1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SH RSPI driver 4 * 5 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 6 * Copyright (C) 2014 Glider bvba 7 * 8 * Based on spi-sh.c: 9 * Copyright (C) 2011 Renesas Solutions Corp. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 #include <linux/platform_device.h> 18 #include <linux/io.h> 19 #include <linux/clk.h> 20 #include <linux/dmaengine.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/of.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/reset.h> 25 #include <linux/sh_dma.h> 26 #include <linux/spi/spi.h> 27 #include <linux/spi/rspi.h> 28 #include <linux/spinlock.h> 29 30 #define RSPI_SPCR 0x00 /* Control Register */ 31 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 32 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 33 #define RSPI_SPSR 0x03 /* Status Register */ 34 #define RSPI_SPDR 0x04 /* Data Register */ 35 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 36 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 37 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 38 #define RSPI_SPDCR 0x0b /* Data Control Register */ 39 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 40 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 41 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 42 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 43 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 44 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 45 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 46 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 47 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 48 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 49 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 50 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 51 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 52 #define RSPI_NUM_SPCMD 8 53 #define RSPI_RZ_NUM_SPCMD 4 54 #define QSPI_NUM_SPCMD 4 55 56 /* RSPI on RZ only */ 57 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 58 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 59 60 /* QSPI only */ 61 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 62 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 63 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 64 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 65 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 66 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 67 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 68 69 /* SPCR - Control Register */ 70 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 71 #define SPCR_SPE 0x40 /* Function Enable */ 72 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 73 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 74 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 75 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 76 /* RSPI on SH only */ 77 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 78 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 79 /* QSPI on R-Car Gen2 only */ 80 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 81 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 82 83 /* SSLP - Slave Select Polarity Register */ 84 #define SSLP_SSLP(i) BIT(i) /* SSLi Signal Polarity Setting */ 85 86 /* SPPCR - Pin Control Register */ 87 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 88 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 89 #define SPPCR_SPOM 0x04 90 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 91 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 92 93 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 94 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 95 96 /* SPSR - Status Register */ 97 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 98 #define SPSR_TEND 0x40 /* Transmit End */ 99 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 100 #define SPSR_PERF 0x08 /* Parity Error Flag */ 101 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 102 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 103 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 104 105 /* SPSCR - Sequence Control Register */ 106 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 107 108 /* SPSSR - Sequence Status Register */ 109 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 110 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 111 112 /* SPDCR - Data Control Register */ 113 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 114 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 115 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 116 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 117 #define SPDCR_SPLWORD SPDCR_SPLW1 118 #define SPDCR_SPLBYTE SPDCR_SPLW0 119 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 120 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 121 #define SPDCR_SLSEL1 0x08 122 #define SPDCR_SLSEL0 0x04 123 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 124 #define SPDCR_SPFC1 0x02 125 #define SPDCR_SPFC0 0x01 126 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 127 128 /* SPCKD - Clock Delay Register */ 129 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 