xref: /linux/drivers/spi/spi-rspi.c (revision e0bf6c5ca2d3281f231c5f0c9bf145e9513644de)
1 /*
2  * SH RSPI driver
3  *
4  * Copyright (C) 2012, 2013  Renesas Solutions Corp.
5  * Copyright (C) 2014 Glider bvba
6  *
7  * Based on spi-sh.c:
8  * Copyright (C) 2011 Renesas Solutions Corp.
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License as published by
12  * the Free Software Foundation; version 2 of the License.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  */
19 
20 #include <linux/module.h>
21 #include <linux/kernel.h>
22 #include <linux/sched.h>
23 #include <linux/errno.h>
24 #include <linux/interrupt.h>
25 #include <linux/platform_device.h>
26 #include <linux/io.h>
27 #include <linux/clk.h>
28 #include <linux/dmaengine.h>
29 #include <linux/dma-mapping.h>
30 #include <linux/of_device.h>
31 #include <linux/pm_runtime.h>
32 #include <linux/sh_dma.h>
33 #include <linux/spi/spi.h>
34 #include <linux/spi/rspi.h>
35 
36 #define RSPI_SPCR		0x00	/* Control Register */
37 #define RSPI_SSLP		0x01	/* Slave Select Polarity Register */
38 #define RSPI_SPPCR		0x02	/* Pin Control Register */
39 #define RSPI_SPSR		0x03	/* Status Register */
40 #define RSPI_SPDR		0x04	/* Data Register */
41 #define RSPI_SPSCR		0x08	/* Sequence Control Register */
42 #define RSPI_SPSSR		0x09	/* Sequence Status Register */
43 #define RSPI_SPBR		0x0a	/* Bit Rate Register */
44 #define RSPI_SPDCR		0x0b	/* Data Control Register */
45 #define RSPI_SPCKD		0x0c	/* Clock Delay Register */
46 #define RSPI_SSLND		0x0d	/* Slave Select Negation Delay Register */
47 #define RSPI_SPND		0x0e	/* Next-Access Delay Register */
48 #define RSPI_SPCR2		0x0f	/* Control Register 2 (SH only) */
49 #define RSPI_SPCMD0		0x10	/* Command Register 0 */
50 #define RSPI_SPCMD1		0x12	/* Command Register 1 */
51 #define RSPI_SPCMD2		0x14	/* Command Register 2 */
52 #define RSPI_SPCMD3		0x16	/* Command Register 3 */
53 #define RSPI_SPCMD4		0x18	/* Command Register 4 */
54 #define RSPI_SPCMD5		0x1a	/* Command Register 5 */
55 #define RSPI_SPCMD6		0x1c	/* Command Register 6 */
56 #define RSPI_SPCMD7		0x1e	/* Command Register 7 */
57 #define RSPI_SPCMD(i)		(RSPI_SPCMD0 + (i) * 2)
58 #define RSPI_NUM_SPCMD		8
59 #define RSPI_RZ_NUM_SPCMD	4
60 #define QSPI_NUM_SPCMD		4
61 
62 /* RSPI on RZ only */
63 #define RSPI_SPBFCR		0x20	/* Buffer Control Register */
64 #define RSPI_SPBFDR		0x22	/* Buffer Data Count Setting Register */
65 
66 /* QSPI only */
67 #define QSPI_SPBFCR		0x18	/* Buffer Control Register */
68 #define QSPI_SPBDCR		0x1a	/* Buffer Data Count Register */
69 #define QSPI_SPBMUL0		0x1c	/* Transfer Data Length Multiplier Setting Register 0 */
70 #define QSPI_SPBMUL1		0x20	/* Transfer Data Length Multiplier Setting Register 1 */
71 #define QSPI_SPBMUL2		0x24	/* Transfer Data Length Multiplier Setting Register 2 */
72 #define QSPI_SPBMUL3		0x28	/* Transfer Data Length Multiplier Setting Register 3 */
73 #define QSPI_SPBMUL(i)		(QSPI_SPBMUL0 + (i) * 4)
74 
75 /* SPCR - Control Register */
76 #define SPCR_SPRIE		0x80	/* Receive Interrupt Enable */
77 #define SPCR_SPE		0x40	/* Function Enable */
78 #define SPCR_SPTIE		0x20	/* Transmit Interrupt Enable */
79 #define SPCR_SPEIE		0x10	/* Error Interrupt Enable */
80 #define SPCR_MSTR		0x08	/* Master/Slave Mode Select */
81 #define SPCR_MODFEN		0x04	/* Mode Fault Error Detection Enable */
82 /* RSPI on SH only */
83 #define SPCR_TXMD		0x02	/* TX Only Mode (vs. Full Duplex) */
84 #define SPCR_SPMS		0x01	/* 3-wire Mode (vs. 4-wire) */
85 /* QSPI on R-Car Gen2 only */
86 #define SPCR_WSWAP		0x02	/* Word Swap of read-data for DMAC */
87 #define SPCR_BSWAP		0x01	/* Byte Swap of read-data for DMAC */
88 
89 /* SSLP - Slave Select Polarity Register */
90 #define SSLP_SSL1P		0x02	/* SSL1 Signal Polarity Setting */
91 #define SSLP_SSL0P		0x01	/* SSL0 Signal Polarity Setting */
92 
93 /* SPPCR - Pin Control Register */
94 #define SPPCR_MOIFE		0x20	/* MOSI Idle Value Fixing Enable */
95 #define SPPCR_MOIFV		0x10	/* MOSI Idle Fixed Value */
96 #define SPPCR_SPOM		0x04
97 #define SPPCR_SPLP2		0x02	/* Loopback Mode 2 (non-inverting) */
98 #define SPPCR_SPLP		0x01	/* Loopback Mode (inverting) */
99 
100 #define SPPCR_IO3FV		0x04	/* Single-/Dual-SPI Mode IO3 Output Fixed Value */
101 #define SPPCR_IO2FV		0x04	/* Single-/Dual-SPI Mode IO2 Output Fixed Value */
102 
103 /* SPSR - Status Register */
