1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * SH RSPI driver 4 * 5 * Copyright (C) 2012, 2013 Renesas Solutions Corp. 6 * Copyright (C) 2014 Glider bvba 7 * 8 * Based on spi-sh.c: 9 * Copyright (C) 2011 Renesas Solutions Corp. 10 */ 11 12 #include <linux/module.h> 13 #include <linux/kernel.h> 14 #include <linux/sched.h> 15 #include <linux/errno.h> 16 #include <linux/interrupt.h> 17 #include <linux/platform_device.h> 18 #include <linux/io.h> 19 #include <linux/clk.h> 20 #include <linux/dmaengine.h> 21 #include <linux/dma-mapping.h> 22 #include <linux/of_device.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/sh_dma.h> 25 #include <linux/spi/spi.h> 26 #include <linux/spi/rspi.h> 27 28 #define RSPI_SPCR 0x00 /* Control Register */ 29 #define RSPI_SSLP 0x01 /* Slave Select Polarity Register */ 30 #define RSPI_SPPCR 0x02 /* Pin Control Register */ 31 #define RSPI_SPSR 0x03 /* Status Register */ 32 #define RSPI_SPDR 0x04 /* Data Register */ 33 #define RSPI_SPSCR 0x08 /* Sequence Control Register */ 34 #define RSPI_SPSSR 0x09 /* Sequence Status Register */ 35 #define RSPI_SPBR 0x0a /* Bit Rate Register */ 36 #define RSPI_SPDCR 0x0b /* Data Control Register */ 37 #define RSPI_SPCKD 0x0c /* Clock Delay Register */ 38 #define RSPI_SSLND 0x0d /* Slave Select Negation Delay Register */ 39 #define RSPI_SPND 0x0e /* Next-Access Delay Register */ 40 #define RSPI_SPCR2 0x0f /* Control Register 2 (SH only) */ 41 #define RSPI_SPCMD0 0x10 /* Command Register 0 */ 42 #define RSPI_SPCMD1 0x12 /* Command Register 1 */ 43 #define RSPI_SPCMD2 0x14 /* Command Register 2 */ 44 #define RSPI_SPCMD3 0x16 /* Command Register 3 */ 45 #define RSPI_SPCMD4 0x18 /* Command Register 4 */ 46 #define RSPI_SPCMD5 0x1a /* Command Register 5 */ 47 #define RSPI_SPCMD6 0x1c /* Command Register 6 */ 48 #define RSPI_SPCMD7 0x1e /* Command Register 7 */ 49 #define RSPI_SPCMD(i) (RSPI_SPCMD0 + (i) * 2) 50 #define RSPI_NUM_SPCMD 8 51 #define RSPI_RZ_NUM_SPCMD 4 52 #define QSPI_NUM_SPCMD 4 53 54 /* RSPI on RZ only */ 55 #define RSPI_SPBFCR 0x20 /* Buffer Control Register */ 56 #define RSPI_SPBFDR 0x22 /* Buffer Data Count Setting Register */ 57 58 /* QSPI only */ 59 #define QSPI_SPBFCR 0x18 /* Buffer Control Register */ 60 #define QSPI_SPBDCR 0x1a /* Buffer Data Count Register */ 61 #define QSPI_SPBMUL0 0x1c /* Transfer Data Length Multiplier Setting Register 0 */ 62 #define QSPI_SPBMUL1 0x20 /* Transfer Data Length Multiplier Setting Register 1 */ 63 #define QSPI_SPBMUL2 0x24 /* Transfer Data Length Multiplier Setting Register 2 */ 64 #define QSPI_SPBMUL3 0x28 /* Transfer Data Length Multiplier Setting Register 3 */ 65 #define QSPI_SPBMUL(i) (QSPI_SPBMUL0 + (i) * 4) 66 67 /* SPCR - Control Register */ 68 #define SPCR_SPRIE 0x80 /* Receive Interrupt Enable */ 69 #define SPCR_SPE 0x40 /* Function Enable */ 70 #define SPCR_SPTIE 0x20 /* Transmit Interrupt Enable */ 71 #define SPCR_SPEIE 0x10 /* Error Interrupt Enable */ 72 #define SPCR_MSTR 0x08 /* Master/Slave Mode Select */ 73 #define SPCR_MODFEN 0x04 /* Mode Fault Error Detection Enable */ 74 /* RSPI on SH only */ 75 #define SPCR_TXMD 0x02 /* TX Only Mode (vs. Full Duplex) */ 76 #define SPCR_SPMS 0x01 /* 3-wire Mode (vs. 4-wire) */ 77 /* QSPI on R-Car Gen2 only */ 78 #define SPCR_WSWAP 0x02 /* Word Swap of read-data for DMAC */ 79 #define SPCR_BSWAP 0x01 /* Byte Swap of read-data for DMAC */ 80 81 /* SSLP - Slave Select Polarity Register */ 82 #define SSLP_SSL1P 0x02 /* SSL1 Signal Polarity Setting */ 83 #define SSLP_SSL0P 0x01 /* SSL0 Signal Polarity Setting */ 