1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Renesas RZ/V2M Clocked Serial Interface (CSI) driver 4 * 5 * Copyright (C) 2023 Renesas Electronics Corporation 6 */ 7 8 #include <linux/bits.h> 9 #include <linux/clk.h> 10 #include <linux/count_zeros.h> 11 #include <linux/interrupt.h> 12 #include <linux/iopoll.h> 13 #include <linux/log2.h> 14 #include <linux/of.h> 15 #include <linux/platform_device.h> 16 #include <linux/property.h> 17 #include <linux/reset.h> 18 #include <linux/spi/spi.h> 19 #include <linux/units.h> 20 21 /* Registers */ 22 #define CSI_MODE 0x00 /* CSI mode control */ 23 #define CSI_CLKSEL 0x04 /* CSI clock select */ 24 #define CSI_CNT 0x08 /* CSI control */ 25 #define CSI_INT 0x0C /* CSI interrupt status */ 26 #define CSI_IFIFOL 0x10 /* CSI receive FIFO level display */ 27 #define CSI_OFIFOL 0x14 /* CSI transmit FIFO level display */ 28 #define CSI_IFIFO 0x18 /* CSI receive window */ 29 #define CSI_OFIFO 0x1C /* CSI transmit window */ 30 #define CSI_FIFOTRG 0x20 /* CSI FIFO trigger level */ 31 32 /* CSI_MODE */ 33 #define CSI_MODE_CSIE BIT(7) 34 #define CSI_MODE_TRMD BIT(6) 35 #define CSI_MODE_CCL BIT(5) 36 #define CSI_MODE_DIR BIT(4) 37 #define CSI_MODE_CSOT BIT(0) 38 39 #define CSI_MODE_SETUP 0x00000040 40 41 /* CSI_CLKSEL */ 42 #define CSI_CLKSEL_SS_ENA BIT(19) 43 #define CSI_CLKSEL_SS_POL BIT(18) 44 #define CSI_CLKSEL_SS (CSI_CLKSEL_SS_ENA | CSI_CLKSEL_SS_POL) 45 #define CSI_CLKSEL_CKP BIT(17) 46 #define CSI_CLKSEL_DAP BIT(16) 47 #define CSI_CLKSEL_MODE (CSI_CLKSEL_CKP|CSI_CLKSEL_DAP) 48 #define CSI_CLKSEL_SLAVE BIT(15) 49 #define CSI_CLKSEL_CKS GENMASK(14, 1) 50 51 /* CSI_CNT */ 52 #define CSI_CNT_CSIRST BIT(28) 53 #define CSI_CNT_R_TRGEN BIT(19) 54 #define CSI_CNT_UNDER_E BIT(13) 55 #define CSI_CNT_OVERF_E BIT(12) 56 #define CSI_CNT_TREND_E BIT(9) 57 #define CSI_CNT_CSIEND_E BIT(8) 58 #define CSI_CNT_T_TRGR_E BIT(4) 59 #define CSI_CNT_R_TRGR_E BIT(0) 60 61 /* CSI_INT */ 62 #define CSI_INT_UNDER BIT(13) 63 #define CSI_INT_OVERF BIT(12) 64 #define CSI_INT_TREND BIT(9) 65 #define CSI_INT_CSIEND BIT(8) 66 #define CSI_INT_T_TRGR BIT(4) 67 #define CSI_INT_R_TRGR BIT(0) 68 69 /* CSI_FIFOTRG */ 70 #define CSI_FIFOTRG_R_TRG GENMASK(2, 0) 71 72 #define CSI_FIFO_SIZE_BYTES 32U 73 #define CSI_FIFO_HALF_SIZE 16U 74 #define CSI_EN_DIS_TIMEOUT_US 100 75 /* 76 * Clock "csiclk" gets divided by 2 * CSI_CLKSEL_CKS in order to generate the 77 * serial clock (output from master), with CSI_CLKSEL_CKS ranging from 0x1 (that 78 * means "csiclk" is divided by 2) to 0x3FFF ("csiclk" is divided by 32766). 