104 #define SPSR_SPRF		0x80	/* Receive Buffer Full Flag */
105 #define SPSR_TEND		0x40	/* Transmit End */
106 #define SPSR_SPTEF		0x20	/* Transmit Buffer Empty Flag */
107 #define SPSR_PERF		0x08	/* Parity Error Flag */
108 #define SPSR_MODF		0x04	/* Mode Fault Error Flag */
109 #define SPSR_IDLNF		0x02	/* RSPI Idle Flag */
110 #define SPSR_OVRF		0x01	/* Overrun Error Flag (RSPI only) */
111 
112 /* SPSCR - Sequence Control Register */
113 #define SPSCR_SPSLN_MASK	0x07	/* Sequence Length Specification */
114 
115 /* SPSSR - Sequence Status Register */
116 #define SPSSR_SPECM_MASK	0x70	/* Command Error Mask */
117 #define SPSSR_SPCP_MASK		0x07	/* Command Pointer Mask */
118 
119 /* SPDCR - Data Control Register */
120 #define SPDCR_TXDMY		0x80	/* Dummy Data Transmission Enable */
121 #define SPDCR_SPLW1		0x40	/* Access Width Specification (RZ) */
122 #define SPDCR_SPLW0		0x20	/* Access Width Specification (RZ) */
123 #define SPDCR_SPLLWORD		(SPDCR_SPLW1 | SPDCR_SPLW0)
124 #define SPDCR_SPLWORD		SPDCR_SPLW1
125 #define SPDCR_SPLBYTE		SPDCR_SPLW0
126 #define SPDCR_SPLW		0x20	/* Access Width Specification (SH) */
127 #define SPDCR_SPRDTD		0x10	/* Receive Transmit Data Select (SH) */
128 #define SPDCR_SLSEL1		0x08
129 #define SPDCR_SLSEL0		0x04
130 #define SPDCR_SLSEL_MASK	0x0c	/* SSL1 Output Select (SH) */
131 #define SPDCR_SPFC1		0x02
132 #define SPDCR_SPFC0		0x01
133 #define SPDCR_SPFC_MASK		0x03	/* Frame Count Setting (1-4) (SH) */
134 
135 /* SPCKD - Clock Delay Register */
136 #define SPCKD_SCKDL_MASK	0x07	/* Clock Delay Setting (1-8) */
137 
138 /* SSLND - Slave Select Negation Delay Register */
139 #define SSLND_SLNDL_MASK	0x07	/* SSL Negation Delay Setting (1-8) */
140 
141 /* SPND - Next-Access Delay Register */
142 #define SPND_SPNDL_MASK		0x07	/* Next-Access Delay Setting (1-8) */
143 
144 /* SPCR2 - Control Register 2 */
145 #define SPCR2_PTE		0x08	/* Parity Self-Test Enable */
146 #define SPCR2_SPIE		0x04	/* Idle Interrupt Enable */
147 #define SPCR2_SPOE		0x02	/* Odd Parity Enable (vs. Even) */
148 #define SPCR2_SPPE		0x01	/* Parity Enable */
149 
150 /* SPCMDn - Command Registers */
151 #define SPCMD_SCKDEN		0x8000	/* Clock Delay Setting Enable */
152 #define SPCMD_SLNDEN		0x4000	/* SSL Negation Delay Setting Enable */
153 #define SPCMD_SPNDEN		0x2000	/* Next-Access Delay Enable */
154 #define SPCMD_LSBF		0x1000	/* LSB First */
155 #define SPCMD_SPB_MASK		0x0f00	/* Data Length Setting */
156 #define SPCMD_SPB_8_TO_16(bit)	(((bit - 1) << 8) & SPCMD_SPB_MASK)
157 #define SPCMD_SPB_8BIT		0x0000	/* QSPI only */
158 #define SPCMD_SPB_16BIT		0x0100
159 #define SPCMD_SPB_20BIT		0x0000
160 #define SPCMD_SPB_24BIT		0x0100
161 #define SPCMD_SPB_32BIT		0x0200
162 #define SPCMD_SSLKP		0x0080	/* SSL Signal Level Keeping */
163 #define SPCMD_SPIMOD_MASK	0x0060	/* SPI Operating Mode (QSPI only) */
164 #define SPCMD_SPIMOD1		0x0040
165 #define SPCMD_SPIMOD0		0x0020
166 #define SPCMD_SPIMOD_SINGLE	0
167 #define SPCMD_SPIMOD_DUAL	SPCMD_SPIMOD0
168 #define SPCMD_SPIMOD_QUAD	SPCMD_SPIMOD1
169 #define SPCMD_SPRW		0x0010	/* SPI Read/Write Access (Dual/Quad) */
170 #define SPCMD_SSLA_MASK		0x0030	/* SSL Assert Signal Setting (RSPI) */
171 #define SPCMD_BRDV_MASK		0x000c	/* Bit Rate Division Setting */
172 #define SPCMD_CPOL		0x0002	/* Clock Polarity Setting */
173 #define SPCMD_CPHA		0x0001	/* Clock Phase Setting */
174 
175 /* SPBFCR - Buffer Control Register */
176 #define SPBFCR_TXRST		0x80	/* Transmit Buffer Data Reset */
177 #define SPBFCR_RXRST		0x40	/* Receive Buffer Data Reset */
178 #define SPBFCR_TXTRG_MASK	0x30	/* Transmit Buffer Data Triggering Number */
179 #define SPBFCR_RXTRG_MASK	0x07	/* Receive Buffer Data Triggering Number */
180 
181 struct rspi_data {
182 	void __iomem *addr;
183 	u32 max_speed_hz;
184 	struct spi_master *master;
185 	wait_queue_head_t wait;
186 	struct clk *clk;
187 	u16 spcmd;
188 	u8 spsr;
189 	u8 sppcr;
190 	int rx_irq, tx_irq;
191 	const struct spi_ops *ops;
192 
193 	unsigned dma_callbacked:1;
194 	unsigned byte_access:1;
195 };
196 
197 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset)
198 {
199 	iowrite8(data, rspi->addr + offset);
200 }
201 
202 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset)
203 {
204 	iowrite16(data, rspi->addr + offset);
205 }
206 
207 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset)
