xref: /linux/drivers/spi/spi-rzv2m-csi.c (revision 4b660dbd9ee2059850fd30e0df420ca7a38a1856)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Renesas RZ/V2M Clocked Serial Interface (CSI) driver
4  *
5  * Copyright (C) 2023 Renesas Electronics Corporation
6  */
7 
8 #include <linux/bits.h>
9 #include <linux/clk.h>
10 #include <linux/count_zeros.h>
11 #include <linux/interrupt.h>
12 #include <linux/iopoll.h>
13 #include <linux/log2.h>
14 #include <linux/of.h>
15 #include <linux/platform_device.h>
16 #include <linux/property.h>
17 #include <linux/reset.h>
18 #include <linux/spi/spi.h>
19 #include <linux/units.h>
20 
21 /* Registers */
22 #define CSI_MODE		0x00	/* CSI mode control */
23 #define CSI_CLKSEL		0x04	/* CSI clock select */
24 #define CSI_CNT			0x08	/* CSI control */
25 #define CSI_INT			0x0C	/* CSI interrupt status */
26 #define CSI_IFIFOL		0x10	/* CSI receive FIFO level display */
27 #define CSI_OFIFOL		0x14	/* CSI transmit FIFO level display */
28 #define CSI_IFIFO		0x18	/* CSI receive window */
29 #define CSI_OFIFO		0x1C	/* CSI transmit window */
30 #define CSI_FIFOTRG		0x20	/* CSI FIFO trigger level */
31 
32 /* CSI_MODE */
33 #define CSI_MODE_CSIE		BIT(7)
34 #define CSI_MODE_TRMD		BIT(6)
35 #define CSI_MODE_CCL		BIT(5)
36 #define CSI_MODE_DIR		BIT(4)
37 #define CSI_MODE_CSOT		BIT(0)
38 
39 #define CSI_MODE_SETUP		0x00000040
40 
41 /* CSI_CLKSEL */
42 #define CSI_CLKSEL_SS_ENA	BIT(19)
43 #define CSI_CLKSEL_SS_POL	BIT(18)
44 #define CSI_CLKSEL_SS		(CSI_CLKSEL_SS_ENA | CSI_CLKSEL_SS_POL)
45 #define CSI_CLKSEL_CKP		BIT(17)
46 #define CSI_CLKSEL_DAP		BIT(16)
47 #define CSI_CLKSEL_MODE		(CSI_CLKSEL_CKP|CSI_CLKSEL_DAP)
48 #define CSI_CLKSEL_SLAVE	BIT(15)
49 #define CSI_CLKSEL_CKS		GENMASK(14, 1)
50 
51 /* CSI_CNT */
52 #define CSI_CNT_CSIRST		BIT(28)
53 #define CSI_CNT_R_TRGEN		BIT(19)
54 #define CSI_CNT_UNDER_E		BIT(13)
55 #define CSI_CNT_OVERF_E		BIT(12)
56 #define CSI_CNT_TREND_E		BIT(9)
57 #define CSI_CNT_CSIEND_E	BIT(8)
58 #define CSI_CNT_T_TRGR_E	BIT(4)
59 #define CSI_CNT_R_TRGR_E	BIT(0)
60 
61 /* CSI_INT */
62 #define CSI_INT_UNDER		BIT(13)
63 #define CSI_INT_OVERF		BIT(12)
64 #define CSI_INT_TREND		BIT(9)
65 #define CSI_INT_CSIEND		BIT(8)
66 #define CSI_INT_T_TRGR		BIT(4)
67 #define CSI_INT_R_TRGR		BIT(0)
68 
69 /* CSI_FIFOTRG */
70 #define CSI_FIFOTRG_R_TRG       GENMASK(2, 0)
71 
72 #define CSI_FIFO_SIZE_BYTES	32U
73 #define CSI_FIFO_HALF_SIZE	16U
74 #define CSI_EN_DIS_TIMEOUT_US	100
75 /*
76  * Clock "csiclk" gets divided by 2 * CSI_CLKSEL_CKS in order to generate the
77  * serial clock (output from master), with CSI_CLKSEL_CKS ranging from 0x1 (that
78  * means "csiclk" is divided by 2) to 0x3FFF ("csiclk" is divided by 32766).