84 85 /* SPPCR - Pin Control Register */ 86 #define SPPCR_MOIFE 0x20 /* MOSI Idle Value Fixing Enable */ 87 #define SPPCR_MOIFV 0x10 /* MOSI Idle Fixed Value */ 88 #define SPPCR_SPOM 0x04 89 #define SPPCR_SPLP2 0x02 /* Loopback Mode 2 (non-inverting) */ 90 #define SPPCR_SPLP 0x01 /* Loopback Mode (inverting) */ 91 92 #define SPPCR_IO3FV 0x04 /* Single-/Dual-SPI Mode IO3 Output Fixed Value */ 93 #define SPPCR_IO2FV 0x04 /* Single-/Dual-SPI Mode IO2 Output Fixed Value */ 94 95 /* SPSR - Status Register */ 96 #define SPSR_SPRF 0x80 /* Receive Buffer Full Flag */ 97 #define SPSR_TEND 0x40 /* Transmit End */ 98 #define SPSR_SPTEF 0x20 /* Transmit Buffer Empty Flag */ 99 #define SPSR_PERF 0x08 /* Parity Error Flag */ 100 #define SPSR_MODF 0x04 /* Mode Fault Error Flag */ 101 #define SPSR_IDLNF 0x02 /* RSPI Idle Flag */ 102 #define SPSR_OVRF 0x01 /* Overrun Error Flag (RSPI only) */ 103 104 /* SPSCR - Sequence Control Register */ 105 #define SPSCR_SPSLN_MASK 0x07 /* Sequence Length Specification */ 106 107 /* SPSSR - Sequence Status Register */ 108 #define SPSSR_SPECM_MASK 0x70 /* Command Error Mask */ 109 #define SPSSR_SPCP_MASK 0x07 /* Command Pointer Mask */ 110 111 /* SPDCR - Data Control Register */ 112 #define SPDCR_TXDMY 0x80 /* Dummy Data Transmission Enable */ 113 #define SPDCR_SPLW1 0x40 /* Access Width Specification (RZ) */ 114 #define SPDCR_SPLW0 0x20 /* Access Width Specification (RZ) */ 115 #define SPDCR_SPLLWORD (SPDCR_SPLW1 | SPDCR_SPLW0) 116 #define SPDCR_SPLWORD SPDCR_SPLW1 117 #define SPDCR_SPLBYTE SPDCR_SPLW0 118 #define SPDCR_SPLW 0x20 /* Access Width Specification (SH) */ 119 #define SPDCR_SPRDTD 0x10 /* Receive Transmit Data Select (SH) */ 120 #define SPDCR_SLSEL1 0x08 121 #define SPDCR_SLSEL0 0x04 122 #define SPDCR_SLSEL_MASK 0x0c /* SSL1 Output Select (SH) */ 123 #define SPDCR_SPFC1 0x02 124 #define SPDCR_SPFC0 0x01 125 #define SPDCR_SPFC_MASK 0x03 /* Frame Count Setting (1-4) (SH) */ 126 127 /* SPCKD - Clock Delay Register */ 128 #define SPCKD_SCKDL_MASK 0x07 /* Clock Delay Setting (1-8) */ 129 130 /* SSLND - Slave Select Negation Delay Register */ 131 #define SSLND_SLNDL_MASK 0x07 /* SSL Negation Delay Setting (1-8) */ 132 133 /* SPND - Next-Access Delay Register */ 134 #define SPND_SPNDL_MASK 0x07 /* Next-Access Delay Setting (1-8) */ 135 136 /* SPCR2 - Control Register 2 */ 137 #define SPCR2_PTE 0x08 /* Parity Self-Test Enable */ 138 #define SPCR2_SPIE 0x04 /* Idle Interrupt Enable */ 139 #define SPCR2_SPOE 0x02 /* Odd Parity Enable (vs. Even) */ 140 #define SPCR2_SPPE 0x01 /* Parity Enable */ 141 142 /* SPCMDn - Command Registers */ 143 #define SPCMD_SCKDEN 0x8000 /* Clock Delay Setting Enable */ 144 #define SPCMD_SLNDEN 0x4000 /* SSL Negation Delay Setting Enable */ 145 #define SPCMD_SPNDEN 0x2000 /* Next-Access Delay Enable */ 146 #define SPCMD_LSBF 0x1000 /* LSB First */ 147 #define SPCMD_SPB_MASK 0x0f00 /* Data Length Setting */ 148 #define SPCMD_SPB_8_TO_16(bit) (((bit - 1) << 8) & SPCMD_SPB_MASK) 149 #define SPCMD_SPB_8BIT 0x0000 /* QSPI only */ 150 #define SPCMD_SPB_16BIT 0x0100 151 #define SPCMD_SPB_20BIT 0x0000 152 #define SPCMD_SPB_24BIT 0x0100 153 #define SPCMD_SPB_32BIT 0x0200 154 #define SPCMD_SSLKP 0x0080 /* SSL Signal Level Keeping */ 155 #define SPCMD_SPIMOD_MASK 0x0060 /* SPI Operating Mode (QSPI only) */ 156 #define SPCMD_SPIMOD1 0x0040 157 #define SPCMD_SPIMOD0 0x0020 158 #define SPCMD_SPIMOD_SINGLE 0 159 #define SPCMD_SPIMOD_DUAL SPCMD_SPIMOD0 160 #define SPCMD_SPIMOD_QUAD SPCMD_SPIMOD1 161 #define SPCMD_SPRW 0x0010 /* SPI Read/Write