208 {
209 	iowrite32(data, rspi->addr + offset);
210 }
211 
212 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset)
213 {
214 	return ioread8(rspi->addr + offset);
215 }
216 
217 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset)
218 {
219 	return ioread16(rspi->addr + offset);
220 }
221 
222 static void rspi_write_data(const struct rspi_data *rspi, u16 data)
223 {
224 	if (rspi->byte_access)
225 		rspi_write8(rspi, data, RSPI_SPDR);
226 	else /* 16 bit */
227 		rspi_write16(rspi, data, RSPI_SPDR);
228 }
229 
230 static u16 rspi_read_data(const struct rspi_data *rspi)
231 {
232 	if (rspi->byte_access)
233 		return rspi_read8(rspi, RSPI_SPDR);
234 	else /* 16 bit */
235 		return rspi_read16(rspi, RSPI_SPDR);
236 }
237 
238 /* optional functions */
239 struct spi_ops {
240 	int (*set_config_register)(struct rspi_data *rspi, int access_size);
241 	int (*transfer_one)(struct spi_master *master, struct spi_device *spi,
242 			    struct spi_transfer *xfer);
243 	u16 mode_bits;
244 	u16 flags;
245 	u16 fifo_size;
246 };
247 
248 /*
249  * functions for RSPI on legacy SH
250  */
251 static int rspi_set_config_register(struct rspi_data *rspi, int access_size)
252 {
253 	int spbr;
254 
255 	/* Sets output mode, MOSI signal, and (optionally) loopback */
256 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
257 
258 	/* Sets transfer bit rate */
259 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
260 			    2 * rspi->max_speed_hz) - 1;
261 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
262 
263 	/* Disable dummy transmission, set 16-bit word access, 1 frame */
264 	rspi_write8(rspi, 0, RSPI_SPDCR);
265 	rspi->byte_access = 0;
266 
267 	/* Sets RSPCK, SSL, next-access delay value */
268 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
269 	rspi_write8(rspi, 0x00, RSPI_SSLND);
270 	rspi_write8(rspi, 0x00, RSPI_SPND);
271 
272 	/* Sets parity, interrupt mask */
273 	rspi_write8(rspi, 0x00, RSPI_SPCR2);
274 
275 	/* Sets SPCMD */
276 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
277 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
278 
279 	/* Sets RSPI mode */
280 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
281 
282 	return 0;
283 }
284 
285 /*
286  * functions for RSPI on RZ
287  */
288 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size)
289 {
290 	int spbr;
291 
292 	/* Sets output mode, MOSI signal, and (optionally) loopback */
293 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
294 
295 	/* Sets transfer bit rate */
296 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk),
297 			    2 * rspi->max_speed_hz) - 1;
298 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
299 
300 	/* Disable dummy transmission, set byte access */
301 	rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR);
302 	rspi->byte_access = 1;
303 
304 	/* Sets RSPCK, SSL, next-access delay value */
305 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
306 	rspi_write8(rspi, 0x00, RSPI_SSLND);
307 	rspi_write8(rspi, 0x00, RSPI_SPND);
308 
309 	/* Sets SPCMD */
310 	rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size);
311 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
312 
313 	/* Sets RSPI mode */
314 	rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR);
315 
316 	return 0;
317 }
318 
319 /*
320  * functions for QSPI
321  */
322 static int qspi_set_config_register(struct rspi_data *rspi, int access_size)
323 {
324 	int spbr;
325 
326 	/* Sets output mode, MOSI signal, and (optionally) loopback */
327 	rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR);
328 
329 	/* Sets transfer bit rate */
330 	spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz);
331 	rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR);
332 
333 	/* Disable dummy transmission, set byte access */
334 	rspi_write8(rspi, 0, RSPI_SPDCR);
335 	rspi->byte_access = 1;
336 
337 	/* Sets RSPCK, SSL, next-access delay value */
338 	rspi_write8(rspi, 0x00, RSPI_SPCKD);
339 	rspi_write8(rspi, 0x00, RSPI_SSLND);
340 	rspi_write8(rspi, 0x00, RSPI_SPND);
341 
342 	/* Data Length Setting */
343 	if (access_size == 8)
344 		rspi->spcmd |= SPCMD_SPB_8BIT;
345 	else if (access_size == 16)
346 		rspi->spcmd |= SPCMD_SPB_16BIT;
347 	else
348 		rspi->spcmd |= SPCMD_SPB_32BIT;
349 
350 	rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN;
