1 /* 2 * SH RSPI driver 3 * 4 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 5 * Copyright (C) 2014 Glider bvba 6 * 7 * Based on spi-sh.c: 8 * Copyright (C) 2011 Renesas Solutions Corp. 9 * 10 * This program is free software; you can redistribute it and/or modify 11 * it under the terms of the GNU General Public License as published by 12 * the Free Software Foundation; version 2 of the License. 13 * 14 * This program is distributed in the hope that it will be useful, 15 * but WITHOUT ANY WARRANTY; without even the implied warranty of 16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 17 * GNU General Public License for more details. 18 * 19 * You should have received a copy of the GNU General Public License 20 * along with this program; if not, write to the Free Software 21 * Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 22 * 23 */ 24 25 #include <linux/module.h> 26 #include <linux/kernel.h> 27 #include <linux/sched.h> 28 #include <linux/errno.h> 29 #include <linux/interrupt.h> 30 #include <linux/platform_device.h> 31 #include <linux/io.h> 32 #include <linux/clk.h> 33 #include <linux/dmaengine.h> 34 #include <linux/dma-mapping.h> 35 #include <linux/of_device.h> 36 #include <linux/pm_runtime.h> 37 #include <linux/sh_dma.h> 38 #include <linux/spi/spi.h> 39 #include <linux/spi/rspi.h> 40 41 #define RSPI_SPCR 0x00 /* Control Register */ 42 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 43 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 44 #define RSPI_SPSR 0x03 /* Status Register */ 45 #define RSPI_SPDR 0x04 /* Data Register */ 46 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 47 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 48 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 49 #define RSPI_SPDCR 0x0b /* Data Control Register */ 50 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 51 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 52 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 53 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 54 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 55 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 56 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 57 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 58 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 59 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 60 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 61 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 62 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 63 #define RSPI_NUM_SPCMD 8 64 #define RSPI_RZ_NUM_SPCMD 4 65 #define QSPI_NUM_SPCMD 4 66 67 /* RSPI on RZ only */ 68 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 69 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 70 71 /* QSPI only */ 72 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 73 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 74 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 75 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 76 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 77 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 78 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 79 80 /* SPCR - Control Register */ 81 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 82 #define SPCR_SPE 0x40 /* Function Enable */ 83 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 84 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 85 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 86 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 87 /* RSPI on SH only */ 88 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 89 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 90 /* QSPI on R-Car Gen2 only */ 91 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 92 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 93 94 /* SSLP - Slave Select Polarity Register */ 95 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ 96 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ 97 98 /* SPPCR - Pin Control Register */ 99 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 100 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 101 #define SPPCR_SPOM 0x04 102 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 103 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 104 105 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 106 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 