Access (Dual/Quad) */ 162 #define SPCMD_SSLA_MASK 0x0030 /* SSL Assert Signal Setting (RSPI) */ 163 #define SPCMD_BRDV_MASK 0x000c /* Bit Rate Division Setting */ 164 #define SPCMD_CPOL 0x0002 /* Clock Polarity Setting */ 165 #define SPCMD_CPHA 0x0001 /* Clock Phase Setting */ 166 167 /* SPBFCR - Buffer Control Register */ 168 #define SPBFCR_TXRST 0x80 /* Transmit Buffer Data Reset */ 169 #define SPBFCR_RXRST 0x40 /* Receive Buffer Data Reset */ 170 #define SPBFCR_TXTRG_MASK 0x30 /* Transmit Buffer Data Triggering Number */ 171 #define SPBFCR_RXTRG_MASK 0x07 /* Receive Buffer Data Triggering Number */ 172 /* QSPI on R-Car Gen2 */ 173 #define SPBFCR_TXTRG_1B 0x00 /* 31 bytes (1 byte available) */ 174 #define SPBFCR_TXTRG_32B 0x30 /* 0 byte (32 bytes available) */ 175 #define SPBFCR_RXTRG_1B 0x00 /* 1 byte (31 bytes available) */ 176 #define SPBFCR_RXTRG_32B 0x07 /* 32 bytes (0 byte available) */ 177 178 #define QSPI_BUFFER_SIZE 32u 179 180 struct rspi_data { 181 void __iomem *addr; 182 u32 max_speed_hz; 183 struct spi_controller *ctlr; 184 wait_queue_head_t wait; 185 struct clk *clk; 186 u16 spcmd; 187 u8 spsr; 188 u8 sppcr; 189 int rx_irq, tx_irq; 190 const struct spi_ops *ops; 191 192 unsigned dma_callbacked:1; 193 unsigned byte_access:1; 194 }; 195 196 static void rspi_write8(const struct rspi_data *rspi, u8 data, u16 offset) 197 { 198 iowrite8(data, rspi->addr + offset); 199 } 200 201 static void rspi_write16(const struct rspi_data *rspi, u16 data, u16 offset) 202 { 203 iowrite16(data, rspi->addr + offset); 204 } 205 206 static void rspi_write32(const struct rspi_data *rspi, u32 data, u16 offset) 207 { 208 iowrite32(data, rspi->addr + offset); 209 } 210 211 static u8 rspi_read8(const struct rspi_data *rspi, u16 offset) 212 { 213 return ioread8(rspi->addr + offset); 214 } 215 216 static u16 rspi_read16(const struct rspi_data *rspi, u16 offset) 217 { 218 return ioread16(rspi->addr + offset); 219 } 220 221 static void rspi_write_data(const struct rspi_data *rspi, u16 data) 222 { 223 if (rspi->byte_access) 224 rspi_write8(rspi, data, RSPI_SPDR); 225 else /* 16 bit */ 226 rspi_write16(rspi, data, RSPI_SPDR); 227 } 228 229 static u16 rspi_read_data(const struct rspi_data *rspi) 230 { 231 if (rspi->byte_access) 232 return rspi_read8(rspi, RSPI_SPDR); 233 else /* 16 bit */ 234 return rspi_read16(rspi, RSPI_SPDR); 235 } 236 237 /* optional functions */ 238 struct spi_ops { 239 int (*set_config_register)(struct rspi_data *rspi, int access_size); 240 int (*transfer_one)(struct spi_controller *ctlr, 241 struct spi_device *spi, struct spi_transfer *xfer); 242 u16 mode_bits; 243 u16 flags; 244 u16 fifo_size; 245 }; 246 247 /* 248 * functions for RSPI on legacy SH 249 */ 250 static int rspi_set_config_register(struct rspi_data *rspi, int access_size) 251 { 252 int spbr; 253 254 /* Sets output mode, MOSI signal, and (optionally) loopback */ 255 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 256 257 /* Sets transfer bit rate */ 258 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 259 2 * rspi->max_speed_hz) - 1; 260 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 261 262 /* Disable dummy transmission, set 16-bit word access, 1 frame */ 263 rspi_write8(rspi, 0, RSPI_SPDCR); 264 rspi->byte_access = 0; 265 266 /* Sets RSPCK, SSL, next-access delay value */ 267 rspi_write8(rspi, 0x00, RSPI_SPCKD); 268 rspi_write8(rspi, 0x00, RSPI_SSLND); 269 rspi_write8(rspi, 0x00, RSPI_SPND); 270 271 /* Sets parity, interrupt mask */ 272 rspi_write8(rspi, 0x00, RSPI_SPCR2); 273 274 /* Sets SPCMD */ 