351 
352 	/* Resets transfer data length */
353 	rspi_write32(rspi, 0, QSPI_SPBMUL0);
354 
355 	/* Resets transmit and receive buffer */
356 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
357 	/* Sets buffer to allow normal operation */
358 	rspi_write8(rspi, 0x00, QSPI_SPBFCR);
359 
360 	/* Sets SPCMD */
361 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
362 
363 	/* Enables SPI function in master mode */
364 	rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR);
365 
366 	return 0;
367 }
368 
369 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n)
370 
371 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable)
372 {
373 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR);
374 }
375 
376 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable)
377 {
378 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR);
379 }
380 
381 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask,
382 				   u8 enable_bit)
383 {
384 	int ret;
385 
386 	rspi->spsr = rspi_read8(rspi, RSPI_SPSR);
387 	if (rspi->spsr & wait_mask)
388 		return 0;
389 
390 	rspi_enable_irq(rspi, enable_bit);
391 	ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ);
392 	if (ret == 0 && !(rspi->spsr & wait_mask))
393 		return -ETIMEDOUT;
394 
395 	return 0;
396 }
397 
398 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi)
399 {
400 	return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE);
401 }
402 
403 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi)
404 {
405 	return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE);
406 }
407 
408 static int rspi_data_out(struct rspi_data *rspi, u8 data)
409 {
410 	int error = rspi_wait_for_tx_empty(rspi);
411 	if (error < 0) {
412 		dev_err(&rspi->master->dev, "transmit timeout\n");
413 		return error;
414 	}
415 	rspi_write_data(rspi, data);
416 	return 0;
417 }
418 
419 static int rspi_data_in(struct rspi_data *rspi)
420 {
421 	int error;
422 	u8 data;
423 
424 	error = rspi_wait_for_rx_full(rspi);
425 	if (error < 0) {
426 		dev_err(&rspi->master->dev, "receive timeout\n");
427 		return error;
428 	}
429 	data = rspi_read_data(rspi);
430 	return data;
431 }
432 
433 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx,
434 			     unsigned int n)
435 {
436 	while (n-- > 0) {
437 		if (tx) {
438 			int ret = rspi_data_out(rspi, *tx++);
439 			if (ret < 0)
440 				return ret;
441 		}
442 		if (rx) {
443 			int ret = rspi_data_in(rspi);
444 			if (ret < 0)
445 				return ret;
446 			*rx++ = ret;
447 		}
448 	}
449 
450 	return 0;
451 }
452 
453 static void rspi_dma_complete(void *arg)
454 {
455 	struct rspi_data *rspi = arg;
456 
457 	rspi->dma_callbacked = 1;
458 	wake_up_interruptible(&rspi->wait);
459 }
460 
461 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx,
462 			     struct sg_table *rx)
463 {
464 	struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL;
465 	u8 irq_mask = 0;
466 	unsigned int other_irq = 0;
467 	dma_cookie_t cookie;
468 	int ret;
469 
470 	/* First prepare and submit the DMA request(s), as this may fail */
471 	if (rx) {
472 		desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx,
473 					rx->sgl, rx->nents, DMA_FROM_DEVICE,
474 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
475 		if (!desc_rx) {
476 			ret = -EAGAIN;
477 			goto no_dma_rx;
478 		}
479 
480 		desc_rx->callback = rspi_dma_complete;
481 		desc_rx->callback_param = rspi;
482 		cookie = dmaengine_submit(desc_rx);
483 		if (dma_submit_error(cookie)) {
484 			ret = cookie;
485 			goto no_dma_rx;
486 		}
487 
488 		irq_mask |= SPCR_SPRIE;
489 	}
490 
491 	if (tx) {
492 		desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx,
493 					tx->sgl, tx->nents, DMA_TO_DEVICE,
494 					DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
495 		if (!desc_tx) {
496 			ret = -EAGAIN;
497 			goto no_dma_tx;
498 		}
499 
500 		if (rx) {
501 			/* No callback */
502 			desc_tx->callback = NULL;
503 		} else {
504 			desc_tx->callback = rspi_dma_complete;
505 			desc_tx->callback_param = rspi;
506 		}
507 		cookie = dmaengine_submit(desc_tx);
508 		if (dma_submit_error(cookie)) {
509 			ret = cookie;
510 			goto no_dma_tx;
511 		}
512 
513 		irq_mask |= SPCR_SPTIE;
514 	}
515 
516 	/*
517 	 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be
518 	 * called. So, this driver disables the IRQ while DMA transfer.