79  */
80 #define CSI_CKS_MAX		GENMASK(13, 0)
81 
82 #define UNDERRUN_ERROR		BIT(0)
83 #define OVERFLOW_ERROR		BIT(1)
84 #define TX_TIMEOUT_ERROR	BIT(2)
85 #define RX_TIMEOUT_ERROR	BIT(3)
86 
87 #define CSI_MAX_SPI_SCKO	(8 * HZ_PER_MHZ)
88 
89 #define CSI_CLKSEL_SS_DISABLED			0
90 #define CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW	BIT(1)
91 #define CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH	GENMASK(1, 0)
92 
93 struct rzv2m_csi_priv {
94 	void __iomem *base;
95 	struct clk *csiclk;
96 	struct clk *pclk;
97 	struct device *dev;
98 	struct spi_controller *controller;
99 	const void *txbuf;
100 	void *rxbuf;
101 	unsigned int buffer_len;
102 	unsigned int bytes_sent;
103 	unsigned int bytes_received;
104 	unsigned int bytes_to_transfer;
105 	unsigned int words_to_transfer;
106 	unsigned int bytes_per_word;
107 	wait_queue_head_t wait;
108 	u32 errors;
109 	u32 status;
110 	bool target_aborted;
111 	bool use_ss_pin;
112 };
113 
114 static void rzv2m_csi_reg_write_bit(const struct rzv2m_csi_priv *csi,
115 				    int reg_offs, int bit_mask, u32 value)
116 {
117 	int nr_zeros;
118 	u32 tmp;
119 
120 	nr_zeros = count_trailing_zeros(bit_mask);
121 	value <<= nr_zeros;
122 
123 	tmp = (readl(csi->base + reg_offs) & ~bit_mask) | value;
124 	writel(tmp, csi->base + reg_offs);
125 }
126 
127 static int rzv2m_csi_sw_reset(struct rzv2m_csi_priv *csi, int assert)
128 {
129 	u32 reg;
130 
131 	rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_CSIRST, assert);
132 
133 	if (!assert)
134 		return 0;
135 
136 	return readl_poll_timeout(csi->base + CSI_MODE, reg,
137 				  !(reg & CSI_MODE_CSOT), 0,
138 				  CSI_EN_DIS_TIMEOUT_US);
139 }
140 
141 static int rzv2m_csi_start_stop_operation(const struct rzv2m_csi_priv *csi,
142 					  int enable, bool wait)
143 {
144 	u32 reg;
145 
146 	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CSIE, enable);
147 
148 	if (enable || !wait)
149 		return 0;
150 
151 	return readl_poll_timeout(csi->base + CSI_MODE, reg,
152 				  !(reg & CSI_MODE_CSOT), 0,
153 				  CSI_EN_DIS_TIMEOUT_US);
154 }
155 
156 static int rzv2m_csi_fill_txfifo(struct rzv2m_csi_priv *csi)
157 {
158 	unsigned int i;
159 
160 	if (readl(csi->base + CSI_OFIFOL))
161 		return -EIO;
162 
163 	if (csi->bytes_per_word == 2) {
164 		const u16 *buf = csi->txbuf;
165 
166 		for (i = 0; i < csi->words_to_transfer; i++)
167 			writel(buf[i], csi->base + CSI_OFIFO);
168 	} else {
169 		const u8 *buf = csi->txbuf;
170 
171 		for (i = 0; i < csi->words_to_transfer; i++)
172 			writel(buf[i], csi->base + CSI_OFIFO);
173 	}
174 
175 	csi->txbuf += csi->bytes_to_transfer;
176 	csi->bytes_sent += csi->bytes_to_transfer;
177 
178 	return 0;
179 }
180 