79 */ 80 #define CSI_CKS_MAX GENMASK(13, 0) 81 82 #define UNDERRUN_ERROR BIT(0) 83 #define OVERFLOW_ERROR BIT(1) 84 #define TX_TIMEOUT_ERROR BIT(2) 85 #define RX_TIMEOUT_ERROR BIT(3) 86 87 #define CSI_MAX_SPI_SCKO (8 * HZ_PER_MHZ) 88 89 #define CSI_CLKSEL_SS_DISABLED 0 90 #define CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW BIT(1) 91 #define CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH GENMASK(1, 0) 92 93 struct rzv2m_csi_priv { 94 void __iomem *base; 95 struct clk *csiclk; 96 struct clk *pclk; 97 struct device *dev; 98 struct spi_controller *controller; 99 const void *txbuf; 100 void *rxbuf; 101 unsigned int buffer_len; 102 unsigned int bytes_sent; 103 unsigned int bytes_received; 104 unsigned int bytes_to_transfer; 105 unsigned int words_to_transfer; 106 unsigned int bytes_per_word; 107 wait_queue_head_t wait; 108 u32 errors; 109 u32 status; 110 bool target_aborted; 111 bool use_ss_pin; 112 }; 113 114 static void rzv2m_csi_reg_write_bit(const struct rzv2m_csi_priv *csi, 115 int reg_offs, int bit_mask, u32 value) 116 { 117 int nr_zeros; 118 u32 tmp; 119 120 nr_zeros = count_trailing_zeros(bit_mask); 121 value <<= nr_zeros; 122 123 tmp = (readl(csi->base + reg_offs) & ~bit_mask) | value; 124 writel(tmp, csi->base + reg_offs); 125 } 126 127 static int rzv2m_csi_sw_reset(struct rzv2m_csi_priv *csi, int assert) 128 { 129 u32 reg; 130 131 rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_CSIRST, assert); 132 133 if (!assert) 134 return 0; 135 136 return readl_poll_timeout(csi->base + CSI_MODE, reg, 137 !(reg & CSI_MODE_CSOT), 0, 138 CSI_EN_DIS_TIMEOUT_US); 139 } 140 141 static int rzv2m_csi_start_stop_operation(const struct rzv2m_csi_priv *csi, 142 int enable, bool wait) 143 { 144 u32 reg; 145 146 rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CSIE, enable); 147 148 if (enable || !wait) 149 return 0; 150 151 return readl_poll_timeout(csi->base + CSI_MODE, reg, 152 !(reg & CSI_MODE_CSOT), 0, 153 CSI_EN_DIS_TIMEOUT_US); 154 } 155 156 static int rzv2m_csi_fill_txfifo(struct rzv2m_csi_priv *csi) 157 { 158 unsigned int i; 159 160 if (readl(csi->base + CSI_OFIFOL)) 161 return -EIO; 162 163 if (csi->bytes_per_word == 2) { 164 const u16 *buf = csi->txbuf; 165 166 for (i = 0; i < csi->words_to_transfer; i++) 167 writel(buf[i], csi->base + CSI_OFIFO); 168 } else { 169 const u8 *buf = csi->txbuf; 170 171 for (i = 0; i < csi->words_to_transfer; i++) 172 writel(buf[i], csi->base + CSI_OFIFO); 173 } 174 175 csi->txbuf += csi->bytes_to_transfer; 176 csi->bytes_sent += csi->bytes_to_transfer; 177 178 return 0; 179 } 180 181 static int rzv2m_csi_read_rxfifo(struct rzv2m_csi_priv *csi) 182 { 183 unsigned int i; 184 185 if (readl(csi->base + CSI_IFIFOL) != csi->bytes_to_transfer) 186 return -EIO; 187 188 if (csi->bytes_per_word == 2) { 189 u16 *buf = csi->rxbuf; 190 191 for (i = 0; i < csi->words_to_transfer; i++) 192 buf[i] = (u16)readl(csi->base + CSI_IFIFO); 193 } else { 194 u8 *buf = csi->rxbuf; 195 196 for (i = 0; i < csi->words_to_transfer; i++) 197 buf[i] = (u8)readl(csi->base + CSI_IFIFO); 198 } 199 200 csi->rxbuf += csi->bytes_to_transfer; 201 csi->bytes_received += csi->bytes_to_transfer; 202 203 return 0; 204 } 205 