130 131 /* SSLND - Slave Select Negation Delay Register */ 132 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 133 134 /* SPND - Next-Access Delay Register */ 135 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 136 137 /* SPCR2 - Control Register 2 */ 138 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 139 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 140 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 141 #define SPCR2_SPPE 0x01 /* Parity Enable */ 142 143 /* SPCMDn - Command Registers */ 144 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 145 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 146 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 147 #define SPCMD_LSBF 0x1000 /* LSB First */ 148 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 149 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 150 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 151 #define SPCMD_SPB_16BIT 0x0100 152 #define SPCMD_SPB_20BIT 0x0000 153 #define SPCMD_SPB_24BIT 0x0100 154 #define SPCMD_SPB_32BIT 0x0200 155 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 156 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 157 #define SPCMD_SPIMOD1 0x0040 158 #define SPCMD_SPIMOD0 0x0020 159 #define SPCMD_SPIMOD_SINGLE 0 160 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 161 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 162 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 163 #define SPCMD_SSLA(i) ((i) << 4) /* SSL Assert Signal Setting */ 164 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 165 #define SPCMD_BRDV(brdv) ((brdv) << 2) 166 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 167 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 168 169 /* SPBFCR - Buffer Control Register */ 170 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 171 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 172 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 173 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 174 /* QSPI on R-Car Gen2 */ 175 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 176 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 177 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 178 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 179 180 #define QSPI_BUFFER_SIZE 32u 181 182 struct rspi_data { 183 void __iomem *addr; 184 u32 speed_hz; 185 struct spi_controller *ctlr; 186 struct platform_device *pdev; 187 wait_queue_head_t wait; 188 spinlock_t lock; /* Protects RMW-access to RSPI_SSLP */ 189 struct clk *clk; 190 u16 spcmd; 191 u8 spsr; 192 u8 sppcr; 193 int rx_irq, tx_irq; 194 const struct spi_ops *ops; 195 196 unsigned dma_callbacked:1; 197 unsigned byte_access:1; 198 }; 199 200 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 201 { 202 iowrite8(data, rspi->addr + offset); 203 } 204 205 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 206 { 207 iowrite16(data, rspi->addr + offset); 208 } 209 210 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 211 { 212 iowrite32(data, rspi->addr + offset); 213 } 214 215 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 216 { 217 return ioread8(rspi->addr + offset); 218 } 219 220 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 221 { 222 return ioread16(rspi->addr + offset); 223 } 224 225 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 226 { 227 if (rspi->byte_access) 228 rspi_write8(rspi, data, RSPI_SPDR); 229 else /* 16 bit */ 230 rspi_write16(rspi, data, RSPI_SPDR); 231 } 232 233 static u16 rspi_read_data(const struct rspi_data *rspi) 234 { 235 if (rspi->byte_access) 236 return rspi_read8(rspi, RSPI_SPDR); 237 else /* 16 bit */ 238 return rspi_read16(rspi, RSPI_SPDR); 239 } 240 241 /* optional functions */ 242 struct spi_ops { 243 int (*set_config_register)(struct rspi_data *rspi, int access_size); 244 int (*transfer_one)(struct spi_controller *ctlr, 245 struct spi_device *spi, struct spi_transfer *xfer); 246 u16 extra_mode_bits; 247 u16 min_div; 248 u16 max_div; 249 u16 flags; 250 u16 fifo_size; 251 u8 num_hw_ss; 252 }; 253 254 static void rspi_set_rate(struct rspi_data *rspi) 255 { 256 unsigned long clksrc; 257 int brdv = 0, spbr; 258 259 clksrc = clk_get_rate(rspi->clk); 260 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz) - 1; 261 while (spbr > 255 && brdv < 3) { 262 brdv++; 263 spbr = DIV_ROUND_UP(spbr + 1, 2) - 1; 264 } 265 266 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 267 rspi->spcmd |= SPCMD_BRDV(brdv); 268 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * (spbr + 1)); 269 } 270 271 /* 272 * functions for RSPI on legacy SH 273 */ 274 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 275 { 276 /* Sets output mode, MOSI signal, and (optionally) loopback */ 277 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 278 279 /* Sets transfer bit rate */ 280 rspi_set_rate(rspi); 281 282 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 283 rspi_write8(rspi, 0, RSPI_SPDCR); 284 rspi->byte_access = 0; 285 286 /* Sets RSPCK, SSL, next-access delay value */ 287 rspi_write8(rspi, 0x00, RSPI_SPCKD); 288 rspi_write8(rspi, 0x00, RSPI_SSLND); 289 rspi_write8(rspi, 