1454 
1455 #ifdef CONFIG_PM
1456 static int s3c64xx_spi_runtime_suspend(struct device *dev)
1457 {
1458 	struct spi_controller *host = dev_get_drvdata(dev);
1459 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1460 
1461 	clk_disable_unprepare(sdd->clk);
1462 	clk_disable_unprepare(sdd->src_clk);
1463 	clk_disable_unprepare(sdd->ioclk);
1464 
1465 	return 0;
1466 }
1467 
1468 static int s3c64xx_spi_runtime_resume(struct device *dev)
1469 {
1470 	struct spi_controller *host = dev_get_drvdata(dev);
1471 	struct s3c64xx_spi_driver_data *sdd = spi_controller_get_devdata(host);
1472 	int ret;
1473 
1474 	if (sdd->port_conf->clk_ioclk) {
1475 		ret = clk_prepare_enable(sdd->ioclk);
1476 		if (ret != 0)
1477 			return ret;
1478 	}
1479 
1480 	ret = clk_prepare_enable(sdd->src_clk);
1481 	if (ret != 0)
1482 		goto err_disable_ioclk;
1483 
1484 	ret = clk_prepare_enable(sdd->clk);
1485 	if (ret != 0)
1486 		goto err_disable_src_clk;
1487 
1488 	s3c64xx_spi_hwinit(sdd);
1489 
1490 	writel(S3C64XX_SPI_INT_RX_OVERRUN_EN | S3C64XX_SPI_INT_RX_UNDERRUN_EN |
1491 	       S3C64XX_SPI_INT_TX_OVERRUN_EN | S3C64XX_SPI_INT_TX_UNDERRUN_EN,
1492 	       sdd->regs + S3C64XX_SPI_INT_EN);
1493 
1494 	return 0;
1495 
1496 err_disable_src_clk:
1497 	clk_disable_unprepare(sdd->src_clk);
1498 err_disable_ioclk:
1499 	clk_disable_unprepare(sdd->ioclk);
1500 
1501 	return ret;
1502 }
1503 #endif /* CONFIG_PM */
1504 
1505 static const struct dev_pm_ops s3c64xx_spi_pm = {
1506 	SET_SYSTEM_SLEEP_PM_OPS(s3c64xx_spi_suspend, s3c64xx_spi_resume)
1507 	SET_RUNTIME_PM_OPS(s3c64xx_spi_runtime_suspend,
1508 			   s3c64xx_spi_runtime_resume, NULL)
1509 };
1510 
1511 static const struct s3c64xx_spi_port_config s3c2443_spi_port_config = {
1512 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1513 	.fifo_lvl_mask	= { 0x7f },
1514 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1515 	.rx_lvl_offset	= 13,
1516 	.tx_st_done	= 21,
1517 	.clk_div	= 2,
1518 	.high_speed	= true,
1519 };
1520 
1521 static const struct s3c64xx_spi_port_config s3c6410_spi_port_config = {
1522 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1523 	.fifo_lvl_mask	= { 0x7f, 0x7F },
1524 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1525 	.rx_lvl_offset	= 13,
1526 	.tx_st_done	= 21,
1527 	.clk_div	= 2,
1528 };
1529 
1530 static const struct s3c64xx_spi_port_config s5pv210_spi_port_config = {
1531 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1532 	.fifo_lvl_mask	= { 0x1ff, 0x7F },
1533 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1534 	.rx_lvl_offset	= 15,
1535 	.tx_st_done	= 25,
1536 	.clk_div	= 2,
1537 	.high_speed	= true,
1538 };
1539 
1540 static const struct s3c64xx_spi_port_config exynos4_spi_port_config = {
1541 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1542 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F },
1543 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1544 	.rx_lvl_offset	= 15,
1545 	.tx_st_done	= 25,
1546 	.clk_div	= 2,
1547 	.high_speed	= true,
1548 	.clk_from_cmu	= true,
1549 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1550 };
1551 
1552 static const struct s3c64xx_spi_port_config exynos7_spi_port_config = {
1553 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1554 	.fifo_lvl_mask	= { 0x1ff, 0x7F, 0x7F, 0x7F, 0x7F, 0x1ff},
1555 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1556 	.rx_lvl_offset	= 15,
1557 	.tx_st_done	= 25,
1558 	.clk_div	= 2,
1559 	.high_speed	= true,
1560 	.clk_from_cmu	= true,
1561 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1562 };
1563 
1564 static const struct s3c64xx_spi_port_config exynos5433_spi_port_config = {
1565 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1566 	.fifo_lvl_mask	= { 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff},
1567 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1568 	.rx_lvl_offset	= 15,
1569 	.tx_st_done	= 25,
1570 	.clk_div	= 2,
1571 	.high_speed	= true,
1572 	.clk_from_cmu	= true,
1573 	.clk_ioclk	= true,