206 static inline void rzv2m_csi_empty_rxfifo(struct rzv2m_csi_priv *csi) 207 { 208 unsigned int i; 209 210 for (i = 0; i < csi->words_to_transfer; i++) 211 readl(csi->base + CSI_IFIFO); 212 } 213 214 static inline void rzv2m_csi_calc_current_transfer(struct rzv2m_csi_priv *csi) 215 { 216 unsigned int bytes_transferred = max(csi->bytes_received, csi->bytes_sent); 217 unsigned int bytes_remaining = csi->buffer_len - bytes_transferred; 218 unsigned int to_transfer; 219 220 if (csi->txbuf) 221 /* 222 * Leaving a little bit of headroom in the FIFOs makes it very 223 * hard to raise an overflow error (which is only possible 224 * when IP transmits and receives at the same time). 225 */ 226 to_transfer = min(CSI_FIFO_HALF_SIZE, bytes_remaining); 227 else 228 to_transfer = min(CSI_FIFO_SIZE_BYTES, bytes_remaining); 229 230 if (csi->bytes_per_word == 2) 231 to_transfer >>= 1; 232 233 /* 234 * We can only choose a trigger level from a predefined set of values. 235 * This will pick a value that is the greatest possible integer that's 236 * less than or equal to the number of bytes we need to transfer. 237 * This may result in multiple smaller transfers. 238 */ 239 csi->words_to_transfer = rounddown_pow_of_two(to_transfer); 240 241 if (csi->bytes_per_word == 2) 242 csi->bytes_to_transfer = csi->words_to_transfer << 1; 243 else 244 csi->bytes_to_transfer = csi->words_to_transfer; 245 } 246 247 static inline void rzv2m_csi_set_rx_fifo_trigger_level(struct rzv2m_csi_priv *csi) 248 { 249 rzv2m_csi_reg_write_bit(csi, CSI_FIFOTRG, CSI_FIFOTRG_R_TRG, 250 ilog2(csi->words_to_transfer)); 251 } 252 253 static inline void rzv2m_csi_enable_rx_trigger(struct rzv2m_csi_priv *csi, 254 bool enable) 255 { 256 rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_R_TRGEN, enable); 257 } 258 259 static void rzv2m_csi_disable_irqs(const struct rzv2m_csi_priv *csi, 260 u32 enable_bits) 261 { 262 u32 cnt = readl(csi->base + CSI_CNT); 263 264 writel(cnt & ~enable_bits, csi->base + CSI_CNT); 265 } 266 267 static void rzv2m_csi_disable_all_irqs(struct rzv2m_csi_priv *csi) 268 { 269 rzv2m_csi_disable_irqs(csi, CSI_CNT_R_TRGR_E | CSI_CNT_T_TRGR_E | 270 CSI_CNT_CSIEND_E | CSI_CNT_TREND_E | 271 CSI_CNT_OVERF_E | CSI_CNT_UNDER_E); 272 } 273 274 static inline void rzv2m_csi_clear_irqs(struct rzv2m_csi_priv *csi, u32 irqs) 275 { 276 writel(irqs, csi->base + CSI_INT); 277 } 278 279 static void rzv2m_csi_clear_all_irqs(struct rzv2m_csi_priv *csi) 280 { 281 rzv2m_csi_clear_irqs(csi, CSI_INT_UNDER | CSI_INT_OVERF | 282 CSI_INT_TREND | CSI_INT_CSIEND | CSI_INT_T_TRGR | 283 CSI_INT_R_TRGR); 284 } 285 286 static void rzv2m_csi_enable_irqs(struct rzv2m_csi_priv *csi, u32 enable_bits) 287 { 288 u32 cnt = readl(csi->base + CSI_CNT); 289 290 writel(cnt | enable_bits, csi->base + CSI_CNT); 291 } 292 293 static int rzv2m_csi_wait_for_interrupt(struct rzv2m_csi_priv *csi, 294 