107 108 /* SPSR - Status Register */ 109 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 110 #define SPSR_TEND 0x40 /* Transmit End */ 111 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 112 #define SPSR_PERF 0x08 /* Parity Error Flag */ 113 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 114 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 115 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 116 117 /* SPSCR - Sequence Control Register */ 118 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 119 120 /* SPSSR - Sequence Status Register */ 121 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 122 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 123 124 /* SPDCR - Data Control Register */ 125 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 126 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 127 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 128 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 129 #define SPDCR_SPLWORD SPDCR_SPLW1 130 #define SPDCR_SPLBYTE SPDCR_SPLW0 131 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 132 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 133 #define SPDCR_SLSEL1 0x08 134 #define SPDCR_SLSEL0 0x04 135 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 136 #define SPDCR_SPFC1 0x02 137 #define SPDCR_SPFC0 0x01 138 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 139 140 /* SPCKD - Clock Delay Register */ 141 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 142 143 /* SSLND - Slave Select Negation Delay Register */ 144 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 145 146 /* SPND - Next-Access Delay Register */ 147 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 148 149 /* SPCR2 - Control Register 2 */ 150 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 151 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 152 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 153 #define SPCR2_SPPE 0x01 /* Parity Enable */ 154 155 /* SPCMDn - Command Registers */ 156 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 157 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 158 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 159 #define SPCMD_LSBF 0x1000 /* LSB First */ 160 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 161 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 162 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 163 #define SPCMD_SPB_16BIT 0x0100 164 #define SPCMD_SPB_20BIT 0x0000 165 #define SPCMD_SPB_24BIT 0x0100 166 #define SPCMD_SPB_32BIT 0x0200 167 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 168 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 169 #define SPCMD_SPIMOD1 0x0040 170 #define SPCMD_SPIMOD0 0x0020 171 #define SPCMD_SPIMOD_SINGLE 0 172 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 173 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 174 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 175 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ 176 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 177 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 178 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 179 180 /* SPBFCR - Buffer Control Register */ 181 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 182 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 183 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 184 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 185 186 struct rspi_data { 187 void __iomem *addr; 188 u32 max_speed_hz; 189 struct spi_master *master; 190 wait_queue_head_t wait; 191 struct clk *clk; 192 u16 spcmd; 193 u8 spsr; 194 u8 sppcr; 195 int rx_irq, tx_irq; 196 const struct spi_ops *ops; 197 198 unsigned dma_callbacked:1; 199 unsigned byte_access:1; 200 }; 201 202 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 203 { 204 iowrite8(data, rspi->addr + offset); 205 } 206 207 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 208 { 209 iowrite16(data, rspi->addr + offset); 210 } 211 212 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 213 { 214 iowrite32(data, rspi->addr + offset); 215 } 216 217 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 218 { 219 return ioread8(rspi->addr + offset); 220 } 221 222 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 223 { 224 return ioread16(rspi->addr + offset); 225 } 226 227 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 228 { 