181 static int rzv2m_csi_read_rxfifo(struct rzv2m_csi_priv *csi)
182 {
183 	unsigned int i;
184 
185 	if (readl(csi->base + CSI_IFIFOL) != csi->bytes_to_transfer)
186 		return -EIO;
187 
188 	if (csi->bytes_per_word == 2) {
189 		u16 *buf = csi->rxbuf;
190 
191 		for (i = 0; i < csi->words_to_transfer; i++)
192 			buf[i] = (u16)readl(csi->base + CSI_IFIFO);
193 	} else {
194 		u8 *buf = csi->rxbuf;
195 
196 		for (i = 0; i < csi->words_to_transfer; i++)
197 			buf[i] = (u8)readl(csi->base + CSI_IFIFO);
198 	}
199 
200 	csi->rxbuf += csi->bytes_to_transfer;
201 	csi->bytes_received += csi->bytes_to_transfer;
202 
203 	return 0;
204 }
205 
206 static inline void rzv2m_csi_empty_rxfifo(struct rzv2m_csi_priv *csi)
207 {
208 	unsigned int i;
209 
210 	for (i = 0; i < csi->words_to_transfer; i++)
211 		readl(csi->base + CSI_IFIFO);
212 }
213 
214 static inline void rzv2m_csi_calc_current_transfer(struct rzv2m_csi_priv *csi)
215 {
216 	unsigned int bytes_transferred = max(csi->bytes_received, csi->bytes_sent);
217 	unsigned int bytes_remaining = csi->buffer_len - bytes_transferred;
218 	unsigned int to_transfer;
219 
220 	if (csi->txbuf)
221 		/*
222 		 * Leaving a little bit of headroom in the FIFOs makes it very
223 		 * hard to raise an overflow error (which is only possible
224 		 * when IP transmits and receives at the same time).
225 		 */
226 		to_transfer = min(CSI_FIFO_HALF_SIZE, bytes_remaining);
227 	else
228 		to_transfer = min(CSI_FIFO_SIZE_BYTES, bytes_remaining);
229 
230 	if (csi->bytes_per_word == 2)
231 		to_transfer >>= 1;
232 
233 	/*
234 	 * We can only choose a trigger level from a predefined set of values.
235 	 * This will pick a value that is the greatest possible integer that's
236 	 * less than or equal to the number of bytes we need to transfer.
237 	 * This may result in multiple smaller transfers.
238 	 */
239 	csi->words_to_transfer = rounddown_pow_of_two(to_transfer);
240 
241 	if (csi->bytes_per_word == 2)
242 		csi->bytes_to_transfer = csi->words_to_transfer << 1;
243 	else
244 		csi->bytes_to_transfer = csi->words_to_transfer;
245 }
246 
247 static inline void rzv2m_csi_set_rx_fifo_trigger_level(struct rzv2m_csi_priv *csi)
248 {
249 	rzv2m_csi_reg_write_bit(csi, CSI_FIFOTRG, CSI_FIFOTRG_R_TRG,
250 				ilog2(csi->words_to_transfer));
251 }
252 
253 static inline void rzv2m_csi_enable_rx_trigger(struct rzv2m_csi_priv *csi,
254 					       bool enable)
255 {
256 	rzv2m_csi_reg_write_bit(csi, CSI_CNT, CSI_CNT_R_TRGEN, enable);
257 }
258 
259 static void rzv2m_csi_disable_irqs(const struct rzv2m_csi_priv *csi,
260 				   u32 enable_bits)
261 {
262 	u32 cnt = readl(csi->base + CSI_CNT);
263 
264 	writel(cnt & ~enable_bits, csi->base + CSI_CNT);
265 }
266 
267 static void rzv2m_csi_disable_all_irqs(struct rzv2m_csi_priv *csi)