0x00, RSPI_SPND); 290 291 /* Sets parity, interrupt mask */ 292 rspi_write8(rspi, 0x00, RSPI_SPCR2); 293 294 /* Resets sequencer */ 295 rspi_write8(rspi, 0, RSPI_SPSCR); 296 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 297 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 298 299 /* Sets RSPI mode */ 300 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 301 302 return 0; 303 } 304 305 /* 306 * functions for RSPI on RZ 307 */ 308 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 309 { 310 /* Sets output mode, MOSI signal, and (optionally) loopback */ 311 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 312 313 /* Sets transfer bit rate */ 314 rspi_set_rate(rspi); 315 316 /* Disable dummy transmission, set byte access */ 317 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 318 rspi->byte_access = 1; 319 320 /* Sets RSPCK, SSL, next-access delay value */ 321 rspi_write8(rspi, 0x00, RSPI_SPCKD); 322 rspi_write8(rspi, 0x00, RSPI_SSLND); 323 rspi_write8(rspi, 0x00, RSPI_SPND); 324 325 /* Resets sequencer */ 326 rspi_write8(rspi, 0, RSPI_SPSCR); 327 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 328 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 329 330 /* Sets RSPI mode */ 331 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 332 333 return 0; 334 } 335 336 /* 337 * functions for QSPI 338 */ 339 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 340 { 341 unsigned long clksrc; 342 int brdv = 0, spbr; 343 344 /* Sets output mode, MOSI signal, and (optionally) loopback */ 345 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 346 347 /* Sets transfer bit rate */ 348 clksrc = clk_get_rate(rspi->clk); 349 if (rspi->speed_hz >= clksrc) { 350 spbr = 0; 351 rspi->speed_hz = clksrc; 352 } else { 353 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->speed_hz); 354 while (spbr > 255 && brdv < 3) { 355 brdv++; 356 spbr = DIV_ROUND_UP(spbr, 2); 357 } 358 spbr = clamp(spbr, 0, 255); 359 rspi->speed_hz = DIV_ROUND_UP(clksrc, (2U << brdv) * spbr); 360 } 361 rspi_write8(rspi, spbr, RSPI_SPBR); 362 rspi->spcmd |= SPCMD_BRDV(brdv); 363 364 /* Disable dummy transmission, set byte access */ 365 rspi_write8(rspi, 0, RSPI_SPDCR); 366 rspi->byte_access = 1; 367 368 /* Sets RSPCK, SSL, next-access delay value */ 369 rspi_write8(rspi, 0x00, RSPI_SPCKD); 370 rspi_write8(rspi, 0x00, RSPI_SSLND); 371 rspi_write8(rspi, 0x00, RSPI_SPND); 372 373 /* Data Length Setting */ 374 if (access_size == 8) 375 rspi->spcmd |= SPCMD_SPB_8BIT; 376 else if (access_size == 16) 377 rspi->spcmd |= SPCMD_SPB_16BIT; 378 else 379 rspi->spcmd |= SPCMD_SPB_32BIT; 380 381 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 382 383 /* Resets transfer data length */ 384 rspi_write32(rspi, 0, QSPI_SPBMUL0); 385 386 /* Resets transmit and receive buffer */ 387 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 388 /* Sets buffer to allow normal operation */ 389 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 390 391 /* Resets sequencer */ 392 rspi_write8(rspi, 0, RSPI_SPSCR); 393 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 394 395 /* Sets RSPI mode */ 396 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 397 398 return 0; 399 } 400 401 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 402 { 403 u8 data; 404 405 data = rspi_read8(rspi, reg); 406 data &= ~mask; 407 data |= (val & mask); 408 rspi_write8(rspi, data, reg); 409 } 410 411 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, 412 unsigned int len) 413 { 414 unsigned int n; 415 416 n = min(len, QSPI_BUFFER_SIZE); 417 418 if (len >= QSPI_BUFFER_SIZE) { 419 /* sets triggering number to 32 bytes */ 420 qspi_update(rspi, SPBFCR_TXTRG_MASK, 421 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 422 } else { 423 /* sets triggering number to 1 byte */ 424 qspi_update(rspi, SPBFCR_TXTRG_MASK, 425 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 426 } 427 428 return n; 429 } 430 431 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 432 { 433 unsigned int n; 434 435 n = min(len, QSPI_BUFFER_SIZE); 436 437 if (len >= QSPI_BUFFER_SIZE) { 438 /* sets triggering number to 32 bytes */ 439 qspi_update(rspi, SPBFCR_RXTRG_MASK, 440 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 441 } else { 442 /* sets triggering number to 1 byte */ 443 qspi_update(rspi, SPBFCR_RXTRG_MASK, 444 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 445 } 446 return n; 447 } 448 449 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 450 { 451 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 452 } 453 454 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 455 { 456 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 457 } 458 459 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 460 u8 enable_bit) 461 { 462 int ret; 463 464 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 465 if (rspi->spsr & wait_mask) 466 return 0; 467 468 rspi_enable_irq(rspi, enable_bit); 469 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 470 if (ret == 0 && !