1574 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1575 };
1576 
1577 static const struct s3c64xx_spi_port_config exynos850_spi_port_config = {
1578 	.fifo_depth	= 64,
1579 	.rx_fifomask	= S3C64XX_SPI_ST_RX_FIFO_RDY_V2,
1580 	.tx_fifomask	= S3C64XX_SPI_ST_TX_FIFO_RDY_V2,
1581 	.tx_st_done	= 25,
1582 	.clk_div	= 4,
1583 	.high_speed	= true,
1584 	.clk_from_cmu	= true,
1585 	.has_loopback	= true,
1586 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1587 };
1588 
1589 static const struct s3c64xx_spi_port_config exynosautov9_spi_port_config = {
1590 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1591 	.fifo_lvl_mask	= { 0x1ff, 0x1ff, 0x7f, 0x7f, 0x7f, 0x7f, 0x1ff, 0x7f,
1592 			    0x7f, 0x7f, 0x7f, 0x7f},
1593 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1594 	.rx_lvl_offset	= 15,
1595 	.tx_st_done	= 25,
1596 	.clk_div	= 4,
1597 	.high_speed	= true,
1598 	.clk_from_cmu	= true,
1599 	.clk_ioclk	= true,
1600 	.has_loopback	= true,
1601 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1602 };
1603 
1604 static const struct s3c64xx_spi_port_config fsd_spi_port_config = {
1605 	/* fifo_lvl_mask is deprecated. Use {rx, tx}_fifomask instead. */
1606 	.fifo_lvl_mask	= { 0x7f, 0x7f, 0x7f, 0x7f, 0x7f},
1607 	/* rx_lvl_offset is deprecated. Use {rx, tx}_fifomask instead. */
1608 	.rx_lvl_offset	= 15,
1609 	.tx_st_done	= 25,
1610 	.clk_div	= 2,
1611 	.high_speed	= true,
1612 	.clk_from_cmu	= true,
1613 	.clk_ioclk	= false,
1614 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1615 };
1616 
1617 static const struct s3c64xx_spi_port_config gs101_spi_port_config = {
1618 	.fifo_depth	= 64,
1619 	.rx_fifomask	= S3C64XX_SPI_ST_RX_FIFO_RDY_V2,
1620 	.tx_fifomask	= S3C64XX_SPI_ST_TX_FIFO_RDY_V2,
1621 	.tx_st_done	= 25,
1622 	.clk_div	= 4,
1623 	.high_speed	= true,
1624 	.clk_from_cmu	= true,
1625 	.has_loopback	= true,
1626 	.use_32bit_io	= true,
1627 	.quirks		= S3C64XX_SPI_QUIRK_CS_AUTO,
1628 };
1629 
1630 static const struct platform_device_id s3c64xx_spi_driver_ids[] = {
1631 	{
1632 		.name		= "s3c2443-spi",
1633 		.driver_data	= (kernel_ulong_t)&s3c2443_spi_port_config,
1634 	}, {
1635 		.name		= "s3c6410-spi",
1636 		.driver_data	= (kernel_ulong_t)&s3c6410_spi_port_config,
1637 	},
1638 	{ },
1639 };
1640 MODULE_DEVICE_TABLE(platform, s3c64xx_spi_driver_ids);
1641 
1642 static const struct of_device_id s3c64xx_spi_dt_match[] = {
1643 	{ .compatible = "google,gs101-spi",
1644 			.data = &gs101_spi_port_config,
1645 	},
1646 	{ .compatible = "samsung,s3c2443-spi",
1647 			.data = &s3c2443_spi_port_config,
1648 	},
1649 	{ .compatible = "samsung,s3c6410-spi",
1650 			.data = &s3c6410_spi_port_config,
1651 	},
1652 	{ .compatible = "samsung,s5pv210-spi",
1653 			.data = &s5pv210_spi_port_config,
1654 	},
1655 	{ .compatible = "samsung,exynos4210-spi",
1656 			.data = &exynos4_spi_port_config,
1657 	},
1658 	{ .compatible = "samsung,exynos7-spi",
1659 			.data = &exynos7_spi_port_config,
1660 	},
1661 	{ .compatible = "samsung,exynos5433-spi",
1662 			.data = &exynos5433_spi_port_config,
1663 	},
1664 	{ .compatible = "samsung,exynos850-spi",
1665 			.data = &exynos850_spi_port_config,
1666 	},
1667 	{ .compatible = "samsung,exynosautov9-spi",
1668 			.data = &exynosautov9_spi_port_config,
1669 	},
1670 	{ .compatible = "tesla,fsd-spi",
1671 			.data = &fsd_spi_port_config,
1672 	},
1673 	{ },
1674 };
1675 MODULE_DEVICE_TABLE(of, s3c64xx_spi_dt_match);
1676 
1677 static struct platform_driver s3c64xx_spi_driver = {
1678 	.driver = {
1679 		.name	= "s3c64xx-spi",
1680 		.pm = &s3c64xx_spi_pm,
1681 		.of_match_table = of_match_ptr(s3c64xx_spi_dt_match),
1682 	},
1683 	.probe = s3c64xx_spi_probe,
1684 	.remove_new = s3c64xx_spi_remove,
1685 	.id_table = s3c64xx_spi_driver_ids,
1686 };
1687 MODULE_ALIAS("platform:s3c64xx-spi");
1688 
1689 module_platform_driver(s3c64xx_spi_driver);
1690 
1691 MODULE_AUTHOR("Jaswinder Singh <jassi.brar@samsung.com>");
1692 MODULE_DESCRIPTION("S3C64XX SPI Controller Driver");
1693 MODULE_LICENSE("GPL");
1694