268 {
269 	rzv2m_csi_disable_irqs(csi, CSI_CNT_R_TRGR_E | CSI_CNT_T_TRGR_E |
270 			       CSI_CNT_CSIEND_E | CSI_CNT_TREND_E |
271 			       CSI_CNT_OVERF_E | CSI_CNT_UNDER_E);
272 }
273 
274 static inline void rzv2m_csi_clear_irqs(struct rzv2m_csi_priv *csi, u32 irqs)
275 {
276 	writel(irqs, csi->base + CSI_INT);
277 }
278 
279 static void rzv2m_csi_clear_all_irqs(struct rzv2m_csi_priv *csi)
280 {
281 	rzv2m_csi_clear_irqs(csi, CSI_INT_UNDER | CSI_INT_OVERF |
282 			     CSI_INT_TREND | CSI_INT_CSIEND |  CSI_INT_T_TRGR |
283 			     CSI_INT_R_TRGR);
284 }
285 
286 static void rzv2m_csi_enable_irqs(struct rzv2m_csi_priv *csi, u32 enable_bits)
287 {
288 	u32 cnt = readl(csi->base + CSI_CNT);
289 
290 	writel(cnt | enable_bits, csi->base + CSI_CNT);
291 }
292 
293 static int rzv2m_csi_wait_for_interrupt(struct rzv2m_csi_priv *csi,
294 					u32 wait_mask, u32 enable_bits)
295 {
296 	int ret;
297 
298 	rzv2m_csi_enable_irqs(csi, enable_bits);
299 
300 	if (spi_controller_is_target(csi->controller)) {
301 		ret = wait_event_interruptible(csi->wait,
302 				((csi->status & wait_mask) == wait_mask) ||
303 				csi->errors || csi->target_aborted);
304 		if (ret || csi->target_aborted)
305 			ret = -EINTR;
306 	} else {
307 		ret = wait_event_timeout(csi->wait,
308 				((csi->status & wait_mask) == wait_mask) ||
309 				csi->errors, HZ) == 0 ? -ETIMEDOUT : 0;
310 	}
311 
312 	rzv2m_csi_disable_irqs(csi, enable_bits);
313 
314 	if (csi->errors)
315 		return -EIO;
316 
317 	return ret;
318 }
319 
320 static inline int rzv2m_csi_wait_for_rx_ready(struct rzv2m_csi_priv *csi)
321 {
322 	int ret;
323 
324 	if (readl(csi->base + CSI_IFIFOL) >= csi->bytes_to_transfer)
325 		return 0;
326 
327 	ret = rzv2m_csi_wait_for_interrupt(csi, CSI_INT_R_TRGR,
328 					   CSI_CNT_R_TRGR_E);
329 	if (ret == -ETIMEDOUT)
330 		csi->errors |= RX_TIMEOUT_ERROR;
331 
332 	return ret;
333 }
334 
335 static irqreturn_t rzv2m_csi_irq_handler(int irq, void *data)
336 {
337 	struct rzv2m_csi_priv *csi = data;
338 
339 	csi->status = readl(csi->base + CSI_INT);
340 	rzv2m_csi_disable_irqs(csi, csi->status);
341 
342 	if (csi->status & CSI_INT_OVERF)
343 		csi->errors |= OVERFLOW_ERROR;
344 	if (csi->status & CSI_INT_UNDER)
345 		csi->errors |= UNDERRUN_ERROR;
346 
347 	wake_up(&csi->wait);
348 
349 	return IRQ_HANDLED;
350 }
351 
352 static void rzv2m_csi_setup_clock(struct rzv2m_csi_priv *csi, u32 spi_hz)
353 {
354 	unsigned long csiclk_rate = clk_get_rate(csi->csiclk);
355 	unsigned long pclk_rate = clk_get_rate(csi->pclk);
356 	unsigned long csiclk_rate_limit = pclk_rate >> 1;
357 	u32 cks;
358 
359 	/*
360 	 * There is a restriction on the frequency of CSICLK, it has to be <=
361 	 * PCLK / 2.