(rspi->spsr & wait_mask)) 471 return -ETIMEDOUT; 472 473 return 0; 474 } 475 476 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 477 { 478 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 479 } 480 481 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 482 { 483 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 484 } 485 486 static int rspi_data_out(struct rspi_data *rspi, u8 data) 487 { 488 int error = rspi_wait_for_tx_empty(rspi); 489 if (error < 0) { 490 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 491 return error; 492 } 493 rspi_write_data(rspi, data); 494 return 0; 495 } 496 497 static int rspi_data_in(struct rspi_data *rspi) 498 { 499 int error; 500 u8 data; 501 502 error = rspi_wait_for_rx_full(rspi); 503 if (error < 0) { 504 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 505 return error; 506 } 507 data = rspi_read_data(rspi); 508 return data; 509 } 510 511 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 512 unsigned int n) 513 { 514 while (n-- > 0) { 515 if (tx) { 516 int ret = rspi_data_out(rspi, *tx++); 517 if (ret < 0) 518 return ret; 519 } 520 if (rx) { 521 int ret = rspi_data_in(rspi); 522 if (ret < 0) 523 return ret; 524 *rx++ = ret; 525 } 526 } 527 528 return 0; 529 } 530 531 static void rspi_dma_complete(void *arg) 532 { 533 struct rspi_data *rspi = arg; 534 535 rspi->dma_callbacked = 1; 536 wake_up_interruptible(&rspi->wait); 537 } 538 539 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 540 struct sg_table *rx) 541 { 542 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 543 u8 irq_mask = 0; 544 unsigned int other_irq = 0; 545 dma_cookie_t cookie; 546 int ret; 547 548 /* First prepare and submit the DMA request(s), as this may fail */ 549 if (rx) { 550 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl, 551 rx->nents, DMA_DEV_TO_MEM, 552 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 553 if (!desc_rx) { 554 ret = -EAGAIN; 555 goto no_dma_rx; 556 } 557 558 desc_rx->callback = rspi_dma_complete; 559 desc_rx->callback_param = rspi; 560 cookie = dmaengine_submit(desc_rx); 561 if (dma_submit_error(cookie)) { 562 ret = cookie; 563 goto no_dma_rx; 564 } 565 566 irq_mask |= SPCR_SPRIE; 567 } 568 569 if (tx) { 570 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl, 571 tx->nents, DMA_MEM_TO_DEV, 572 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 573 if (!desc_tx) { 574 ret = -EAGAIN; 575 goto no_dma_tx; 576 } 577 578 if (rx) { 579 /* No callback */ 580 desc_tx->callback = NULL; 581 } else { 582 desc_tx->callback = rspi_dma_complete; 583 desc_tx->callback_param = rspi; 584 } 585 cookie = dmaengine_submit(desc_tx); 586 if (dma_submit_error(cookie)) { 587 ret = cookie; 588 goto no_dma_tx; 589 } 590 591 irq_mask |= SPCR_SPTIE; 592 } 593 594 /* 595 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 596 * called. So, this driver disables the IRQ while DMA transfer. 597 */ 598 if (tx) 599 disable_irq(other_irq = rspi->tx_irq); 600 if (rx && rspi->rx_irq != other_irq) 601 disable_irq(rspi->rx_irq); 602 603 rspi_enable_irq(rspi, irq_mask); 604 rspi->dma_callbacked = 0; 605 606 /* Now start DMA */ 607 if (rx) 608 dma_async_issue_pending(rspi->ctlr->dma_rx); 609 if (tx) 610 dma_async_issue_pending(rspi->ctlr->dma_tx); 611 612 ret = wait_event_interruptible_timeout(rspi->wait, 613 rspi->dma_callbacked, HZ); 614 if (ret > 0 && rspi->dma_callbacked) { 615 ret = 0; 616 if (tx) 617 dmaengine_synchronize(rspi->ctlr->dma_tx); 618 if (rx) 619 dmaengine_synchronize(rspi->ctlr->dma_rx); 620 } else { 621 if (!ret) { 622 dev_err(&rspi->ctlr->dev, "DMA timeout\n"); 623 ret = -ETIMEDOUT; 624 } 625 if (tx) 626 dmaengine_terminate_sync(rspi->ctlr->dma_tx); 627 if (rx) 628 dmaengine_terminate_sync(rspi->ctlr->dma_rx); 629 } 630 631 rspi_disable_irq(rspi, irq_mask); 632 633 if (tx) 634 enable_irq(rspi->tx_irq); 635 if (rx && rspi->rx_irq != other_irq) 636 enable_irq(rspi->rx_irq); 637 638 return ret; 639 640 no_dma_tx: 641 if (rx) 642 dmaengine_terminate_sync(rspi->ctlr->dma_rx); 643 no_dma_rx: 644 if (ret == -EAGAIN) { 645 dev_warn_once(&rspi->ctlr->dev, 646 "DMA not available, falling back to PIO\n"); 647 } 648 return ret; 649 } 650 651 static void rspi_receive_init(const struct rspi_data *rspi) 652 { 653 u8 spsr; 654 655 spsr = rspi_read8(rspi, RSPI_SPSR); 656 if (spsr & SPSR_SPRF) 657 rspi_read_data(rspi); /* dummy read */ 658 if (spsr & SPSR_OVRF) 659 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 660 RSPI_SPSR); 661 } 662 663 static void rspi_rz_receive_init(const struct rspi_data *rspi) 664 { 665 rspi_receive_init(rspi); 666 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 667 rspi_write8(rspi, 0, RSPI_SPBFCR); 668 } 669 670 static void qspi_receive_init(const struct rspi_data *rspi) 671 { 672 u8 spsr; 673 674 spsr = rspi_read8(rspi, RSPI_SPSR); 675 if (spsr & SPSR_SPRF) 676 rspi_read_data(rspi); /* dummy read */ 677 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 678 rspi_write8(rspi, 0, QSPI_SPBFCR); 679 } 680 681 static bool __rspi_can_dma(const struct rspi_data *rspi, 682 const struct spi_transfer *xfer) 683 { 684 return xfer->len > rspi->ops->fifo_size; 685 } 686 687 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi, 688 struct spi_transfer *xfer) 689 { 690 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 691 692 return __rspi_can_dma(rspi, xfer); 