519 	 */
520 	if (tx)
521 		disable_irq(other_irq = rspi->tx_irq);
522 	if (rx && rspi->rx_irq != other_irq)
523 		disable_irq(rspi->rx_irq);
524 
525 	rspi_enable_irq(rspi, irq_mask);
526 	rspi->dma_callbacked = 0;
527 
528 	/* Now start DMA */
529 	if (rx)
530 		dma_async_issue_pending(rspi->master->dma_rx);
531 	if (tx)
532 		dma_async_issue_pending(rspi->master->dma_tx);
533 
534 	ret = wait_event_interruptible_timeout(rspi->wait,
535 					       rspi->dma_callbacked, HZ);
536 	if (ret > 0 && rspi->dma_callbacked)
537 		ret = 0;
538 	else if (!ret) {
539 		dev_err(&rspi->master->dev, "DMA timeout\n");
540 		ret = -ETIMEDOUT;
541 		if (tx)
542 			dmaengine_terminate_all(rspi->master->dma_tx);
543 		if (rx)
544 			dmaengine_terminate_all(rspi->master->dma_rx);
545 	}
546 
547 	rspi_disable_irq(rspi, irq_mask);
548 
549 	if (tx)
550 		enable_irq(rspi->tx_irq);
551 	if (rx && rspi->rx_irq != other_irq)
552 		enable_irq(rspi->rx_irq);
553 
554 	return ret;
555 
556 no_dma_tx:
557 	if (rx)
558 		dmaengine_terminate_all(rspi->master->dma_rx);
559 no_dma_rx:
560 	if (ret == -EAGAIN) {
561 		pr_warn_once("%s %s: DMA not available, falling back to PIO\n",
562 			     dev_driver_string(&rspi->master->dev),
563 			     dev_name(&rspi->master->dev));
564 	}
565 	return ret;
566 }
567 
568 static void rspi_receive_init(const struct rspi_data *rspi)
569 {
570 	u8 spsr;
571 
572 	spsr = rspi_read8(rspi, RSPI_SPSR);
573 	if (spsr & SPSR_SPRF)
574 		rspi_read_data(rspi);	/* dummy read */
575 	if (spsr & SPSR_OVRF)
576 		rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF,
577 			    RSPI_SPSR);
578 }
579 
580 static void rspi_rz_receive_init(const struct rspi_data *rspi)
581 {
582 	rspi_receive_init(rspi);
583 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR);
584 	rspi_write8(rspi, 0, RSPI_SPBFCR);
585 }
586 
587 static void qspi_receive_init(const struct rspi_data *rspi)
588 {
589 	u8 spsr;
590 
591 	spsr = rspi_read8(rspi, RSPI_SPSR);
592 	if (spsr & SPSR_SPRF)
593 		rspi_read_data(rspi);   /* dummy read */
594 	rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR);
595 	rspi_write8(rspi, 0, QSPI_SPBFCR);
596 }
597 
598 static bool __rspi_can_dma(const struct rspi_data *rspi,
599 			   const struct spi_transfer *xfer)
600 {
601 	return xfer->len > rspi->ops->fifo_size;
602 }
603 
604 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi,
605 			 struct spi_transfer *xfer)
606 {
607 	struct rspi_data *rspi = spi_master_get_devdata(master);
608 
609 	return __rspi_can_dma(rspi, xfer);
610 }
611 
612 static int rspi_common_transfer(struct rspi_data *rspi,
613 				struct spi_transfer *xfer)
614 {
615 	int ret;
616 
617 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
618 		/* rx_buf can be NULL on RSPI on SH in TX-only Mode */
619 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg,
620 					xfer->rx_buf ? &xfer->rx_sg : NULL);
621 		if (ret != -EAGAIN)
622 			return ret;
623 	}
624 
625 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len);
626 	if (ret < 0)
627 		return ret;
628 
629 	/* Wait for the last transmission */
630 	rspi_wait_for_tx_empty(rspi);
631 
632 	return 0;
633 }
634 
635 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi,
636 			     struct spi_transfer *xfer)
637 {
638 	struct rspi_data *rspi = spi_master_get_devdata(master);
639 	u8 spcr;
640 
641 	spcr = rspi_read8(rspi, RSPI_SPCR);
642 	if (xfer->rx_buf) {
643 		rspi_receive_init(rspi);
644 		spcr &= ~SPCR_TXMD;
645 	} else {
646 		spcr |= SPCR_TXMD;
647 	}
648 	rspi_write8(rspi, spcr, RSPI_SPCR);
649 
650 	return rspi_common_transfer(rspi, xfer);
651 }
652 
653 static int rspi_rz_transfer_one(struct spi_master *master,
654 				struct spi_device *spi,
655 				struct spi_transfer *xfer)
656 {
657 	struct rspi_data *rspi = spi_master_get_devdata(master);
658 
659 	rspi_rz_receive_init(rspi);
660 
661 	return rspi_common_transfer(rspi, xfer);
662 }
663 
664 static int qspi_transfer_out_in(struct rspi_data *rspi,
665 				struct spi_transfer *xfer)
666 {
667 	qspi_receive_init(rspi);
668 
669 	return rspi_common_transfer(rspi, xfer);
670 }
671 
672 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer)
673 {
674 	int ret;
675 
676 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
677 		ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL);
678 		if (ret != -EAGAIN)
679 			return ret;
680 	}
681 
682 	ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len);
683 	if (ret < 0)
684 		return ret;
685 
686 	/* Wait for the last transmission */
687 	rspi_wait_for_tx_empty(rspi);
688 
689 	return 0;
690 }
691 
692 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer)
693 {
694 	if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) {
695 		int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg);
696 		if (ret != -EAGAIN)
697 			return ret;
698 	}
699 
700 	return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len);
701 }
702 