362 	 */
363 	if (csiclk_rate > csiclk_rate_limit) {
364 		clk_set_rate(csi->csiclk, csiclk_rate >> 1);
365 		csiclk_rate = clk_get_rate(csi->csiclk);
366 	} else if ((csiclk_rate << 1) <= csiclk_rate_limit) {
367 		clk_set_rate(csi->csiclk, csiclk_rate << 1);
368 		csiclk_rate = clk_get_rate(csi->csiclk);
369 	}
370 
371 	spi_hz = spi_hz > CSI_MAX_SPI_SCKO ? CSI_MAX_SPI_SCKO : spi_hz;
372 
373 	cks = DIV_ROUND_UP(csiclk_rate, spi_hz << 1);
374 	if (cks > CSI_CKS_MAX)
375 		cks = CSI_CKS_MAX;
376 
377 	dev_dbg(csi->dev, "SPI clk rate is %ldHz\n", csiclk_rate / (cks << 1));
378 
379 	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_CKS, cks);
380 }
381 
382 static void rzv2m_csi_setup_operating_mode(struct rzv2m_csi_priv *csi,
383 					   struct spi_transfer *t)
384 {
385 	if (t->rx_buf && !t->tx_buf)
386 		/* Reception-only mode */
387 		rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 0);
388 	else
389 		/* Send and receive mode */
390 		rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_TRMD, 1);
391 
392 	csi->bytes_per_word = t->bits_per_word / 8;
393 	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_CCL,
394 				csi->bytes_per_word == 2);
395 }
396 
397 static int rzv2m_csi_setup(struct spi_device *spi)
398 {
399 	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(spi->controller);
400 	u32 slave_selection = CSI_CLKSEL_SS_DISABLED;
401 	int ret;
402 
403 	rzv2m_csi_sw_reset(csi, 0);
404 
405 	writel(CSI_MODE_SETUP, csi->base + CSI_MODE);
406 
407 	/* Setup clock polarity and phase timing */
408 	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_MODE,
409 				~spi->mode & SPI_MODE_X_MASK);
410 
411 	/* Setup serial data order */
412 	rzv2m_csi_reg_write_bit(csi, CSI_MODE, CSI_MODE_DIR,
413 				!!(spi->mode & SPI_LSB_FIRST));
414 
415 	/* Set the role, 1 for target and 0 for host */
416 	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SLAVE,
417 				!!spi_controller_is_target(csi->controller));
418 
419 	if (csi->use_ss_pin)
420 		slave_selection = spi->mode & SPI_CS_HIGH ?
421 			CSI_CLKSEL_SS_ENABLED_ACTIVE_HIGH :
422 			CSI_CLKSEL_SS_ENABLED_ACTIVE_LOW;
423 
424 	/* Configure the slave selection (SS) pin */
425 	rzv2m_csi_reg_write_bit(csi, CSI_CLKSEL, CSI_CLKSEL_SS, slave_selection);
426 
427 	/* Give the IP a SW reset */
428 	ret = rzv2m_csi_sw_reset(csi, 1);
429 	if (ret)
430 		return ret;
431 	rzv2m_csi_sw_reset(csi, 0);
432 
433 	/*
434 	 * We need to enable the communication so that the clock will settle
435 	 * for the right polarity before enabling the CS.
436 	 */
437 	rzv2m_csi_start_stop_operation(csi, 1, false);
438 	udelay(10);
439 	rzv2m_csi_start_stop_operation(csi, 0, false);
440 
441 	return 0;
442 }
443 
444 static int rzv2m_csi_pio_transfer(struct rzv2m_csi_priv *csi)
445 {
446 	bool tx_completed = !csi->txbuf;
447 	bool rx_completed = !csi->rxbuf;
448 	int ret = 0;
449 
450 	/* Make sure the TX FIFO is empty */
451 	writel(0, csi->base + CSI_OFIFOL);
452 
453 	/* Make sure the RX FIFO is empty */
454 	writel(0, csi->base + CSI_IFIFOL);
455 
456 	csi->bytes_sent = 0;
457 	csi->bytes_received = 0;
458 	csi->errors = 0;
459 	csi->target_aborted = false;
460 
461 	rzv2m_csi_disable_all_irqs(csi);
462 	rzv2m_csi_clear_all_irqs(csi);
463 	rzv2m_csi_enable_rx_trigger(csi, true);
464 
465 	while (!tx_completed || !rx_completed) {
466 		/*
467 		 * Decide how many words we are going to transfer during
468 		 * this cycle (for both TX and RX), then set the RX FIFO trigger
469 		 * level accordingly. No need to set a trigger level for the
470 		 * TX FIFO, as this IP comes with an interrupt that fires when
471 		 * the TX FIFO is empty.