229 if (rspi->byte_access) 230 rspi_write8(rspi, data, RSPI_SPDR); 231 else /* 16 bit */ 232 rspi_write16(rspi, data, RSPI_SPDR); 233 } 234 235 static u16 rspi_read_data(const struct rspi_data *rspi) 236 { 237 if (rspi->byte_access) 238 return rspi_read8(rspi, RSPI_SPDR); 239 else /* 16 bit */ 240 return rspi_read16(rspi, RSPI_SPDR); 241 } 242 243 /* optional functions */ 244 struct spi_ops { 245 int (*set_config_register)(struct rspi_data *rspi, int access_size); 246 int (*transfer_one)(struct spi_master *master, struct spi_device *spi, 247 struct spi_transfer *xfer); 248 u16 mode_bits; 249 u16 flags; 250 u16 fifo_size; 251 }; 252 253 /* 254 * functions for RSPI on legacy SH 255 */ 256 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 257 { 258 int spbr; 259 260 /* Sets output mode, MOSI signal, and (optionally) loopback */ 261 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 262 263 /* Sets transfer bit rate */ 264 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 265 2 * rspi->max_speed_hz) - 1; 266 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 267 268 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 269 rspi_write8(rspi, 0, RSPI_SPDCR); 270 rspi->byte_access = 0; 271 272 /* Sets RSPCK, SSL, next-access delay value */ 273 rspi_write8(rspi, 0x00, RSPI_SPCKD); 274 rspi_write8(rspi, 0x00, RSPI_SSLND); 275 rspi_write8(rspi, 0x00, RSPI_SPND); 276 277 /* Sets parity, interrupt mask */ 278 rspi_write8(rspi, 0x00, RSPI_SPCR2); 279 280 /* Sets SPCMD */ 281 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 282 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 283 284 /* Sets RSPI mode */ 285 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 286 287 return 0; 288 } 289 290 /* 291 * functions for RSPI on RZ 292 */ 293 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 294 { 295 int spbr; 296 297 /* Sets output mode, MOSI signal, and (optionally) loopback */ 298 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 299 300 /* Sets transfer bit rate */ 301 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 302 2 * rspi->max_speed_hz) - 1; 303 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 304 305 /* Disable dummy transmission, set byte access */ 306 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 307 rspi->byte_access = 1; 308 309 /* Sets RSPCK, SSL, next-access delay value */ 310 rspi_write8(rspi, 0x00, RSPI_SPCKD); 311 rspi_write8(rspi, 0x00, RSPI_SSLND); 312 rspi_write8(rspi, 0x00, RSPI_SPND); 313 314 /* Sets SPCMD */ 315 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 316 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 317 318 /* Sets RSPI mode */ 319 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 320 321 return 0; 322 } 323 324 /* 325 * functions for QSPI 326 */ 327 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 328 { 329 int spbr; 330 331 /* Sets output mode, MOSI signal, and (optionally) loopback */ 332 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 333 334 /* Sets transfer bit rate */ 335 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); 336 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 337 338 /* Disable dummy transmission, set byte access */ 339 rspi_write8(rspi, 0, RSPI_SPDCR); 340 rspi->byte_access = 1; 341 342 /* Sets RSPCK, SSL, next-access delay value */ 343 rspi_write8(rspi, 0x00, RSPI_SPCKD); 344 rspi_write8(rspi, 0x00, RSPI_SSLND); 345 rspi_write8(rspi, 0x00, RSPI_SPND); 346 347 /* Data Length Setting */ 348 if (access_size == 8) 349 rspi->spcmd |= SPCMD_SPB_8BIT; 350 else if (access_size == 16) 351 rspi->spcmd |= SPCMD_SPB_16BIT; 352 else 353 rspi->spcmd |= SPCMD_SPB_32BIT; 354 355 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 356 357 /* Resets transfer data length */ 358 rspi_write32(rspi, 0, QSPI_SPBMUL0); 359 360 /* Resets transmit and receive buffer */ 361 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 362 /* Sets buffer to allow normal operation */ 363 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 364 365 /* Sets SPCMD */ 366 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 367 368 /* Enables SPI function in master mode */ 369 rspi_write8(rspi, SPCR_SPE | SPCR_MSTR, RSPI_SPCR); 370 371 return 0; 372 } 373 374 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) 375 376 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 377 { 378 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 379 } 380 381 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 382 { 383 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 384 } 385 386 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 387 u8 enable_bit) 388 { 389 int ret; 390 391 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 392 if (rspi->spsr & wait_mask) 393 return 0; 394 395 rspi_enable_irq(rspi, enable_bit); 396 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 397 if (ret == 0 && !