693 } 694 695 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 696 struct spi_transfer *xfer) 697 { 698 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer)) 699 return -EAGAIN; 700 701 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 702 return rspi_dma_transfer(rspi, &xfer->tx_sg, 703 xfer->rx_buf ? &xfer->rx_sg : NULL); 704 } 705 706 static int rspi_common_transfer(struct rspi_data *rspi, 707 struct spi_transfer *xfer) 708 { 709 int ret; 710 711 xfer->effective_speed_hz = rspi->speed_hz; 712 713 ret = rspi_dma_check_then_transfer(rspi, xfer); 714 if (ret != -EAGAIN) 715 return ret; 716 717 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 718 if (ret < 0) 719 return ret; 720 721 /* Wait for the last transmission */ 722 rspi_wait_for_tx_empty(rspi); 723 724 return 0; 725 } 726 727 static int rspi_transfer_one(struct spi_controller *ctlr, 728 struct spi_device *spi, struct spi_transfer *xfer) 729 { 730 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 731 u8 spcr; 732 733 spcr = rspi_read8(rspi, RSPI_SPCR); 734 if (xfer->rx_buf) { 735 rspi_receive_init(rspi); 736 spcr &= ~SPCR_TXMD; 737 } else { 738 spcr |= SPCR_TXMD; 739 } 740 rspi_write8(rspi, spcr, RSPI_SPCR); 741 742 return rspi_common_transfer(rspi, xfer); 743 } 744 745 static int rspi_rz_transfer_one(struct spi_controller *ctlr, 746 struct spi_device *spi, 747 struct spi_transfer *xfer) 748 { 749 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 750 751 rspi_rz_receive_init(rspi); 752 753 return rspi_common_transfer(rspi, xfer); 754 } 755 756 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, 757 u8 *rx, unsigned int len) 758 { 759 unsigned int i, n; 760 int ret; 761 762 while (len > 0) { 763 n = qspi_set_send_trigger(rspi, len); 764 qspi_set_receive_trigger(rspi, len); 765 ret = rspi_wait_for_tx_empty(rspi); 766 if (ret < 0) { 767 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 768 return ret; 769 } 770 for (i = 0; i < n; i++) 771 rspi_write_data(rspi, *tx++); 772 773 ret = rspi_wait_for_rx_full(rspi); 774 if (ret < 0) { 775 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 776 return ret; 777 } 778 for (i = 0; i < n; i++) 779 *rx++ = rspi_read_data(rspi); 780 781 len -= n; 782 } 783 784 return 0; 785 } 786 787 static int qspi_transfer_out_in(struct rspi_data *rspi, 788 struct spi_transfer *xfer) 789 { 790 int ret; 791 792 qspi_receive_init(rspi); 793 794 ret = rspi_dma_check_then_transfer(rspi, xfer); 795 if (ret != -EAGAIN) 796 return ret; 797 798 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, 799 xfer->rx_buf, xfer->len); 800 } 801 802 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 803 { 804 const u8 *tx = xfer->tx_buf; 805 unsigned int n = xfer->len; 806 unsigned int i, len; 807 int ret; 808 809 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 810 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 811 if (ret != -EAGAIN) 812 return ret; 813 } 814 815 while (n > 0) { 816 len = qspi_set_send_trigger(rspi, n); 817 ret = rspi_wait_for_tx_empty(rspi); 818 if (ret < 0) { 819 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 820 return ret; 821 } 822 for (i = 0; i < len; i++) 823 rspi_write_data(rspi, *tx++); 824 825 n -= len; 826 } 827 828 /* Wait for the last transmission */ 829 rspi_wait_for_tx_empty(rspi); 830 831 return 0; 832 } 833 834 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 835 { 836 u8 *rx = xfer->rx_buf; 837 unsigned int n = xfer->len; 838 unsigned int i, len; 839 int ret; 840 841 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 842 ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 843 if (ret != -EAGAIN) 844 return ret; 845 } 846 847 while (n > 0) { 848 len = qspi_set_receive_trigger(rspi, n); 849 ret = rspi_wait_for_rx_full(rspi); 850 if (ret < 0) { 851 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 852 return ret; 853 } 854 for (i = 0; i < len; i++) 855 *rx++ = rspi_read_data(rspi); 856 857 n -= len; 858 } 859 860 return 0; 861 } 862 863 static int qspi_transfer_one(struct spi_controller *ctlr, 864 struct spi_device *spi, struct spi_transfer *xfer) 865 { 866 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 867 868 xfer->effective_speed_hz = rspi->speed_hz; 869 if (spi->mode & SPI_LOOP) { 870 return qspi_transfer_out_in(rspi, xfer); 871 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 872 /* Quad or Dual SPI Write */ 873 return qspi_transfer_out(rspi, xfer); 874 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 875 /* Quad or Dual SPI Read */ 876 return qspi_transfer_in(rspi, xfer); 877 } else { 878 /* Single SPI Transfer */ 879 return qspi_transfer_out_in(rspi, xfer); 880 } 881 } 882 883 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 884 { 885 if (xfer->tx_buf) 886 switch (xfer->tx_nbits) { 887 case SPI_NBITS_QUAD: 888 return SPCMD_SPIMOD_QUAD; 889 case SPI_NBITS_DUAL: 890 return SPCMD_SPIMOD_DUAL; 891 default: 892 return 0; 893 } 894 if (xfer->rx_buf) 895 switch (xfer->rx_nbits) { 896 case SPI_NBITS_QUAD: 897 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 898 case SPI_NBITS_DUAL: 899 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 900 default: 901 return 0; 902 } 903 904 return 0; 905 } 906 907 static int qspi_setup_sequencer(struct rspi_data *rspi, 908 const struct spi_message *msg) 909 { 910 const struct spi_transfer *xfer; 911 unsigned int i = 0, len = 0; 912 u16 current_mode = 0xffff, mode; 913 914 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 915 mode = qspi_transfer_mode(xfer); 916 if (mode == current_mode) { 917 len += xfer->len; 918 continue; 919 } 920 921 /* Transfer mode change */ 922 if (i) { 923 /* Set transfer data length of previous transfer */ 924 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 925 } 926 927 if (i >= QSPI_NUM_SPCMD) { 928 dev_err(&msg->spi->dev, 929 "Too many different transfer modes"); 930 return -EINVAL; 931 } 932 933 /* Program transfer mode for this transfer */ 934 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 935 current_mode = mode; 936 len = xfer->len; 937 i++; 938 } 939 if (i) { 940 /* Set final transfer data length and sequence length */ 941 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 942 rspi_write8(rspi, i - 1, RSPI_SPSCR); 943 } 944 945 return 0; 946 } 947 948 static int rspi_setup(struct spi_device *spi) 949 { 950 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller); 951 u8 sslp; 952 953 if (spi_get_csgpiod(spi, 0)) 954 return 0; 955 956 pm_runtime_get_sync(&rspi->pdev->dev); 957 spin_lock_irq(&rspi->lock); 958 959 sslp = rspi_read8(rspi, RSPI_SSLP); 960 if (spi->mode & SPI_CS_HIGH) 961 sslp |= SSLP_SSLP(spi_get_chipselect(spi, 0)); 962 else 963 sslp &= ~SSLP_SSLP(spi_get_chipselect(spi, 0)); 964 rspi_write8(rspi, sslp, RSPI_SSLP); 965 966 spin_unlock_irq(&rspi->lock); 967 pm_runtime_put(&rspi->pdev->dev); 968 return 0; 969 } 970 971 static int rspi_prepare_message(struct spi_controller *ctlr, 972 struct spi_message *msg) 973 { 974 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 975 struct spi_device *spi = msg->spi; 976 const struct spi_transfer *xfer; 977 int ret; 978 979 /* 980 * As the Bit Rate Register must not be changed while the device is 981 * active, all transfers in a message must use the same bit rate. 982 * In theory, the sequencer could be enabled, and each Command Register 983 * could divide the base bit rate by a different value. 984 * However, most RSPI variants do not have Transfer Data Length 985 * Multiplier Setting Registers, so each sequence step would be limited 986 * to a single word, making this feature unsuitable for large 987 * transfers, which would gain most from it. 988 */ 989 rspi->speed_hz = spi->max_speed_hz; 990 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 991 if (xfer->speed_hz < rspi->speed_hz) 992 rspi->speed_hz = xfer->speed_hz; 993 } 994 995 rspi->spcmd = SPCMD_SSLKP; 996 if (spi->mode & SPI_CPOL) 997 rspi->spcmd |= SPCMD_CPOL; 998 if (spi->mode & SPI_CPHA) 999 rspi->spcmd |= SPCMD_CPHA; 1000 if (spi->mode & SPI_LSB_FIRST) 1001 rspi->spcmd |= SPCMD_LSBF; 1002 1003 /* Configure slave signal to assert */ 1004 rspi->spcmd |= SPCMD_SSLA(spi_get_csgpiod(spi, 0) ? rspi->ctlr->unused_native_cs 1005 : spi_get_chipselect(spi, 0)); 1006 1007 /* CMOS output mode and MOSI signal from previous transfer */ 1008 rspi->sppcr = 0; 1009 if (spi->mode & SPI_LOOP) 1010 rspi->sppcr |= SPPCR_SPLP; 1011 1012 rspi->ops->set_config_register(rspi, 8); 1013 1014 if (msg->spi->mode & 1015 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 1016 /* Setup sequencer for messages with multiple transfer modes */ 1017 ret = qspi_setup_sequencer(rspi, msg); 1018 if (ret < 0) 1019 return ret; 1020 } 1021 1022 /* Enable SPI function in master mode */ 1023 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 1024 return 0; 1025 } 1026 1027 static int rspi_unprepare_message(struct spi_controller *ctlr, 1028 struct spi_message *msg) 1029 { 1030 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 1031 1032 /* Disable SPI function */ 1033 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 1034 1035 /* Reset sequencer for Single SPI Transfers */ 1036 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 1037 rspi_write8(rspi, 0, RSPI_SPSCR); 1038 return 0; 1039 } 1040 1041 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 1042 { 1043 struct rspi_data *rspi = _sr; 1044 u8 spsr; 1045 irqreturn_t ret = IRQ_NONE; 1046 u8 disable_irq = 0; 1047 1048 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1049 if (spsr & SPSR_SPRF) 1050 disable_irq |= SPCR_SPRIE; 1051 if (spsr & SPSR_SPTEF) 1052 disable_irq |= SPCR_SPTIE; 1053 1054 if (disable_irq) { 1055 ret = IRQ_HANDLED; 1056 rspi_disable_irq(rspi, disable_irq); 1057 wake_up(&rspi->wait); 1058 } 1059 1060 return ret; 1061 } 1062 1063 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 1064 { 1065 struct rspi_data *rspi = _sr; 1066 u8 spsr; 1067 1068 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1069 if (spsr & SPSR_SPRF) { 1070 rspi_disable_irq(rspi, SPCR_SPRIE); 1071 wake_up(&rspi->wait); 1072 return IRQ_HANDLED; 1073 } 1074 1075 return 0; 1076 } 1077 1078 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 1079 { 1080 struct rspi_data *rspi = _sr; 1081 u8 spsr; 1082 1083 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1084 if (spsr & SPSR_SPTEF) { 1085 rspi_disable_irq(rspi, SPCR_SPTIE); 1086 