703 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi,
704 			     struct spi_transfer *xfer)
705 {
706 	struct rspi_data *rspi = spi_master_get_devdata(master);
707 
708 	if (spi->mode & SPI_LOOP) {
709 		return qspi_transfer_out_in(rspi, xfer);
710 	} else if (xfer->tx_nbits > SPI_NBITS_SINGLE) {
711 		/* Quad or Dual SPI Write */
712 		return qspi_transfer_out(rspi, xfer);
713 	} else if (xfer->rx_nbits > SPI_NBITS_SINGLE) {
714 		/* Quad or Dual SPI Read */
715 		return qspi_transfer_in(rspi, xfer);
716 	} else {
717 		/* Single SPI Transfer */
718 		return qspi_transfer_out_in(rspi, xfer);
719 	}
720 }
721 
722 static int rspi_setup(struct spi_device *spi)
723 {
724 	struct rspi_data *rspi = spi_master_get_devdata(spi->master);
725 
726 	rspi->max_speed_hz = spi->max_speed_hz;
727 
728 	rspi->spcmd = SPCMD_SSLKP;
729 	if (spi->mode & SPI_CPOL)
730 		rspi->spcmd |= SPCMD_CPOL;
731 	if (spi->mode & SPI_CPHA)
732 		rspi->spcmd |= SPCMD_CPHA;
733 
734 	/* CMOS output mode and MOSI signal from previous transfer */
735 	rspi->sppcr = 0;
736 	if (spi->mode & SPI_LOOP)
737 		rspi->sppcr |= SPPCR_SPLP;
738 
739 	set_config_register(rspi, 8);
740 
741 	return 0;
742 }
743 
744 static u16 qspi_transfer_mode(const struct spi_transfer *xfer)
745 {
746 	if (xfer->tx_buf)
747 		switch (xfer->tx_nbits) {
748 		case SPI_NBITS_QUAD:
749 			return SPCMD_SPIMOD_QUAD;
750 		case SPI_NBITS_DUAL:
751 			return SPCMD_SPIMOD_DUAL;
752 		default:
753 			return 0;
754 		}
755 	if (xfer->rx_buf)
756 		switch (xfer->rx_nbits) {
757 		case SPI_NBITS_QUAD:
758 			return SPCMD_SPIMOD_QUAD | SPCMD_SPRW;
759 		case SPI_NBITS_DUAL:
760 			return SPCMD_SPIMOD_DUAL | SPCMD_SPRW;
761 		default:
762 			return 0;
763 		}
764 
765 	return 0;
766 }
767 
768 static int qspi_setup_sequencer(struct rspi_data *rspi,
769 				const struct spi_message *msg)
770 {
771 	const struct spi_transfer *xfer;
772 	unsigned int i = 0, len = 0;
773 	u16 current_mode = 0xffff, mode;
774 
775 	list_for_each_entry(xfer, &msg->transfers, transfer_list) {
776 		mode = qspi_transfer_mode(xfer);
777 		if (mode == current_mode) {
778 			len += xfer->len;
779 			continue;
780 		}
781 
782 		/* Transfer mode change */
783 		if (i) {
784 			/* Set transfer data length of previous transfer */
785 			rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
786 		}
787 
788 		if (i >= QSPI_NUM_SPCMD) {
789 			dev_err(&msg->spi->dev,
790 				"Too many different transfer modes");
791 			return -EINVAL;
792 		}
793 
794 		/* Program transfer mode for this transfer */
795 		rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i));
796 		current_mode = mode;
797 		len = xfer->len;
798 		i++;
799 	}
800 	if (i) {
801 		/* Set final transfer data length and sequence length */
802 		rspi_write32(rspi, len, QSPI_SPBMUL(i - 1));
803 		rspi_write8(rspi, i - 1, RSPI_SPSCR);
804 	}
805 
806 	return 0;
807 }
808 
809 static int rspi_prepare_message(struct spi_master *master,
810 				struct spi_message *msg)
811 {
812 	struct rspi_data *rspi = spi_master_get_devdata(master);
813 	int ret;
814 
815 	if (msg->spi->mode &
816 	    (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) {
817 		/* Setup sequencer for messages with multiple transfer modes */
818 		ret = qspi_setup_sequencer(rspi, msg);
819 		if (ret < 0)
820 			return ret;
821 	}
822 
823 	/* Enable SPI function in master mode */
824 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR);
825 	return 0;
826 }
827 
828 static int rspi_unprepare_message(struct spi_master *master,
829 				  struct spi_message *msg)
830 {
831 	struct rspi_data *rspi = spi_master_get_devdata(master);
832 
833 	/* Disable SPI function */
834 	rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR);
835 
836 	/* Reset sequencer for Single SPI Transfers */
837 	rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0);
838 	rspi_write8(rspi, 0, RSPI_SPSCR);
839 	return 0;
840 }
841 
842 static irqreturn_t rspi_irq_mux(int irq, void *_sr)
843 {
844 	struct rspi_data *rspi = _sr;
845 	u8 spsr;
846 	irqreturn_t ret = IRQ_NONE;
847 	u8 disable_irq = 0;
848 
849 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
850 	if (spsr & SPSR_SPRF)
851 		disable_irq |= SPCR_SPRIE;
852 	if (spsr & SPSR_SPTEF)
853 		disable_irq |= SPCR_SPTIE;
854 
855 	if (disable_irq) {
856 		ret = IRQ_HANDLED;
857 		rspi_disable_irq(rspi, disable_irq);
858 		wake_up(&rspi->wait);
859 	}
860 
861 	return ret;
862 }
863 
864 static irqreturn_t rspi_irq_rx(int irq, void *_sr)
865 {
866 	struct rspi_data *rspi = _sr;
867 	u8 spsr;
868 
869 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
870 	if (spsr & SPSR_SPRF) {
871 		rspi_disable_irq(rspi, SPCR_SPRIE);
872 		wake_up(&rspi->wait);
873 		return IRQ_HANDLED;
874 	}
875 
876 	return 0;
877 }
878 
879 static irqreturn_t rspi_irq_tx(int irq, void *_sr)
880 {
881 	struct rspi_data *rspi = _sr;
882 	u8 spsr;
883 
884 	rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR);
885 	if (spsr & SPSR_SPTEF) {