275 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 276 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 277 278 /* Sets RSPI mode */ 279 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 280 281 return 0; 282 } 283 284 /* 285 * functions for RSPI on RZ 286 */ 287 static int rspi_rz_set_config_register(struct rspi_data *rspi, int access_size) 288 { 289 int spbr; 290 int div = 0; 291 unsigned long clksrc; 292 293 /* Sets output mode, MOSI signal, and (optionally) loopback */ 294 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 295 296 clksrc = clk_get_rate(rspi->clk); 297 while (div < 3) { 298 if (rspi->max_speed_hz >= clksrc/4) /* 4=(CLK/2)/2 */ 299 break; 300 div++; 301 clksrc /= 2; 302 } 303 304 /* Sets transfer bit rate */ 305 spbr = DIV_ROUND_UP(clksrc, 2 * rspi->max_speed_hz) - 1; 306 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 307 rspi->spcmd |= div << 2; 308 309 /* Disable dummy transmission, set byte access */ 310 rspi_write8(rspi, SPDCR_SPLBYTE, RSPI_SPDCR); 311 rspi->byte_access = 1; 312 313 /* Sets RSPCK, SSL, next-access delay value */ 314 rspi_write8(rspi, 0x00, RSPI_SPCKD); 315 rspi_write8(rspi, 0x00, RSPI_SSLND); 316 rspi_write8(rspi, 0x00, RSPI_SPND); 317 318 /* Sets SPCMD */ 319 rspi->spcmd |= SPCMD_SPB_8_TO_16(access_size); 320 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 321 322 /* Sets RSPI mode */ 323 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 324 325 return 0; 326 } 327 328 /* 329 * functions for QSPI 330 */ 331 static int qspi_set_config_register(struct rspi_data *rspi, int access_size) 332 { 333 int spbr; 334 335 /* Sets output mode, MOSI signal, and (optionally) loopback */ 336 rspi_write8(rspi, rspi->sppcr, RSPI_SPPCR); 337 338 /* Sets transfer bit rate */ 339 spbr = DIV_ROUND_UP(clk_get_rate(rspi->clk), 2 * rspi->max_speed_hz); 340 rspi_write8(rspi, clamp(spbr, 0, 255), RSPI_SPBR); 341 342 /* Disable dummy transmission, set byte access */ 343 rspi_write8(rspi, 0, RSPI_SPDCR); 344 rspi->byte_access = 1; 345 346 /* Sets RSPCK, SSL, next-access delay value */ 347 rspi_write8(rspi, 0x00, RSPI_SPCKD); 348 rspi_write8(rspi, 0x00, RSPI_SSLND); 349 rspi_write8(rspi, 0x00, RSPI_SPND); 350 351 /* Data Length Setting */ 352 if (access_size == 8) 353 rspi->spcmd |= SPCMD_SPB_8BIT; 354 else if (access_size == 16) 355 rspi->spcmd |= SPCMD_SPB_16BIT; 356 else 357 rspi->spcmd |= SPCMD_SPB_32BIT; 358 359 rspi->spcmd |= SPCMD_SCKDEN | SPCMD_SLNDEN | SPCMD_SPNDEN; 360 361 /* Resets transfer data length */ 362 rspi_write32(rspi, 0, QSPI_SPBMUL0); 363 364 /* Resets transmit and receive buffer */ 365 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 366 /* Sets buffer to allow normal operation */ 367 rspi_write8(rspi, 0x00, QSPI_SPBFCR); 368 369 /* Sets SPCMD */ 370 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 371 372 /* Sets RSPI mode */ 373 rspi_write8(rspi, SPCR_MSTR, RSPI_SPCR); 374 375 return 0; 376 } 377 378 static void qspi_update(const struct rspi_data *rspi, u8 mask, u8 val, u8 reg) 379 { 380 u8 data; 381 382 data = rspi_read8(rspi, reg); 383 data &= ~mask; 384 data |= (val & mask); 385 rspi_write8(rspi, data, reg); 386 } 387 388 static unsigned int qspi_set_send_trigger(struct rspi_data *rspi, 389 unsigned int len) 390 { 391 unsigned int n; 392 393 n = min(len, QSPI_BUFFER_SIZE); 394 395 if (len >= QSPI_BUFFER_SIZE) { 396 /* sets triggering number to 32 bytes */ 397 qspi_update(rspi, SPBFCR_TXTRG_MASK, 398 SPBFCR_TXTRG_32B, QSPI_SPBFCR); 399 } else { 400 /* sets triggering number to 1 byte */ 401 