(rspi->spsr & wait_mask)) 398 return -ETIMEDOUT; 399 400 return 0; 401 } 402 403 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 404 { 405 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 406 } 407 408 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 409 { 410 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 411 } 412 413 static int rspi_data_out(struct rspi_data *rspi, u8 data) 414 { 415 int error = rspi_wait_for_tx_empty(rspi); 416 if (error < 0) { 417 dev_err(&rspi->master->dev, "transmit timeout\n"); 418 return error; 419 } 420 rspi_write_data(rspi, data); 421 return 0; 422 } 423 424 static int rspi_data_in(struct rspi_data *rspi) 425 { 426 int error; 427 u8 data; 428 429 error = rspi_wait_for_rx_full(rspi); 430 if (error < 0) { 431 dev_err(&rspi->master->dev, "receive timeout\n"); 432 return error; 433 } 434 data = rspi_read_data(rspi); 435 return data; 436 } 437 438 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 439 unsigned int n) 440 { 441 while (n-- > 0) { 442 if (tx) { 443 int ret = rspi_data_out(rspi, *tx++); 444 if (ret < 0) 445 return ret; 446 } 447 if (rx) { 448 int ret = rspi_data_in(rspi); 449 if (ret < 0) 450 return ret; 451 *rx++ = ret; 452 } 453 } 454 455 return 0; 456 } 457 458 static void rspi_dma_complete(void *arg) 459 { 460 struct rspi_data *rspi = arg; 461 462 rspi->dma_callbacked = 1; 463 wake_up_interruptible(&rspi->wait); 464 } 465 466 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 467 struct sg_table *rx) 468 { 469 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 470 u8 irq_mask = 0; 471 unsigned int other_irq = 0; 472 dma_cookie_t cookie; 473 int ret; 474 475 /* First prepare and submit the DMA request(s), as this may fail */ 476 if (rx) { 477 desc_rx = dmaengine_prep_slave_sg(rspi->master->dma_rx, 478 rx->sgl, rx->nents, DMA_FROM_DEVICE, 479 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 480 if (!desc_rx) { 481 ret = -EAGAIN; 482 goto no_dma_rx; 483 } 484 485 desc_rx->callback = rspi_dma_complete; 486 desc_rx->callback_param = rspi; 487 cookie = dmaengine_submit(desc_rx); 488 if (dma_submit_error(cookie)) { 489 ret = cookie; 490 goto no_dma_rx; 491 } 492 493 irq_mask |= SPCR_SPRIE; 494 } 495 496 if (tx) { 497 desc_tx = dmaengine_prep_slave_sg(rspi->master->dma_tx, 498 tx->sgl, tx->nents, DMA_TO_DEVICE, 499 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 500 if (!desc_tx) { 501 ret = -EAGAIN; 502 goto no_dma_tx; 503 } 504 505 if (rx) { 506 /* No callback */ 507 desc_tx->callback = NULL; 508 } else { 509 desc_tx->callback = rspi_dma_complete; 510 desc_tx->callback_param = rspi; 511 } 512 cookie = dmaengine_submit(desc_tx); 513 if (dma_submit_error(cookie)) { 514 ret = cookie; 515 goto no_dma_tx; 516 } 517 518 irq_mask |= SPCR_SPTIE; 519 } 520 521 /* 522 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 523 * called. So, this driver disables the IRQ while DMA transfer. 524 */ 525 if (tx) 526 disable_irq(other_irq = rspi->tx_irq); 527 if (rx && rspi->rx_irq != other_irq) 528 disable_irq(rspi->rx_irq); 529 530 rspi_enable_irq(rspi, irq_mask); 531 rspi->dma_callbacked = 0; 532 533 /* Now start DMA */ 534 if (rx) 535 dma_async_issue_pending(rspi->master->dma_rx); 536 if (tx) 537 dma_async_issue_pending(rspi->master->dma_tx); 538 539 ret = wait_event_interruptible_timeout(rspi->wait, 540 rspi->dma_callbacked, HZ); 541 if (ret > 0 && rspi->dma_callbacked) 542 ret = 0; 543 else if (!ret) { 544 dev_err(&rspi->master->dev, "DMA timeout\n"); 545 ret = -ETIMEDOUT; 546 if (tx) 547 dmaengine_terminate_all(rspi->master->dma_tx); 548 if (rx) 549 dmaengine_terminate_all(rspi->master->dma_rx); 550 } 551 552 rspi_disable_irq(rspi, irq_mask); 553 554 if (tx) 555 enable_irq(rspi->tx_irq); 556 if (rx && rspi->rx_irq != other_irq) 557 enable_irq(rspi->rx_irq); 558 559 return ret; 560 561 no_dma_tx: 562 if (rx) 563 dmaengine_terminate_all(rspi->master->dma_rx); 564 no_dma_rx: 565 if (ret == -EAGAIN) { 566 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 