472 		 */
473 		rzv2m_csi_calc_current_transfer(csi);
474 		rzv2m_csi_set_rx_fifo_trigger_level(csi);
475 
476 		rzv2m_csi_enable_irqs(csi, CSI_INT_OVERF | CSI_INT_UNDER);
477 
478 		writel(readl(csi->base + CSI_INT), csi->base + CSI_INT);
479 		csi->status = 0;
480 
481 		/* TX */
482 		if (csi->txbuf) {
483 			ret = rzv2m_csi_fill_txfifo(csi);
484 			if (ret)
485 				break;
486 
487 			if (csi->bytes_sent == csi->buffer_len)
488 				tx_completed = true;
489 		}
490 
491 		rzv2m_csi_start_stop_operation(csi, 1, false);
492 
493 		/*
494 		 * Make sure the RX FIFO contains the desired number of words.
495 		 * We then either flush its content, or we copy it onto
496 		 * csi->rxbuf.
497 		 */
498 		ret = rzv2m_csi_wait_for_rx_ready(csi);
499 		if (ret)
500 			break;
501 
502 		if (!spi_controller_is_target(csi->controller))
503 			rzv2m_csi_start_stop_operation(csi, 0, false);
504 
505 		/* RX */
506 		if (csi->rxbuf) {
507 			ret = rzv2m_csi_read_rxfifo(csi);
508 			if (ret)
509 				break;
510 
511 			if (csi->bytes_received == csi->buffer_len)
512 				rx_completed = true;
513 		} else {
514 			rzv2m_csi_empty_rxfifo(csi);
515 		}
516 
517 		if (csi->errors) {
518 			ret = -EIO;
519 			break;
520 		}
521 	}
522 
523 	rzv2m_csi_start_stop_operation(csi, 0, true);
524 	rzv2m_csi_disable_all_irqs(csi);
525 	rzv2m_csi_enable_rx_trigger(csi, false);
526 	rzv2m_csi_clear_all_irqs(csi);
527 
528 	return ret;
529 }
530 
531 static int rzv2m_csi_transfer_one(struct spi_controller *controller,
532 				  struct spi_device *spi,
533 				  struct spi_transfer *transfer)
534 {
535 	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(controller);
536 	struct device *dev = csi->dev;
537 	int ret;
538 
539 	csi->txbuf = transfer->tx_buf;
540 	csi->rxbuf = transfer->rx_buf;
541 	csi->buffer_len = transfer->len;
542 
543 	rzv2m_csi_setup_operating_mode(csi, transfer);
544 
545 	if (!spi_controller_is_target(csi->controller))
546 		rzv2m_csi_setup_clock(csi, transfer->speed_hz);
547 
548 	ret = rzv2m_csi_pio_transfer(csi);
549 	if (ret) {
550 		if (csi->errors & UNDERRUN_ERROR)
551 			dev_err(dev, "Underrun error\n");
552 		if (csi->errors & OVERFLOW_ERROR)
553 			dev_err(dev, "Overflow error\n");
554 		if (csi->errors & TX_TIMEOUT_ERROR)
555 			dev_err(dev, "TX timeout error\n");
556 		if (csi->errors & RX_TIMEOUT_ERROR)
557 			dev_err(dev, "RX timeout error\n");
558 	}
559 
560 	return ret;
561 }
562 
563 static int rzv2m_csi_target_abort(struct spi_controller *ctlr)
564 {
565 	struct rzv2m_csi_priv *csi = spi_controller_get_devdata(ctlr);
566 
567 	csi->target_aborted = true;
568 	wake_up(&csi->wait);
569 
570 	return 0;
571 }
572 
573 static int rzv2m_csi_probe(struct platform_device *pdev)
574 {
575 	struct device_node *np = pdev->dev.of_node;
576 	struct spi_controller *controller;
577 	struct device *dev = &pdev->dev;
578 	struct rzv2m_csi_priv *csi;
579 	struct reset_control *rstc;
580 	bool target_mode;
581 	int irq;
582 	int ret;
583 
584 	target_mode = of_property_read_bool(np, "spi-slave");
585 
586 	if (target_mode)
587 		controller = devm_spi_alloc_target(dev, sizeof(*csi));
588 	else
589 		controller = devm_spi_alloc_host(dev, sizeof(*csi));
590 
591 	if (!controller)
592 		return -ENOMEM;
593 