qspi_update(rspi, SPBFCR_TXTRG_MASK, 402 SPBFCR_TXTRG_1B, QSPI_SPBFCR); 403 } 404 405 return n; 406 } 407 408 static int qspi_set_receive_trigger(struct rspi_data *rspi, unsigned int len) 409 { 410 unsigned int n; 411 412 n = min(len, QSPI_BUFFER_SIZE); 413 414 if (len >= QSPI_BUFFER_SIZE) { 415 /* sets triggering number to 32 bytes */ 416 qspi_update(rspi, SPBFCR_RXTRG_MASK, 417 SPBFCR_RXTRG_32B, QSPI_SPBFCR); 418 } else { 419 /* sets triggering number to 1 byte */ 420 qspi_update(rspi, SPBFCR_RXTRG_MASK, 421 SPBFCR_RXTRG_1B, QSPI_SPBFCR); 422 } 423 return n; 424 } 425 426 #define set_config_register(spi, n) spi->ops->set_config_register(spi, n) 427 428 static void rspi_enable_irq(const struct rspi_data *rspi, u8 enable) 429 { 430 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | enable, RSPI_SPCR); 431 } 432 433 static void rspi_disable_irq(const struct rspi_data *rspi, u8 disable) 434 { 435 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~disable, RSPI_SPCR); 436 } 437 438 static int rspi_wait_for_interrupt(struct rspi_data *rspi, u8 wait_mask, 439 u8 enable_bit) 440 { 441 int ret; 442 443 rspi->spsr = rspi_read8(rspi, RSPI_SPSR); 444 if (rspi->spsr & wait_mask) 445 return 0; 446 447 rspi_enable_irq(rspi, enable_bit); 448 ret = wait_event_timeout(rspi->wait, rspi->spsr & wait_mask, HZ); 449 if (ret == 0 && !(rspi->spsr & wait_mask)) 450 return -ETIMEDOUT; 451 452 return 0; 453 } 454 455 static inline int rspi_wait_for_tx_empty(struct rspi_data *rspi) 456 { 457 return rspi_wait_for_interrupt(rspi, SPSR_SPTEF, SPCR_SPTIE); 458 } 459 460 static inline int rspi_wait_for_rx_full(struct rspi_data *rspi) 461 { 462 return rspi_wait_for_interrupt(rspi, SPSR_SPRF, SPCR_SPRIE); 463 } 464 465 static int rspi_data_out(struct rspi_data *rspi, u8 data) 466 { 467 int error = rspi_wait_for_tx_empty(rspi); 468 if (error < 0) { 469 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 470 return error; 471 } 472 rspi_write_data(rspi, data); 473 return 0; 474 } 475 476 static int rspi_data_in(struct rspi_data *rspi) 477 { 478 int error; 479 u8 data; 480 481 error = rspi_wait_for_rx_full(rspi); 482 if (error < 0) { 483 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 484 return error; 485 } 486 data = rspi_read_data(rspi); 487 return data; 488 } 489 490 static int rspi_pio_transfer(struct rspi_data *rspi, const u8 *tx, u8 *rx, 491 unsigned int n) 492 { 493 while (n-- > 0) { 494 if (tx) { 495 int ret = rspi_data_out(rspi, *tx++); 496 if (ret < 0) 497 return ret; 498 } 499 if (rx) { 500 int ret = rspi_data_in(rspi); 501 if (ret < 0) 502 return ret; 503 *rx++ = ret; 504 } 505 } 506 507 return 0; 508 } 509 510 static void rspi_dma_complete(void *arg) 511 { 512 struct rspi_data *rspi = arg; 513 514 rspi->dma_callbacked = 1; 515 wake_up_interruptible(&rspi->wait); 516 } 517 518 static int rspi_dma_transfer(struct rspi_data *rspi, struct sg_table *tx, 519 struct sg_table *rx) 520 { 521 struct dma_async_tx_descriptor *desc_tx = NULL, *desc_rx = NULL; 522 u8 irq_mask = 0; 523 unsigned int other_irq = 0; 524 dma_cookie_t cookie; 525 int ret; 526 527 /* First prepare and submit the DMA request(s), as this may fail */ 528 if (rx) { 529 desc_rx = dmaengine_prep_slave_sg(rspi->ctlr->dma_rx, rx->sgl, 530 rx->nents, DMA_DEV_TO_MEM, 531 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 532 if (!desc_rx) { 533 ret = -EAGAIN; 534 goto no_dma_rx; 535 } 536 537 desc_rx->callback = rspi_dma_complete; 538 desc_rx->callback_param = rspi; 539 cookie = dmaengine_submit(desc_rx); 540 if (dma_submit_error(cookie)) { 