567 dev_driver_string(&rspi->master->dev), 568 dev_name(&rspi->master->dev)); 569 } 570 return ret; 571 } 572 573 static void rspi_receive_init(const struct rspi_data *rspi) 574 { 575 u8 spsr; 576 577 spsr = rspi_read8(rspi, RSPI_SPSR); 578 if (spsr & SPSR_SPRF) 579 rspi_read_data(rspi); /* dummy read */ 580 if (spsr & SPSR_OVRF) 581 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 582 RSPI_SPSR); 583 } 584 585 static void rspi_rz_receive_init(const struct rspi_data *rspi) 586 { 587 rspi_receive_init(rspi); 588 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 589 rspi_write8(rspi, 0, RSPI_SPBFCR); 590 } 591 592 static void qspi_receive_init(const struct rspi_data *rspi) 593 { 594 u8 spsr; 595 596 spsr = rspi_read8(rspi, RSPI_SPSR); 597 if (spsr & SPSR_SPRF) 598 rspi_read_data(rspi); /* dummy read */ 599 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 600 rspi_write8(rspi, 0, QSPI_SPBFCR); 601 } 602 603 static bool __rspi_can_dma(const struct rspi_data *rspi, 604 const struct spi_transfer *xfer) 605 { 606 return xfer->len > rspi->ops->fifo_size; 607 } 608 609 static bool rspi_can_dma(struct spi_master *master, struct spi_device *spi, 610 struct spi_transfer *xfer) 611 { 612 struct rspi_data *rspi = spi_master_get_devdata(master); 613 614 return __rspi_can_dma(rspi, xfer); 615 } 616 617 static int rspi_common_transfer(struct rspi_data *rspi, 618 struct spi_transfer *xfer) 619 { 620 int ret; 621 622 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 623 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 624 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, 625 xfer->rx_buf ? &xfer->rx_sg : NULL); 626 if (ret != -EAGAIN) 627 return ret; 628 } 629 630 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 631 if (ret < 0) 632 return ret; 633 634 /* Wait for the last transmission */ 635 rspi_wait_for_tx_empty(rspi); 636 637 return 0; 638 } 639 640 static int rspi_transfer_one(struct spi_master *master, struct spi_device *spi, 641 struct spi_transfer *xfer) 642 { 643 struct rspi_data *rspi = spi_master_get_devdata(master); 644 u8 spcr; 645 646 spcr = rspi_read8(rspi, RSPI_SPCR); 647 if (xfer->rx_buf) { 648 rspi_receive_init(rspi); 649 spcr &= ~SPCR_TXMD; 650 } else { 651 spcr |= SPCR_TXMD; 652 } 653 rspi_write8(rspi, spcr, RSPI_SPCR); 654 655 return rspi_common_transfer(rspi, xfer); 656 } 657 658 static int rspi_rz_transfer_one(struct spi_master *master, 659 struct spi_device *spi, 660 struct spi_transfer *xfer) 661 { 662 struct rspi_data *rspi = spi_master_get_devdata(master); 663 664 rspi_rz_receive_init(rspi); 665 666 return rspi_common_transfer(rspi, xfer); 667 } 668 669 static int qspi_transfer_out_in(struct rspi_data *rspi, 670 struct spi_transfer *xfer) 671 { 672 qspi_receive_init(rspi); 673 674 return rspi_common_transfer(rspi, xfer); 675 } 676 677 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 678 { 679 int ret; 680 681 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 682 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 683 if (ret != -EAGAIN) 684 return ret; 685 } 686 687 ret = rspi_pio_transfer(rspi, xfer->tx_buf, NULL, xfer->len); 688 if (ret < 0) 689 return ret; 690 691 /* Wait for the last transmission */ 692 rspi_wait_for_tx_empty(rspi); 693 694 return 0; 695 } 696 697 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 698 { 699 if (rspi->master->can_dma && __rspi_can_dma(rspi, xfer)) { 700 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 701 if (ret != -EAGAIN) 702 return ret; 703 } 704 705 return rspi_pio_transfer(rspi, NULL, xfer->rx_buf, xfer->len); 706 } 707 708 static int qspi_transfer_one(struct spi_master *master, struct spi_device *spi, 709 struct spi_transfer *xfer) 710 { 711 struct rspi_data *rspi = spi_master_get_devdata(master); 712 713 if (spi->mode & SPI_LOOP) { 714 return qspi_transfer_out_in(rspi, xfer); 715 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 716 /* Quad or Dual SPI Write */ 717 return qspi_transfer_out(rspi, xfer); 718 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 719 /* Quad or Dual SPI Read */ 720 return qspi_transfer_in(rspi, xfer); 721 } else { 722 /* Single SPI Transfer */ 723 return qspi_transfer_out_in(rspi, xfer); 724 } 725 } 726 727 static int rspi_setup(struct spi_device *spi) 728 { 729 struct rspi_data *rspi = spi_master_get_devdata(spi->master); 730 731 rspi->max_speed_hz = spi->max_speed_hz; 732 733 rspi->spcmd = SPCMD_SSLKP; 