u32 wait_mask, u32 enable_bits) 295 { 296 int ret; 297 298 rzv2m_csi_enable_irqs(csi, enable_bits); 299 300 if (spi_controller_is_target(csi->controller)) { 301 ret = wait_event_interruptible(csi->wait, 302 ((csi->status & wait_mask) == wait_mask) || 303 csi->errors || csi->target_aborted); 304 if (ret || csi->target_aborted) 305 ret = -EINTR; 306 } else { 307 ret = wait_event_timeout(csi->wait, 308 ((csi->status & wait_mask) == wait_mask) || 309 csi->errors, HZ) == 0 ? -ETIMEDOUT : 0; 310 } 311 312 rzv2m_csi_disable_irqs(csi, enable_bits); 313 314 if (csi->errors) 315 return -EIO; 316 317 return ret; 318 } 319 320 static inline int rzv2m_csi_wait_for_rx_ready(struct rzv2m_csi_priv *csi) 321 { 322 int ret; 323 324 if (readl(csi->base + CSI_IFIFOL) >= csi->bytes_to_transfer) 325 return 0; 326 327 ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_R_TRGR, 328 CSI_CNT_R_TRGR_E); 329 if (ret == -ETIMEDOUT) 330 csi->errors |= RX_TIMEOUT_ERROR; 331 332 return ret; 333 } 334 335 static irqreturn_t rzv2m_csi_irq_handler(int irq, void *data) 336 { 337 struct rzv2m_csi_priv *csi = data; 338 339 csi->status = readl(csi->base + CSI_INT); 340 rzv2m_csi_disable_irqs(csi, csi->status); 341 342 if (csi->status & CSI_INT_OVERF) 343 csi->errors |= OVERFLOW_ERROR; 344 if (csi->status & CSI_INT_UNDER) 345 csi->errors |= UNDERRUN_ERROR; 346 347 wake_up(&csi->wait); 348 349 return IRQ_HANDLED; 350 } 351 352 static void rzv2m_csi_setup_clock(struct rzv2m_csi_priv *csi, u32 spi_hz) 353 { 354 unsigned long csiclk_rate = clk_get_rate(csi->csiclk); 355 unsigned long pclk_rate = clk_get_rate(csi->pclk); 356 unsigned long csiclk_rate_limit = pclk_rate >> 1; 357 u32 cks; 358 359 /* 360 * There is a restriction on the frequency of CSICLK, it has to be <= 361 * PCLK / 2. 362 */ 363 if (csiclk_rate > csiclk_rate_limit) { 364 clk_set_rate(csi->csiclk, csiclk_rate >> 1); 365 csiclk_rate = clk_get_rate(csi->csiclk); 366 } else if ((csiclk_rate << 1) <= csiclk_rate_limit) { 367 clk_set_rate(csi->csiclk, csiclk_rate << 1); 368 csiclk_rate = clk_get_rate(csi->csiclk); 369 } 370 371 spi_hz = spi_hz > CSI_MAX_SPI_SCKO ? CSI_MAX_SPI_SCKO : spi_hz; 372 373 cks = DIV_ROUND_UP(csiclk_rate, spi_hz << 1); 374 if (cks > CSI_CKS_MAX) 375 cks = CSI_CKS_MAX; 376 377 dev_dbg(csi->dev, "SPI clk rate is %ldHz\n", csiclk_rate / (cks << 1)); 378 379 rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKS, cks); 380 } 381 382 static void rzv2m_csi_setup_operating_mode(struct rzv2m_csi_priv *csi, 383 struct spi_transfer *t) 384 { 385 if (t->rx_buf && !t->tx_buf) 386 /* Reception-only mode */ 387 rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 0); 388 else 389 /* Send and receive mode */ 390 rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 1); 391 392 csi->bytes_per_word = t->bits_per_word / 8; 393 rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CCL, 394 