594 	csi = spi_controller_get_devdata(controller);
595 	platform_set_drvdata(pdev, csi);
596 
597 	csi->use_ss_pin = false;
598 	if (spi_controller_is_target(controller) &&
599 	    !of_property_read_bool(np, "renesas,csi-no-ss"))
600 		csi->use_ss_pin = true;
601 
602 	csi->dev = dev;
603 	csi->controller = controller;
604 	csi->target_aborted = false;
605 
606 	csi->base = devm_platform_ioremap_resource(pdev, 0);
607 	if (IS_ERR(csi->base))
608 		return PTR_ERR(csi->base);
609 
610 	irq = platform_get_irq(pdev, 0);
611 	if (irq < 0)
612 		return irq;
613 
614 	csi->csiclk = devm_clk_get(dev, "csiclk");
615 	if (IS_ERR(csi->csiclk))
616 		return dev_err_probe(dev, PTR_ERR(csi->csiclk),
617 				     "could not get csiclk\n");
618 
619 	csi->pclk = devm_clk_get(dev, "pclk");
620 	if (IS_ERR(csi->pclk))
621 		return dev_err_probe(dev, PTR_ERR(csi->pclk),
622 				     "could not get pclk\n");
623 
624 	rstc = devm_reset_control_get_shared(dev, NULL);
625 	if (IS_ERR(rstc))
626 		return dev_err_probe(dev, PTR_ERR(rstc), "Missing reset ctrl\n");
627 
628 	init_waitqueue_head(&csi->wait);
629 
630 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH;
631 	controller->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8);
632 	controller->setup = rzv2m_csi_setup;
633 	controller->transfer_one = rzv2m_csi_transfer_one;
634 	controller->use_gpio_descriptors = true;
635 	controller->target_abort = rzv2m_csi_target_abort;
636 
637 	device_set_node(&controller->dev, dev_fwnode(dev));
638 
639 	ret = devm_request_irq(dev, irq, rzv2m_csi_irq_handler, 0,
640 			       dev_name(dev), csi);
641 	if (ret)
642 		return dev_err_probe(dev, ret, "cannot request IRQ\n");
643 
644 	/*
645 	 * The reset also affects other HW that is not under the control
646 	 * of Linux. Therefore, all we can do is make sure the reset is
647 	 * deasserted.
648 	 */
649 	reset_control_deassert(rstc);
650 
651 	/* Make sure the IP is in SW reset state */
652 	ret = rzv2m_csi_sw_reset(csi, 1);
653 	if (ret)
654 		return ret;
655 
656 	ret = clk_prepare_enable(csi->csiclk);
657 	if (ret)
658 		return dev_err_probe(dev, ret, "could not enable csiclk\n");
659 
660 	ret = spi_register_controller(controller);
661 	if (ret) {
662 		clk_disable_unprepare(csi->csiclk);
663 		return dev_err_probe(dev, ret, "register controller failed\n");
664 	}
665 
666 	return 0;
667 }
668 
669 static void rzv2m_csi_remove(struct platform_device *pdev)
670 {
671 	struct rzv2m_csi_priv *csi = platform_get_drvdata(pdev);
672 
673 	spi_unregister_controller(csi->controller);
674 	rzv2m_csi_sw_reset(csi, 1);
675 	clk_disable_unprepare(csi->csiclk);
676 }
677 
678 static const struct of_device_id rzv2m_csi_match[] = {
679 	{ .compatible = "renesas,rzv2m-csi" },
680 	{ /* sentinel */ }
681 };
682 MODULE_DEVICE_TABLE(of, rzv2m_csi_match);
683 
684 static struct platform_driver rzv2m_csi_drv = {
685 	.probe = rzv2m_csi_probe,
686 	.remove_new = rzv2m_csi_remove,
687 	.driver = {
688 		.name = "rzv2m_csi",
689 		.of_match_table = rzv2m_csi_match,
690 	},
691 };
692 module_platform_driver(rzv2m_csi_drv);
693 
694 MODULE_LICENSE("GPL");
695 MODULE_AUTHOR("Fabrizio Castro <castro.fabrizio.jz@renesas.com>");
696 MODULE_DESCRIPTION("Clocked Serial Interface Driver");
697