734 if (spi->mode & SPI_CPOL) 735 rspi->spcmd |= SPCMD_CPOL; 736 if (spi->mode & SPI_CPHA) 737 rspi->spcmd |= SPCMD_CPHA; 738 739 /* CMOS output mode and MOSI signal from previous transfer */ 740 rspi->sppcr = 0; 741 if (spi->mode & SPI_LOOP) 742 rspi->sppcr |= SPPCR_SPLP; 743 744 set_config_register(rspi, 8); 745 746 return 0; 747 } 748 749 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 750 { 751 if (xfer->tx_buf) 752 switch (xfer->tx_nbits) { 753 case SPI_NBITS_QUAD: 754 return SPCMD_SPIMOD_QUAD; 755 case SPI_NBITS_DUAL: 756 return SPCMD_SPIMOD_DUAL; 757 default: 758 return 0; 759 } 760 if (xfer->rx_buf) 761 switch (xfer->rx_nbits) { 762 case SPI_NBITS_QUAD: 763 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 764 case SPI_NBITS_DUAL: 765 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 766 default: 767 return 0; 768 } 769 770 return 0; 771 } 772 773 static int qspi_setup_sequencer(struct rspi_data *rspi, 774 const struct spi_message *msg) 775 { 776 const struct spi_transfer *xfer; 777 unsigned int i = 0, len = 0; 778 u16 current_mode = 0xffff, mode; 779 780 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 781 mode = qspi_transfer_mode(xfer); 782 if (mode == current_mode) { 783 len += xfer->len; 784 continue; 785 } 786 787 /* Transfer mode change */ 788 if (i) { 789 /* Set transfer data length of previous transfer */ 790 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 791 } 792 793 if (i >= QSPI_NUM_SPCMD) { 794 dev_err(&msg->spi->dev, 795 "Too many different transfer modes"); 796 return -EINVAL; 797 } 798 799 /* Program transfer mode for this transfer */ 800 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 801 current_mode = mode; 802 len = xfer->len; 803 i++; 804 } 805 if (i) { 806 /* Set final transfer data length and sequence length */ 807 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 808 rspi_write8(rspi, i - 1, RSPI_SPSCR); 809 } 810 811 return 0; 812 } 813 814 static int rspi_prepare_message(struct spi_master *master, 815 struct spi_message *msg) 816 { 817 struct rspi_data *rspi = spi_master_get_devdata(master); 818 int ret; 819 820 if (msg->spi->mode & 821 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 822 /* Setup sequencer for messages with multiple transfer modes */ 823 ret = qspi_setup_sequencer(rspi, msg); 824 if (ret < 0) 825 return ret; 826 } 827 828 /* Enable SPI function in master mode */ 829 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 830 return 0; 831 } 832 833 static int rspi_unprepare_message(struct spi_master *master, 834 struct spi_message *msg) 835 { 836 struct rspi_data *rspi = spi_master_get_devdata(master); 837 838 /* Disable SPI function */ 839 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 840 841 /* Reset sequencer for Single SPI Transfers */ 842 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 843 rspi_write8(rspi, 0, RSPI_SPSCR); 844 return 0; 845 } 846 847 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 848 { 849 struct rspi_data *rspi = _sr; 850 u8 spsr; 851 irqreturn_t ret = IRQ_NONE; 852 u8 disable_irq = 0; 853 854 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 855 if (spsr & SPSR_SPRF) 856 disable_irq |= SPCR_SPRIE; 857 if (spsr & SPSR_SPTEF) 858 disable_irq |= SPCR_SPTIE; 859 860 if (disable_irq) { 861 ret = IRQ_HANDLED; 862 rspi_disable_irq(rspi, disable_irq); 863 wake_up(&rspi->wait); 864 } 865 866 return ret; 867 } 868 869 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 870 { 871 struct rspi_data *rspi = _sr; 872 u8 spsr; 873 874 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 875 if (spsr & SPSR_SPRF) { 876 rspi_disable_irq(rspi, SPCR_SPRIE); 877 wake_up(&rspi->wait); 878 return IRQ_HANDLED; 879 } 880 881 return 0; 882 } 883 884 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 885 { 886 struct rspi_data *rspi = _sr; 887 u8 spsr; 888 889 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 890 if (spsr & SPSR_SPTEF) { 891 rspi_disable_irq(rspi, SPCR_SPTIE); 892 wake_up(&rspi->wait); 893 return IRQ_HANDLED; 894 } 895 896 return 0; 897 } 898 899 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 900 enum dma_transfer_direction dir, 901 unsigned int id, 902 dma_addr_t port_addr) 903 { 904 dma_cap_mask_t mask; 905 struct dma_chan *chan; 906 struct dma_slave_config cfg; 907 int ret; 908 909 dma_cap_zero(mask); 910 dma_cap_set(DMA_SLAVE, mask); 911 912 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 913 (void *)(unsigned long)id, dev, 914 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 915 if (!chan) { 916 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 917 return NULL; 918 } 919 920 memset(&cfg, 0, sizeof(cfg)); 921 cfg.slave_id = id; 922 cfg.direction = dir; 923 if (dir == DMA_MEM_TO_DEV) { 924 cfg.dst_addr = port_addr; 925 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 926 } else { 927 cfg.src_addr = port_addr; 928 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 929 } 930 931 ret = dmaengine_slave_config(chan, &cfg); 932 if (ret) { 933 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 934 dma_release_channel(chan); 935 return NULL; 936 } 937 938 return chan; 939 } 940 941 static int rspi_request_dma(struct device *dev, struct spi_master *master, 942 const struct resource *res) 943 { 944 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 945 unsigned int dma_tx_id, dma_rx_id; 946 947 if (dev->of_node) { 948 /* In the OF case we will get the slave IDs from the DT */ 949 dma_tx_id = 0; 950 dma_rx_id = 0; 951 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 952 dma_tx_id = rspi_pd->dma_tx_id; 953 dma_rx_id = rspi_pd->dma_rx_id; 954 } else { 955 /* The driver assumes no error. */ 956 return 0; 957 } 958 959 master->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 960 res->start + RSPI_SPDR); 961 if (!master->dma_tx) 962 return -ENODEV; 963 964 master->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 965 res->start + RSPI_SPDR); 966 if (!master->dma_rx) { 967 dma_release_channel(master->dma_tx); 968 master->dma_tx = NULL; 969 return -ENODEV; 970 } 971 972 master->can_dma = rspi_can_dma; 973 dev_info(dev, "DMA available"); 974 return 0; 975 } 976 977 static void rspi_release_dma(struct spi_master *master) 978 { 979 if (master->dma_tx) 980 dma_release_channel(master->dma_tx); 981 if (master->dma_rx) 982 dma_release_channel(master->dma_rx); 983 } 984 985 static int rspi_remove(struct platform_device *pdev) 986 { 987 struct rspi_data *rspi = platform_get_drvdata(pdev); 988 989 rspi_release_dma(rspi->master); 990 pm_runtime_disable(&pdev->dev); 991 992 return 0; 993 } 994 995 static const struct spi_ops rspi_ops = { 996 .set_config_register = rspi_set_config_register, 997 .transfer_one = rspi_transfer_one, 998 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 999 .flags = SPI_MASTER_MUST_TX, 1000 .fifo_size = 8, 1001 }; 1002 1003 static const struct spi_ops rspi_rz_ops = { 1004 .set_config_register = rspi_rz_set_config_register, 1005 .transfer_one = rspi_rz_transfer_one, 1006 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1007 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1008 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1009 }; 1010 1011 static const struct spi_ops qspi_ops = { 1012 .set_config_register = qspi_set_config_register, 1013 .transfer_one = qspi_transfer_one, 1014 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | 1015 SPI_TX_DUAL | SPI_TX_QUAD | 1016 SPI_RX_DUAL | SPI_RX_QUAD, 1017 .flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX, 1018 .fifo_size = 32, 1019 }; 1020 1021 #ifdef CONFIG_OF 1022 static const struct of_device_id rspi_of_match[] = { 1023 /* RSPI on legacy SH */ 1024 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1025 /* RSPI on RZ/A1H */ 1026 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1027 /* QSPI on R-Car Gen2 */ 1028 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1029 { /* sentinel */ } 1030 }; 1031 1032 MODULE_DEVICE_TABLE(of, rspi_of_match); 1033 1034 static int rspi_parse_dt(struct device *dev, struct spi_master *master) 1035 { 1036 u32 num_cs; 1037 int error; 1038 1039 /* Parse DT properties */ 1040 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1041 if (error) { 1042 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1043 return error; 1044 } 1045 1046 master->num_chipselect = num_cs; 1047 return 0; 1048 } 1049 #else 1050 #define rspi_of_match NULL 1051 static inline int rspi_parse_dt(struct device *dev, struct spi_master *master) 1052 { 1053 return -EINVAL; 1054 } 1055 #endif /* CONFIG_OF */ 1056 1057 static int rspi_request_irq(struct device *dev, unsigned int irq, 1058 irq_handler_t handler, const char *suffix, 1059 void *dev_id) 1060 { 1061 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1062 dev_name(dev), suffix); 1063 if (!name) 1064 return -ENOMEM; 1065 1066 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1067 } 1068 1069 static int rspi_probe(struct platform_device *pdev) 1070 { 1071 struct resource *res; 1072 struct spi_master *master; 1073 struct rspi_data *rspi; 1074 int ret; 1075 const struct of_device_id *of_id; 1076 const struct rspi_plat_data *rspi_pd; 1077 const struct spi_ops *ops; 1078 1079 master = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1080 if (master == NULL) { 1081 dev_err(&pdev->dev, "spi_alloc_master error.