886 		rspi_disable_irq(rspi, SPCR_SPTIE);
887 		wake_up(&rspi->wait);
888 		return IRQ_HANDLED;
889 	}
890 
891 	return 0;
892 }
893 
894 static struct dma_chan *rspi_request_dma_chan(struct device *dev,
895 					      enum dma_transfer_direction dir,
896 					      unsigned int id,
897 					      dma_addr_t port_addr)
898 {
899 	dma_cap_mask_t mask;
900 	struct dma_chan *chan;
901 	struct dma_slave_config cfg;
902 	int ret;
903 
904 	dma_cap_zero(mask);
905 	dma_cap_set(DMA_SLAVE, mask);
906 
907 	chan = dma_request_slave_channel_compat(mask, shdma_chan_filter,
908 				(void *)(unsigned long)id, dev,
909 				dir == DMA_MEM_TO_DEV ? "tx" : "rx");
910 	if (!chan) {
911 		dev_warn(dev, "dma_request_slave_channel_compat failed\n");
912 		return NULL;
913 	}
914 
915 	memset(&cfg, 0, sizeof(cfg));
916 	cfg.slave_id = id;
917 	cfg.direction = dir;
918 	if (dir == DMA_MEM_TO_DEV) {
919 		cfg.dst_addr = port_addr;
920 		cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
921 	} else {
922 		cfg.src_addr = port_addr;
923 		cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
924 	}
925 
926 	ret = dmaengine_slave_config(chan, &cfg);
927 	if (ret) {
928 		dev_warn(dev, "dmaengine_slave_config failed %d\n", ret);
929 		dma_release_channel(chan);
930 		return NULL;
931 	}
932 
933 	return chan;
934 }
935 
936 static int rspi_request_dma(struct device *dev, struct spi_master *master,
937 			    const struct resource *res)
938 {
939 	const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev);
940 	unsigned int dma_tx_id, dma_rx_id;
941 
942 	if (dev->of_node) {
943 		/* In the OF case we will get the slave IDs from the DT */
944 		dma_tx_id = 0;
945 		dma_rx_id = 0;
946 	} else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) {
947 		dma_tx_id = rspi_pd->dma_tx_id;
948 		dma_rx_id = rspi_pd->dma_rx_id;
949 	} else {
950 		/* The driver assumes no error. */
951 		return 0;
952 	}
953 
954 	master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id,
955 					       res->start + RSPI_SPDR);
956 	if (!master->dma_tx)
957 		return -ENODEV;
958 
959 	master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id,
960 					       res->start + RSPI_SPDR);
961 	if (!master->dma_rx) {
962 		dma_release_channel(master->dma_tx);
963 		master->dma_tx = NULL;
964 		return -ENODEV;
965 	}
966 
967 	master->can_dma = rspi_can_dma;
968 	dev_info(dev, "DMA available");
969 	return 0;
970 }
971 
972 static void rspi_release_dma(struct spi_master *master)
973 {
974 	if (master->dma_tx)
975 		dma_release_channel(master->dma_tx);
976 	if (master->dma_rx)
977 		dma_release_channel(master->dma_rx);
978 }
979 
980 static int rspi_remove(struct platform_device *pdev)
981 {
982 	struct rspi_data *rspi = platform_get_drvdata(pdev);
983 
984 	rspi_release_dma(rspi->master);
985 	pm_runtime_disable(&pdev->dev);
986 
987 	return 0;
988 }
989 
990 static const struct spi_ops rspi_ops = {
991 	.set_config_register =	rspi_set_config_register,
992 	.transfer_one =		rspi_transfer_one,
993 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
994 	.flags =		SPI_MASTER_MUST_TX,
995 	.fifo_size =		8,
996 };
997 
998 static const struct spi_ops rspi_rz_ops = {
999 	.set_config_register =	rspi_rz_set_config_register,
1000 	.transfer_one =		rspi_rz_transfer_one,
1001 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP,
1002 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1003 	.fifo_size =		8,	/* 8 for TX, 32 for RX */
1004 };
1005 
1006 static const struct spi_ops qspi_ops = {
1007 	.set_config_register =	qspi_set_config_register,
1008 	.transfer_one =		qspi_transfer_one,
1009 	.mode_bits =		SPI_CPHA | SPI_CPOL | SPI_LOOP |
1010 				SPI_TX_DUAL | SPI_TX_QUAD |
1011 				SPI_RX_DUAL | SPI_RX_QUAD,
1012 	.flags =		SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX,
1013 	.fifo_size =		32,
1014 };
1015 
1016 #ifdef CONFIG_OF
1017 static const struct of_device_id rspi_of_match[] = {
1018 	/* RSPI on legacy SH */
1019 	{ .compatible = "renesas,rspi", .data = &rspi_ops },
1020 	/* RSPI on RZ/A1H */
1021 	{ .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops },
1022 	/* QSPI on R-Car Gen2 */
1023 	{ .compatible = "renesas,qspi", .data = &qspi_ops },
1024 	{ /* sentinel */ }
1025 };
1026 
1027 MODULE_DEVICE_TABLE(of, rspi_of_match);
1028 
1029 static int rspi_parse_dt(struct device *dev, struct spi_master *master)
1030 {
1031 	u32 num_cs;
1032 	int error;
1033 
1034 	/* Parse DT properties */
1035 	error = of_property_read_u32(dev->of_node, "num-cs", &num_cs);
1036 	if (error) {
1037 		dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error);
1038 		return error;
1039 	}
1040 
1041 	master->num_chipselect = num_cs;
1042 	return 0;
1043 }
1044 #else
1045 #define rspi_of_match	NULL
1046 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master)
1047 {
1048 	return -EINVAL;
1049 }
1050 #endif /* CONFIG_OF */
1051 
1052 static int rspi_request_irq(struct device *dev, unsigned int irq,