wake_up(&rspi->wait); 1087 return IRQ_HANDLED; 1088 } 1089 1090 return 0; 1091 } 1092 1093 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 1094 enum dma_transfer_direction dir, 1095 unsigned int id, 1096 dma_addr_t port_addr) 1097 { 1098 dma_cap_mask_t mask; 1099 struct dma_chan *chan; 1100 struct dma_slave_config cfg; 1101 int ret; 1102 1103 dma_cap_zero(mask); 1104 dma_cap_set(DMA_SLAVE, mask); 1105 1106 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1107 (void *)(unsigned long)id, dev, 1108 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1109 if (!chan) { 1110 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1111 return NULL; 1112 } 1113 1114 memset(&cfg, 0, sizeof(cfg)); 1115 cfg.dst_addr = port_addr + RSPI_SPDR; 1116 cfg.src_addr = port_addr + RSPI_SPDR; 1117 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1118 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1119 cfg.direction = dir; 1120 1121 ret = dmaengine_slave_config(chan, &cfg); 1122 if (ret) { 1123 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1124 dma_release_channel(chan); 1125 return NULL; 1126 } 1127 1128 return chan; 1129 } 1130 1131 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr, 1132 const struct resource *res) 1133 { 1134 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1135 unsigned int dma_tx_id, dma_rx_id; 1136 1137 if (dev->of_node) { 1138 /* In the OF case we will get the slave IDs from the DT */ 1139 dma_tx_id = 0; 1140 dma_rx_id = 0; 1141 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1142 dma_tx_id = rspi_pd->dma_tx_id; 1143 dma_rx_id = rspi_pd->dma_rx_id; 1144 } else { 1145 /* The driver assumes no error. */ 1146 return 0; 1147 } 1148 1149 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1150 res->start); 1151 if (!ctlr->dma_tx) 1152 return -ENODEV; 1153 1154 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1155 res->start); 1156 if (!ctlr->dma_rx) { 1157 dma_release_channel(ctlr->dma_tx); 1158 ctlr->dma_tx = NULL; 1159 return -ENODEV; 1160 } 1161 1162 ctlr->can_dma = rspi_can_dma; 1163 dev_info(dev, "DMA available"); 1164 return 0; 1165 } 1166 1167 static void rspi_release_dma(struct spi_controller *ctlr) 1168 { 1169 if (ctlr->dma_tx) 1170 dma_release_channel(ctlr->dma_tx); 1171 if (ctlr->dma_rx) 1172 dma_release_channel(ctlr->dma_rx); 1173 } 1174 1175 static void rspi_remove(struct platform_device *pdev) 1176 { 1177 struct rspi_data *rspi = platform_get_drvdata(pdev); 1178 1179 rspi_release_dma(rspi->ctlr); 1180 pm_runtime_disable(&pdev->dev); 1181 } 1182 1183 static const struct spi_ops rspi_ops = { 1184 .set_config_register = rspi_set_config_register, 1185 .transfer_one = rspi_transfer_one, 1186 .min_div = 2, 1187 .max_div = 4096, 1188 .flags = SPI_CONTROLLER_MUST_TX, 1189 .fifo_size = 8, 1190 .num_hw_ss = 2, 1191 }; 1192 1193 static const struct spi_ops rspi_rz_ops __maybe_unused = { 1194 .set_config_register = rspi_rz_set_config_register, 1195 .transfer_one = rspi_rz_transfer_one, 1196 .min_div = 2, 1197 .max_div = 4096, 1198 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1199 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1200 .num_hw_ss = 1, 1201 }; 1202 1203 static const struct spi_ops qspi_ops __maybe_unused = { 1204 .set_config_register = qspi_set_config_register, 1205 .transfer_one = qspi_transfer_one, 1206 .extra_mode_bits = SPI_TX_DUAL | SPI_TX_QUAD | 1207 SPI_RX_DUAL | SPI_RX_QUAD, 1208 .min_div = 1, 1209 .max_div = 4080, 1210 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1211 .fifo_size = 32, 1212 .num_hw_ss = 1, 1213 }; 1214 1215 static const struct of_device_id rspi_of_match[] __maybe_unused = { 1216 /* RSPI on legacy SH */ 1217 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1218 /* RSPI on RZ/A1H */ 1219 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1220 /* QSPI on R-Car Gen2 */ 1221 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1222 { /* sentinel */ } 1223 }; 1224 1225 MODULE_DEVICE_TABLE(of, rspi_of_match); 1226 1227 #ifdef CONFIG_OF 1228 static void rspi_reset_control_assert(void *data) 1229 { 1230 reset_control_assert(data); 1231 } 1232 1233 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1234 { 1235 struct reset_control *rstc; 1236 u32 num_cs; 1237 int error; 1238 1239 /* Parse DT properties */ 1240 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1241 if (error) { 1242 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1243 return error; 1244 } 1245 1246 ctlr->num_chipselect = num_cs; 1247 1248 rstc = devm_reset_control_get_optional_exclusive(dev, NULL); 1249 if (IS_ERR(rstc)) 1250 return dev_err_probe(dev, PTR_ERR(rstc), 1251 "failed to get reset ctrl\n"); 1252 1253 error = reset_control_deassert(rstc); 1254 if (error) { 1255 dev_err(dev, "failed to deassert reset %d\n", error); 1256 return error; 1257 } 1258 1259 error = devm_add_action_or_reset(dev, rspi_reset_control_assert, rstc); 1260 if (error) { 1261 dev_err(dev, "failed to register assert devm action, %d\n", error); 1262 return error; 1263 } 1264 1265 return 0; 1266 } 1267 #else 1268 #define rspi_of_match NULL 1269 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1270 { 1271 return -EINVAL; 1272 } 1273 #endif /* CONFIG_OF */ 1274 1275 static int rspi_request_irq(struct device *dev, unsigned int irq, 1276 irq_handler_t handler, const char *suffix, 1277 void *dev_id) 1278 { 1279 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1280 dev_name(dev), suffix); 1281 if (!name) 1282 return -ENOMEM; 1283 1284 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1285 } 1286 1287 static int rspi_probe(struct platform_device *pdev) 1288 { 1289 struct resource *res; 1290 struct spi_controller *ctlr; 1291 struct rspi_data *rspi; 1292 int ret; 1293 const struct rspi_plat_data *rspi_pd; 1294 const struct spi_ops *ops; 1295 unsigned long clksrc; 1296 1297 ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rspi_data)); 1298 if (ctlr == NULL) 1299 return -ENOMEM; 1300 1301 ops = of_device_get_match_data(&pdev->dev); 1302 if (ops) { 1303 ret = rspi_parse_dt(&pdev->dev, ctlr); 1304 if (ret) 1305 goto error1; 1306 } else { 1307 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1308 rspi_pd = dev_get_platdata(&pdev->dev); 1309 if (rspi_pd && rspi_pd->num_chipselect) 1310 ctlr->num_chipselect = rspi_pd->num_chipselect; 1311 else 1312 ctlr->num_chipselect = 2; /* default */ 1313 } 1314 1315 rspi = spi_controller_get_devdata(ctlr); 1316 platform_set_drvdata(pdev, rspi); 1317 rspi->ops = ops; 1318 rspi->ctlr = ctlr; 1319 1320 rspi->addr = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1321 if (IS_ERR(rspi->addr)) { 1322 ret = PTR_ERR(rspi->addr); 1323 goto error1; 1324 } 1325 1326 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1327 if (IS_ERR(rspi->clk)) { 1328 dev_err(&pdev->dev, "cannot get clock\n"); 1329 ret = PTR_ERR(rspi->clk); 1330 goto error1; 1331 } 1332 1333 rspi->pdev = pdev; 1334 pm_runtime_enable(&pdev->dev); 1335 1336 init_waitqueue_head(&rspi->wait); 1337 spin_lock_init(&rspi->lock); 1338 1339 ctlr->bus_num = pdev->id; 1340 ctlr->setup = rspi_setup; 1341 ctlr->auto_runtime_pm = true; 1342 ctlr->transfer_one = ops->transfer_one; 1343 ctlr->prepare_message = rspi_prepare_message; 1344 ctlr->unprepare_message = rspi_unprepare_message; 1345 ctlr->mode_bits = SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST | 1346 SPI_LOOP | ops->extra_mode_bits; 1347 clksrc = clk_get_rate(rspi->clk); 1348 ctlr->min_speed_hz = DIV_ROUND_UP(clksrc, ops->max_div); 1349 ctlr->max_speed_hz = DIV_ROUND_UP(clksrc, ops->min_div); 1350 ctlr->flags = ops->flags; 1351 ctlr->dev.of_node = pdev->dev.of_node; 1352 ctlr->use_gpio_descriptors = true; 1353 ctlr->max_native_cs = rspi->ops->num_hw_ss; 1354 1355 ret = platform_get_irq_byname_optional(pdev, "rx"); 1356 if (ret < 0) { 1357 ret = platform_get_irq_byname_optional(pdev, "mux"); 1358 if (ret < 0) 1359 ret = platform_get_irq(pdev, 0); 1360 if (ret >= 0) 1361 rspi->rx_irq = rspi->tx_irq = ret; 1362 } else { 1363 rspi->rx_irq = ret; 1364 ret = platform_get_irq_byname(pdev, "tx"); 1365 if (ret >= 0) 1366 rspi->tx_irq = ret; 1367 } 1368 1369 if (rspi->rx_irq == rspi->tx_irq) { 1370 /* Single multiplexed interrupt */ 1371 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1372 "mux", rspi); 1373 } else { 1374 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1375 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1376 "rx", rspi); 1377 if (!ret) 1378 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1379 rspi_irq_tx, "tx", rspi); 1380 } 1381 if (ret < 0) { 1382 dev_err(&pdev->dev, "request_irq error\n"); 1383 goto error2; 1384 } 1385 1386 ret = rspi_request_dma(&pdev->dev, ctlr, res); 1387 if (ret < 0) 1388 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1389 1390 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1391 if (ret < 0) { 1392 dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); 1393 goto error3; 1394 } 1395 1396 dev_info(&pdev->dev, "probed\n"); 1397 1398 return 0; 1399 1400 error3: 1401 rspi_release_dma(ctlr); 1402 error2: 1403 pm_runtime_disable(&pdev->dev); 1404 error1: 1405 spi_controller_put(ctlr); 1406 1407 return ret; 1408 } 1409 1410 static const struct platform_device_id spi_driver_ids[] = { 1411 { "rspi", (kernel_ulong_t)&rspi_ops }, 1412 {}, 1413 }; 1414 1415 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1416 1417 #ifdef CONFIG_PM_SLEEP 1418 static int rspi_suspend(struct device *dev) 1419 { 1420 struct rspi_data *rspi = dev_get_drvdata(dev); 1421 1422 return spi_controller_suspend(rspi->ctlr); 1423 } 1424 1425 static int rspi_resume(struct device *dev) 1426 { 1427 struct rspi_data *rspi = dev_get_drvdata(dev); 1428 1429 return spi_controller_resume(rspi->ctlr); 1430 } 1431 1432 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume); 1433 #define DEV_PM_OPS &rspi_pm_ops 1434 #else 1435 #define DEV_PM_OPS NULL 1436 #endif /* CONFIG_PM_SLEEP */ 1437 1438 static struct platform_driver rspi_driver = { 1439 .probe = rspi_probe, 1440 .remove_new = rspi_remove, 1441 .id_table = spi_driver_ids, 1442 .driver = { 1443 .name = "renesas_spi", 1444 .pm = DEV_PM_OPS, 1445 .of_match_table = of_match_ptr(rspi_of_match), 1446 }, 1447 }; 1448 module_platform_driver(rspi_driver); 1449 1450 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1451 MODULE_LICENSE("GPL v2"); 1452 MODULE_AUTHOR("Yoshihiro Shimoda"); 1453