csi->bytes_per_word == 2); 395 } 396 397 static int rzv2m_csi_setup(struct spi_device *spi) 398 { 399 struct rzv2m_csi_priv *csi = spi_controller_get_devdata(spi->controller); 400 u32 slave_selection = CSI_CLKSEL_SS_DISABLED; 401 int ret; 402 403 rzv2m_csi_sw_reset(csi, 0); 404 405 writel(CSI_MODE_SETUP, csi->base + CSI_MODE); 406 407 /* Setup clock polarity and phase timing */ 408 rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_MODE, 409 ~spi->mode & SPI_MODE_X_MASK); 410 411 /* Setup serial data order */ 412 rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_DIR, 413 !!(spi->mode & SPI_LSB_FIRST)); 414 415 /* Set the role, 1 for target and 0 for host */ 416 rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SLAVE, 417 !!spi_controller_is_target(csi->controller)); 418 419 if (csi->use_ss_pin) 420 slave_selection = spi->mode & SPI_CS_HIGH ? 421 CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH : 422 CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW; 423 424 /* Configure the slave selection (SS) pin */ 425 rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SS, slave_selection); 426 427 /* Give the IP a SW reset */ 428 ret = rzv2m_csi_sw_reset(csi, 1); 429 if (ret) 430 return ret; 431 rzv2m_csi_sw_reset(csi, 0); 432 433 /* 434 * We need to enable the communication so that the clock will settle 435 * for the right polarity before enabling the CS. 436 */ 437 rzv2m_csi_start_stop_operation(csi, 1, false); 438 udelay(10); 439 rzv2m_csi_start_stop_operation(csi, 0, false); 440 441 return 0; 442 } 443 444 static int rzv2m_csi_pio_transfer(struct rzv2m_csi_priv *csi) 445 { 446 bool tx_completed = !csi->txbuf; 447 bool rx_completed = !csi->rxbuf; 448 int ret = 0; 449 450 /* Make sure the TX FIFO is empty */ 451 writel(0, csi->base + CSI_OFIFOL); 452 453 /* Make sure the RX FIFO is empty */ 454 writel(0, csi->base + CSI_IFIFOL); 455 456 csi->bytes_sent = 0; 457 csi->bytes_received = 0; 458 csi->errors = 0; 459 csi->target_aborted = false; 460 461 rzv2m_csi_disable_all_irqs(csi); 462 rzv2m_csi_clear_all_irqs(csi); 463 rzv2m_csi_enable_rx_trigger(csi, true); 464 465 while (!tx_completed || !rx_completed) { 466 /* 467 * Decide how many words we are going to transfer during 468 * this cycle (for both TX and RX), then set the RX FIFO trigger 469 * level accordingly. No need to set a trigger level for the 470 * TX FIFO, as this IP comes with an interrupt that fires when 471 * the TX FIFO is empty. 472 */ 473 rzv2m_csi_calc_current_transfer(csi); 474 rzv2m_csi_set_rx_fifo_trigger_level(csi); 475 476 rzv2m_csi_enable_irqs(csi, CSI_INT_OVERF | CSI_INT_UNDER); 477 478 writel(readl(csi->base + CSI_INT), csi->base + CSI_INT); 479 csi->status = 0; 480 481 /* TX */ 482 if (csi->txbuf) { 483 ret = rzv2m_csi_fill_txfifo(csi); 484 if (ret) 485 break; 486 487 if (csi->bytes_sent == csi->buffer_len) 488 tx_completed = true; 489 } 490 491 rzv2m_csi_start_stop_operation(csi, 1, false); 492 493 /* 494 * Make sure the RX FIFO contains the desired number of words. 