\n"); 1082 return -ENOMEM; 1083 } 1084 1085 of_id = of_match_device(rspi_of_match, &pdev->dev); 1086 if (of_id) { 1087 ops = of_id->data; 1088 ret = rspi_parse_dt(&pdev->dev, master); 1089 if (ret) 1090 goto error1; 1091 } else { 1092 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1093 rspi_pd = dev_get_platdata(&pdev->dev); 1094 if (rspi_pd && rspi_pd->num_chipselect) 1095 master->num_chipselect = rspi_pd->num_chipselect; 1096 else 1097 master->num_chipselect = 2; /* default */ 1098 } 1099 1100 /* ops parameter check */ 1101 if (!ops->set_config_register) { 1102 dev_err(&pdev->dev, "there is no set_config_register\n"); 1103 ret = -ENODEV; 1104 goto error1; 1105 } 1106 1107 rspi = spi_master_get_devdata(master); 1108 platform_set_drvdata(pdev, rspi); 1109 rspi->ops = ops; 1110 rspi->master = master; 1111 1112 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1113 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1114 if (IS_ERR(rspi->addr)) { 1115 ret = PTR_ERR(rspi->addr); 1116 goto error1; 1117 } 1118 1119 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1120 if (IS_ERR(rspi->clk)) { 1121 dev_err(&pdev->dev, "cannot get clock\n"); 1122 ret = PTR_ERR(rspi->clk); 1123 goto error1; 1124 } 1125 1126 pm_runtime_enable(&pdev->dev); 1127 1128 init_waitqueue_head(&rspi->wait); 1129 1130 master->bus_num = pdev->id; 1131 master->setup = rspi_setup; 1132 master->auto_runtime_pm = true; 1133 master->transfer_one = ops->transfer_one; 1134 master->prepare_message = rspi_prepare_message; 1135 master->unprepare_message = rspi_unprepare_message; 1136 master->mode_bits = ops->mode_bits; 1137 master->flags = ops->flags; 1138 master->dev.of_node = pdev->dev.of_node; 1139 1140 ret = platform_get_irq_byname(pdev, "rx"); 1141 if (ret < 0) { 1142 ret = platform_get_irq_byname(pdev, "mux"); 1143 if (ret < 0) 1144 ret = platform_get_irq(pdev, 0); 1145 if (ret >= 0) 1146 rspi->rx_irq = rspi->tx_irq = ret; 1147 } else { 1148 rspi->rx_irq = ret; 1149 ret = platform_get_irq_byname(pdev, "tx"); 1150 if (ret >= 0) 1151 rspi->tx_irq = ret; 1152 } 1153 if (ret < 0) { 1154 dev_err(&pdev->dev, "platform_get_irq error\n"); 1155 goto error2; 1156 } 1157 1158 if (rspi->rx_irq == rspi->tx_irq) { 1159 /* Single multiplexed interrupt */ 1160 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1161 "mux", rspi); 1162 } else { 1163 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1164 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1165 "rx", rspi); 1166 if (!ret) 1167 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1168 rspi_irq_tx, "tx", rspi); 1169 } 1170 if (ret < 0) { 1171 dev_err(&pdev->dev, "request_irq error\n"); 1172 goto error2; 1173 } 1174 1175 ret = rspi_request_dma(&pdev->dev, master, res); 1176 if (ret < 0) 1177 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1178 1179 ret = devm_spi_register_master(&pdev->dev, master); 1180 if (ret < 0) { 1181 dev_err(&pdev->dev, "spi_register_master error.\n"); 1182 goto error3; 1183 } 1184 1185 dev_info(&pdev->dev, "probed\n"); 1186 1187 return 0; 1188 1189 error3: 1190 rspi_release_dma(master); 1191 error2: 1192 pm_runtime_disable(&pdev->dev); 1193 error1: 1194 spi_master_put(master); 1195 1196 return ret; 1197 } 1198 1199 static struct platform_device_id spi_driver_ids[] = { 1200 { "rspi", (kernel_ulong_t)&rspi_ops }, 1201 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, 1202 { "qspi", (kernel_ulong_t)&qspi_ops }, 1203 {}, 1204 }; 1205 1206 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1207 1208 static struct platform_driver rspi_driver = { 1209 .probe = rspi_probe, 1210 .remove = rspi_remove, 1211 .id_table = spi_driver_ids, 1212 .driver = { 1213 .name = "renesas_spi", 1214 .of_match_table = of_match_ptr(rspi_of_match), 1215 }, 1216 }; 1217 module_platform_driver(rspi_driver); 1218 1219 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1220 MODULE_LICENSE("GPL v2"); 1221 MODULE_AUTHOR("Yoshihiro Shimoda"); 1222 MODULE_ALIAS("platform:rspi"); 1223