541 ret = cookie; 542 goto no_dma_rx; 543 } 544 545 irq_mask |= SPCR_SPRIE; 546 } 547 548 if (tx) { 549 desc_tx = dmaengine_prep_slave_sg(rspi->ctlr->dma_tx, tx->sgl, 550 tx->nents, DMA_MEM_TO_DEV, 551 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 552 if (!desc_tx) { 553 ret = -EAGAIN; 554 goto no_dma_tx; 555 } 556 557 if (rx) { 558 /* No callback */ 559 desc_tx->callback = NULL; 560 } else { 561 desc_tx->callback = rspi_dma_complete; 562 desc_tx->callback_param = rspi; 563 } 564 cookie = dmaengine_submit(desc_tx); 565 if (dma_submit_error(cookie)) { 566 ret = cookie; 567 goto no_dma_tx; 568 } 569 570 irq_mask |= SPCR_SPTIE; 571 } 572 573 /* 574 * DMAC needs SPxIE, but if SPxIE is set, the IRQ routine will be 575 * called. So, this driver disables the IRQ while DMA transfer. 576 */ 577 if (tx) 578 disable_irq(other_irq = rspi->tx_irq); 579 if (rx && rspi->rx_irq != other_irq) 580 disable_irq(rspi->rx_irq); 581 582 rspi_enable_irq(rspi, irq_mask); 583 rspi->dma_callbacked = 0; 584 585 /* Now start DMA */ 586 if (rx) 587 dma_async_issue_pending(rspi->ctlr->dma_rx); 588 if (tx) 589 dma_async_issue_pending(rspi->ctlr->dma_tx); 590 591 ret = wait_event_interruptible_timeout(rspi->wait, 592 rspi->dma_callbacked, HZ); 593 if (ret > 0 && rspi->dma_callbacked) { 594 ret = 0; 595 } else { 596 if (!ret) { 597 dev_err(&rspi->ctlr->dev, "DMA timeout\n"); 598 ret = -ETIMEDOUT; 599 } 600 if (tx) 601 dmaengine_terminate_all(rspi->ctlr->dma_tx); 602 if (rx) 603 dmaengine_terminate_all(rspi->ctlr->dma_rx); 604 } 605 606 rspi_disable_irq(rspi, irq_mask); 607 608 if (tx) 609 enable_irq(rspi->tx_irq); 610 if (rx && rspi->rx_irq != other_irq) 611 enable_irq(rspi->rx_irq); 612 613 return ret; 614 615 no_dma_tx: 616 if (rx) 617 dmaengine_terminate_all(rspi->ctlr->dma_rx); 618 no_dma_rx: 619 if (ret == -EAGAIN) { 620 pr_warn_once("%s %s: DMA not available, falling back to PIO\n", 621 dev_driver_string(&rspi->ctlr->dev), 622 dev_name(&rspi->ctlr->dev)); 623 } 624 return ret; 625 } 626 627 static void rspi_receive_init(const struct rspi_data *rspi) 628 { 629 u8 spsr; 630 631 spsr = rspi_read8(rspi, RSPI_SPSR); 632 if (spsr & SPSR_SPRF) 633 rspi_read_data(rspi); /* dummy read */ 634 if (spsr & SPSR_OVRF) 635 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPSR) & ~SPSR_OVRF, 636 RSPI_SPSR); 637 } 638 639 static void rspi_rz_receive_init(const struct rspi_data *rspi) 640 { 641 rspi_receive_init(rspi); 642 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, RSPI_SPBFCR); 643 rspi_write8(rspi, 0, RSPI_SPBFCR); 644 } 645 646 static void qspi_receive_init(const struct rspi_data *rspi) 647 { 648 u8 spsr; 649 650 spsr = rspi_read8(rspi, RSPI_SPSR); 651 if (spsr & SPSR_SPRF) 652 rspi_read_data(rspi); /* dummy read */ 653 rspi_write8(rspi, SPBFCR_TXRST | SPBFCR_RXRST, QSPI_SPBFCR); 654 rspi_write8(rspi, 0, QSPI_SPBFCR); 655 } 656 657 static bool __rspi_can_dma(const struct rspi_data *rspi, 658 const struct spi_transfer *xfer) 659 { 660 return xfer->len > rspi->ops->fifo_size; 661 } 662 663 static bool rspi_can_dma(struct spi_controller *ctlr, struct spi_device *spi, 664 struct spi_transfer *xfer) 665 { 666 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 667 668 return __rspi_can_dma(rspi, xfer); 669 } 670 671 static int rspi_dma_check_then_transfer(struct rspi_data *rspi, 672 struct spi_transfer *xfer) 673 { 674 if (!rspi->ctlr->can_dma || !