495 * We then either flush its content, or we copy it onto 496 * csi->rxbuf. 497 */ 498 ret = rzv2m_csi_wait_for_rx_ready(csi); 499 if (ret) 500 break; 501 502 if (!spi_controller_is_target(csi->controller)) 503 rzv2m_csi_start_stop_operation(csi, 0, false); 504 505 /* RX */ 506 if (csi->rxbuf) { 507 ret = rzv2m_csi_read_rxfifo(csi); 508 if (ret) 509 break; 510 511 if (csi->bytes_received == csi->buffer_len) 512 rx_completed = true; 513 } else { 514 rzv2m_csi_empty_rxfifo(csi); 515 } 516 517 if (csi->errors) { 518 ret = -EIO; 519 break; 520 } 521 } 522 523 rzv2m_csi_start_stop_operation(csi, 0, true); 524 rzv2m_csi_disable_all_irqs(csi); 525 rzv2m_csi_enable_rx_trigger(csi, false); 526 rzv2m_csi_clear_all_irqs(csi); 527 528 return ret; 529 } 530 531 static int rzv2m_csi_transfer_one(struct spi_controller *controller, 532 struct spi_device *spi, 533 struct spi_transfer *transfer) 534 { 535 struct rzv2m_csi_priv *csi = spi_controller_get_devdata(controller); 536 struct device *dev = csi->dev; 537 int ret; 538 539 csi->txbuf = transfer->tx_buf; 540 csi->rxbuf = transfer->rx_buf; 541 csi->buffer_len = transfer->len; 542 543 rzv2m_csi_setup_operating_mode(csi, transfer); 544 545 if (!spi_controller_is_target(csi->controller)) 546 rzv2m_csi_setup_clock(csi, transfer->speed_hz); 547 548 ret = rzv2m_csi_pio_transfer(csi); 549 if (ret) { 550 if (csi->errors & UNDERRUN_ERROR) 551 dev_err(dev, "Underrun error\n"); 552 if (csi->errors & OVERFLOW_ERROR) 553 dev_err(dev, "Overflow error\n"); 554 if (csi->errors & TX_TIMEOUT_ERROR) 555 dev_err(dev, "TX timeout error\n"); 556 if (csi->errors & RX_TIMEOUT_ERROR) 557 dev_err(dev, "RX timeout error\n"); 558 } 559 560 return ret; 561 } 562 563 static int rzv2m_csi_target_abort(struct spi_controller *ctlr) 564 { 565 struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr); 566 567 csi->target_aborted = true; 568 wake_up(&csi->wait); 569 570 return 0; 571 } 572 573 static int rzv2m_csi_probe(struct platform_device *pdev) 574 { 575 struct device_node *np = pdev->dev.of_node; 576 struct spi_controller *controller; 577 struct device *dev = &pdev->dev; 578 struct rzv2m_csi_priv *csi; 579 struct reset_control *rstc; 580 bool target_mode; 581 int irq; 582 int ret; 583 584 target_mode = of_property_read_bool(np, "spi-slave"); 585 586 if (target_mode) 587 controller = devm_spi_alloc_target(dev, sizeof(*csi)); 588 else 589 controller = devm_spi_alloc_host(dev, sizeof(*csi)); 590 591 if (!controller) 592 return -ENOMEM; 593 594 csi = spi_controller_get_devdata(controller); 595 platform_set_drvdata(pdev, csi); 596 597 csi->use_ss_pin = false; 598 if (spi_controller_is_target(controller) && 599 !of_property_read_bool(np, "renesas,csi-no-ss")) 600 csi->use_ss_pin = true; 601 602 csi->dev = dev; 603 csi->controller = controller; 604 csi->target_aborted = false; 605 606 csi->base = devm_platform_ioremap_resource(pdev, 0); 607 if (IS_ERR(csi->base)) 608 return PTR_ERR(csi->base); 609 610 irq = platform_get_irq(pdev, 0); 611 if (irq < 0) 612 return irq; 613 614 csi->csiclk = devm_clk_get(dev, "csiclk"); 615 if (IS_ERR(csi->csiclk)) 616 return dev_err_probe(dev, PTR_ERR(csi->csiclk), 617 "could not get csiclk\n"); 618 619 csi->pclk = devm_clk_get(dev, "pclk"); 620 if (IS_ERR(csi->pclk)) 621 return dev_err_probe(dev, PTR_ERR(csi->pclk), 622 "could not get pclk\n"); 623 624 rstc = devm_reset_control_get_shared(dev, NULL); 625 if (IS_ERR(rstc)) 626 return dev_err_probe(dev, PTR_ERR(rstc), "Missing reset ctrl\n"); 627 628 init_waitqueue_head(&csi->wait); 629 630 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH; 631 controller->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8); 632 controller->setup = rzv2m_csi_setup; 633 controller->transfer_one = rzv2m_csi_transfer_one; 634 controller->use_gpio_descriptors = true; 635 controller->target_abort = rzv2m_csi_target_abort; 636 637 device_set_node(&controller->dev, dev_fwnode(dev)); 638 639 ret = devm_request_irq(dev, irq, rzv2m_csi_irq_handler, 0, 640 dev_name(dev), csi); 641 if (ret) 642 return dev_err_probe(dev, ret, "cannot request IRQ\n"); 643 644 /* 645 * The reset also affects other HW that is not under the control 646 * of Linux. Therefore, all we can do is make sure the reset is 647 * deasserted. 648 */ 649 reset_control_deassert(rstc); 650 651 /* Make sure the IP is in SW reset state */ 652 ret = rzv2m_csi_sw_reset(csi, 1); 653 if (ret) 654 return ret; 655 656 ret = clk_prepare_enable(csi->csiclk); 657 if (ret) 658 return dev_err_probe(dev, ret, "could not enable csiclk\n"); 659 660 ret = spi_register_controller(controller); 661 if (ret) { 662 clk_disable_unprepare(csi->csiclk); 663 return dev_err_probe(dev, ret, "register controller failed\n"); 664 } 665 666 return 0; 667 } 668 669 static void rzv2m_csi_remove(struct platform_device *pdev) 670 { 671 struct rzv2m_csi_priv *csi = platform_get_drvdata(pdev); 672 673 spi_unregister_controller(csi->controller); 674 rzv2m_csi_sw_reset(csi, 1); 675 clk_disable_unprepare(csi->csiclk); 676 } 677 678 static const struct of_device_id rzv2m_csi_match[] = { 679 { .compatible = "renesas,rzv2m-csi" }, 680 { /* sentinel */ } 681 }; 682 MODULE_DEVICE_TABLE(of, rzv2m_csi_match); 683 684 static struct platform_driver rzv2m_csi_drv = { 685 .probe = rzv2m_csi_probe, 686 .remove = rzv2m_csi_remove, 687 .driver = { 688 .name = "rzv2m_csi", 689 .of_match_table = rzv2m_csi_match, 690 }, 691 }; 692 module_platform_driver(rzv2m_csi_drv); 693 694 MODULE_LICENSE("GPL"); 695 MODULE_AUTHOR("Fabrizio Castro <castro.fabrizio.jz@renesas.com>"); 696 MODULE_DESCRIPTION("Clocked Serial Interface Driver"); 697