1053 			    irq_handler_t handler, const char *suffix,
1054 			    void *dev_id)
1055 {
1056 	const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s",
1057 					  dev_name(dev), suffix);
1058 	if (!name)
1059 		return -ENOMEM;
1060 
1061 	return devm_request_irq(dev, irq, handler, 0, name, dev_id);
1062 }
1063 
1064 static int rspi_probe(struct platform_device *pdev)
1065 {
1066 	struct resource *res;
1067 	struct spi_master *master;
1068 	struct rspi_data *rspi;
1069 	int ret;
1070 	const struct of_device_id *of_id;
1071 	const struct rspi_plat_data *rspi_pd;
1072 	const struct spi_ops *ops;
1073 
1074 	master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data));
1075 	if (master == NULL) {
1076 		dev_err(&pdev->dev, "spi_alloc_master error.\n");
1077 		return -ENOMEM;
1078 	}
1079 
1080 	of_id = of_match_device(rspi_of_match, &pdev->dev);
1081 	if (of_id) {
1082 		ops = of_id->data;
1083 		ret = rspi_parse_dt(&pdev->dev, master);
1084 		if (ret)
1085 			goto error1;
1086 	} else {
1087 		ops = (struct spi_ops *)pdev->id_entry->driver_data;
1088 		rspi_pd = dev_get_platdata(&pdev->dev);
1089 		if (rspi_pd && rspi_pd->num_chipselect)
1090 			master->num_chipselect = rspi_pd->num_chipselect;
1091 		else
1092 			master->num_chipselect = 2; /* default */
1093 	}
1094 
1095 	/* ops parameter check */
1096 	if (!ops->set_config_register) {
1097 		dev_err(&pdev->dev, "there is no set_config_register\n");
1098 		ret = -ENODEV;
1099 		goto error1;
1100 	}
1101 
1102 	rspi = spi_master_get_devdata(master);
1103 	platform_set_drvdata(pdev, rspi);
1104 	rspi->ops = ops;
1105 	rspi->master = master;
1106 
1107 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1108 	rspi->addr = devm_ioremap_resource(&pdev->dev, res);
1109 	if (IS_ERR(rspi->addr)) {
1110 		ret = PTR_ERR(rspi->addr);
1111 		goto error1;
1112 	}
1113 
1114 	rspi->clk = devm_clk_get(&pdev->dev, NULL);
1115 	if (IS_ERR(rspi->clk)) {
1116 		dev_err(&pdev->dev, "cannot get clock\n");
1117 		ret = PTR_ERR(rspi->clk);
1118 		goto error1;
1119 	}
1120 
1121 	pm_runtime_enable(&pdev->dev);
1122 
1123 	init_waitqueue_head(&rspi->wait);
1124 
1125 	master->bus_num = pdev->id;
1126 	master->setup = rspi_setup;
1127 	master->auto_runtime_pm = true;
1128 	master->transfer_one = ops->transfer_one;
1129 	master->prepare_message = rspi_prepare_message;
1130 	master->unprepare_message = rspi_unprepare_message;
1131 	master->mode_bits = ops->mode_bits;
1132 	master->flags = ops->flags;
1133 	master->dev.of_node = pdev->dev.of_node;
1134 
1135 	ret = platform_get_irq_byname(pdev, "rx");
1136 	if (ret < 0) {
1137 		ret = platform_get_irq_byname(pdev, "mux");
1138 		if (ret < 0)
1139 			ret = platform_get_irq(pdev, 0);
1140 		if (ret >= 0)
1141 			rspi->rx_irq = rspi->tx_irq = ret;
1142 	} else {
1143 		rspi->rx_irq = ret;
1144 		ret = platform_get_irq_byname(pdev, "tx");
1145 		if (ret >= 0)
1146 			rspi->tx_irq = ret;
1147 	}
1148 	if (ret < 0) {
1149 		dev_err(&pdev->dev, "platform_get_irq error\n");
1150 		goto error2;
1151 	}
1152 
1153 	if (rspi->rx_irq == rspi->tx_irq) {
1154 		/* Single multiplexed interrupt */
1155 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux,
1156 				       "mux", rspi);
1157 	} else {
1158 		/* Multi-interrupt mode, only SPRI and SPTI are used */
1159 		ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx,
1160 				       "rx", rspi);
1161 		if (!ret)
1162 			ret = rspi_request_irq(&pdev->dev, rspi->tx_irq,
1163 					       rspi_irq_tx, "tx", rspi);
1164 	}
1165 	if (ret < 0) {
1166 		dev_err(&pdev->dev, "request_irq error\n");
1167 		goto error2;
1168 	}
1169 
1170 	ret = rspi_request_dma(&pdev->dev, master, res);
1171 	if (ret < 0)
1172 		dev_warn(&pdev->dev, "DMA not available, using PIO\n");
1173 
1174 	ret = devm_spi_register_master(&pdev->dev, master);
1175 	if (ret < 0) {
1176 		dev_err(&pdev->dev, "spi_register_master error.\n");
1177 		goto error3;
1178 	}
1179 
1180 	dev_info(&pdev->dev, "probed\n");
1181 
1182 	return 0;
1183 
1184 error3:
1185 	rspi_release_dma(master);
1186 error2:
1187 	pm_runtime_disable(&pdev->dev);
1188 error1:
1189 	spi_master_put(master);
1190 
1191 	return ret;
1192 }
1193 
1194 static struct platform_device_id spi_driver_ids[] = {
1195 	{ "rspi",	(kernel_ulong_t)&rspi_ops },
1196 	{ "rspi-rz",	(kernel_ulong_t)&rspi_rz_ops },
1197 	{ "qspi",	(kernel_ulong_t)&qspi_ops },
1198 	{},
1199 };
1200 
1201 MODULE_DEVICE_TABLE(platform, spi_driver_ids);
1202 
1203 static struct platform_driver rspi_driver = {
1204 	.probe =	rspi_probe,
1205 	.remove =	rspi_remove,
1206 	.id_table =	spi_driver_ids,
1207 	.driver		= {
1208 		.name = "renesas_spi",
1209 		.of_match_table = of_match_ptr(rspi_of_match),
1210 	},
1211 };
1212 module_platform_driver(rspi_driver);
1213 
1214 MODULE_DESCRIPTION("Renesas RSPI bus driver");
1215 MODULE_LICENSE("GPL v2");
1216 MODULE_AUTHOR("Yoshihiro Shimoda");
1217 MODULE_ALIAS("platform:rspi");
1218