__rspi_can_dma(rspi, xfer)) 675 return -EAGAIN; 676 677 /* rx_buf can be NULL on RSPI on SH in TX-only Mode */ 678 return rspi_dma_transfer(rspi, &xfer->tx_sg, 679 xfer->rx_buf ? &xfer->rx_sg : NULL); 680 } 681 682 static int rspi_common_transfer(struct rspi_data *rspi, 683 struct spi_transfer *xfer) 684 { 685 int ret; 686 687 ret = rspi_dma_check_then_transfer(rspi, xfer); 688 if (ret != -EAGAIN) 689 return ret; 690 691 ret = rspi_pio_transfer(rspi, xfer->tx_buf, xfer->rx_buf, xfer->len); 692 if (ret < 0) 693 return ret; 694 695 /* Wait for the last transmission */ 696 rspi_wait_for_tx_empty(rspi); 697 698 return 0; 699 } 700 701 static int rspi_transfer_one(struct spi_controller *ctlr, 702 struct spi_device *spi, struct spi_transfer *xfer) 703 { 704 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 705 u8 spcr; 706 707 spcr = rspi_read8(rspi, RSPI_SPCR); 708 if (xfer->rx_buf) { 709 rspi_receive_init(rspi); 710 spcr &= ~SPCR_TXMD; 711 } else { 712 spcr |= SPCR_TXMD; 713 } 714 rspi_write8(rspi, spcr, RSPI_SPCR); 715 716 return rspi_common_transfer(rspi, xfer); 717 } 718 719 static int rspi_rz_transfer_one(struct spi_controller *ctlr, 720 struct spi_device *spi, 721 struct spi_transfer *xfer) 722 { 723 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 724 725 rspi_rz_receive_init(rspi); 726 727 return rspi_common_transfer(rspi, xfer); 728 } 729 730 static int qspi_trigger_transfer_out_in(struct rspi_data *rspi, const u8 *tx, 731 u8 *rx, unsigned int len) 732 { 733 unsigned int i, n; 734 int ret; 735 736 while (len > 0) { 737 n = qspi_set_send_trigger(rspi, len); 738 qspi_set_receive_trigger(rspi, len); 739 if (n == QSPI_BUFFER_SIZE) { 740 ret = rspi_wait_for_tx_empty(rspi); 741 if (ret < 0) { 742 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 743 return ret; 744 } 745 for (i = 0; i < n; i++) 746 rspi_write_data(rspi, *tx++); 747 748 ret = rspi_wait_for_rx_full(rspi); 749 if (ret < 0) { 750 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 751 return ret; 752 } 753 for (i = 0; i < n; i++) 754 *rx++ = rspi_read_data(rspi); 755 } else { 756 ret = rspi_pio_transfer(rspi, tx, rx, n); 757 if (ret < 0) 758 return ret; 759 } 760 len -= n; 761 } 762 763 return 0; 764 } 765 766 static int qspi_transfer_out_in(struct rspi_data *rspi, 767 struct spi_transfer *xfer) 768 { 769 int ret; 770 771 qspi_receive_init(rspi); 772 773 ret = rspi_dma_check_then_transfer(rspi, xfer); 774 if (ret != -EAGAIN) 775 return ret; 776 777 return qspi_trigger_transfer_out_in(rspi, xfer->tx_buf, 778 xfer->rx_buf, xfer->len); 779 } 780 781 static int qspi_transfer_out(struct rspi_data *rspi, struct spi_transfer *xfer) 782 { 783 const u8 *tx = xfer->tx_buf; 784 unsigned int n = xfer->len; 785 unsigned int i, len; 786 int ret; 787 788 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 789 ret = rspi_dma_transfer(rspi, &xfer->tx_sg, NULL); 790 if (ret != -EAGAIN) 791 return ret; 792 } 793 794 while (n > 0) { 795 len = qspi_set_send_trigger(rspi, n); 796 if (len == QSPI_BUFFER_SIZE) { 797 ret = rspi_wait_for_tx_empty(rspi); 798 if (ret < 0) { 799 dev_err(&rspi->ctlr->dev, "transmit timeout\n"); 800 return ret; 801 } 802 for (i = 0; i < len; i++) 803 rspi_write_data(rspi, *tx++); 804 } else { 805 ret = rspi_pio_transfer(rspi, tx, NULL, len); 806 if (ret < 0) 807 return ret; 808 } 809 n -= len; 810 } 811 812 /* Wait for the last transmission */ 813 rspi_wait_for_tx_empty(rspi); 814 815 return 0; 816 } 817 818 static int qspi_transfer_in(struct rspi_data *rspi, struct spi_transfer *xfer) 819 { 820 u8 *rx = xfer->rx_buf; 821 unsigned int n = xfer->len; 822 unsigned int i, len; 823 int ret; 824 825 if (rspi->ctlr->can_dma && __rspi_can_dma(rspi, xfer)) { 826 int ret = rspi_dma_transfer(rspi, NULL, &xfer->rx_sg); 827 if (ret != -EAGAIN) 828 return ret; 829 } 830 831 while (n > 0) { 832 len = qspi_set_receive_trigger(rspi, n); 833 if (len == QSPI_BUFFER_SIZE) { 834 ret = rspi_wait_for_rx_full(rspi); 835 if (ret < 0) { 836 dev_err(&rspi->ctlr->dev, "receive timeout\n"); 837 return ret; 838 } 839 for (i = 0; i < len; i++) 840 *rx++ = rspi_read_data(rspi); 841 } else { 842 ret = rspi_pio_transfer(rspi, NULL, rx, len); 843 if (ret < 0) 844 return ret; 845 } 846 n -= len; 847 } 848 849 return 0; 850 } 851 852 static int qspi_transfer_one(struct spi_controller *ctlr, 853 struct spi_device *spi, struct spi_transfer *xfer) 854 { 855 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 856 857 if (spi->mode & SPI_LOOP) { 858 return qspi_transfer_out_in(rspi, xfer); 859 } else if (xfer->tx_nbits > SPI_NBITS_SINGLE) { 860 /* Quad or Dual SPI Write */ 861 return qspi_transfer_out(rspi, xfer); 862 } else if (xfer->rx_nbits > SPI_NBITS_SINGLE) { 863 /* Quad or Dual SPI Read */ 864 return qspi_transfer_in(rspi, xfer); 865 } else { 866 /* Single SPI Transfer */ 867 return qspi_transfer_out_in(rspi, xfer); 868 } 869 } 870 871 static int rspi_setup(struct spi_device *spi) 872 { 873 struct rspi_data *rspi = spi_controller_get_devdata(spi->controller); 874 875 rspi->max_speed_hz = spi->max_speed_hz; 876 877 rspi->spcmd = SPCMD_SSLKP; 878 if (spi->mode & SPI_CPOL) 879 rspi->spcmd |= SPCMD_CPOL; 880 if (spi->mode & SPI_CPHA) 881 rspi->spcmd |= SPCMD_CPHA; 882 883 /* CMOS output mode and MOSI signal from previous transfer */ 884 rspi->sppcr = 0; 885 if (spi->mode & SPI_LOOP) 886 rspi->sppcr |= SPPCR_SPLP; 887 888 set_config_register(rspi, 8); 889 890 return 0; 891 } 892 893 static u16 qspi_transfer_mode(const struct spi_transfer *xfer) 894 { 895 if (xfer->tx_buf) 896 switch (xfer->tx_nbits) { 897 case SPI_NBITS_QUAD: 898 return SPCMD_SPIMOD_QUAD; 899 case SPI_NBITS_DUAL: 900 return SPCMD_SPIMOD_DUAL; 901 default: 902 return 0; 903 } 904 if (xfer->rx_buf) 905 switch (xfer->rx_nbits) { 906 case SPI_NBITS_QUAD: 907 return SPCMD_SPIMOD_QUAD | SPCMD_SPRW; 908 case SPI_NBITS_DUAL: 909 return SPCMD_SPIMOD_DUAL | SPCMD_SPRW; 910 default: 911 return 0; 912 } 913 914 return 0; 915 } 916 917 static int qspi_setup_sequencer(struct rspi_data *rspi, 918 const struct spi_message *msg) 919 { 920 const struct spi_transfer *xfer; 921 unsigned int i = 0, len = 0; 922 u16 current_mode = 0xffff, mode; 923 924 list_for_each_entry(xfer, &msg->transfers, transfer_list) { 925 mode = qspi_transfer_mode(xfer); 926 if (mode == current_mode) { 927 len += xfer->len; 928 continue; 929 } 930 931 /* Transfer mode change */ 932 if (i) { 933 /* Set transfer data length of previous transfer */ 934 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 935 } 936 937 if (i >= QSPI_NUM_SPCMD) { 938 dev_err(&msg->spi->dev, 939 "Too many different transfer modes"); 940 return -EINVAL; 941 } 942 943 /* Program transfer mode for this transfer */ 944 rspi_write16(rspi, rspi->spcmd | mode, RSPI_SPCMD(i)); 945 current_mode = mode; 946 len = xfer->len; 947 i++; 948 } 949 if (i) { 950 /* Set final transfer data length and sequence length */ 951 rspi_write32(rspi, len, QSPI_SPBMUL(i - 1)); 952 rspi_write8(rspi, i - 1, RSPI_SPSCR); 953 } 954 955 return 0; 956 } 957 958 static int rspi_prepare_message(struct spi_controller *ctlr, 959 struct spi_message *msg) 960 { 961 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 962 int ret; 963 964 if (msg->spi->mode & 965 (SPI_TX_DUAL | SPI_TX_QUAD | SPI_RX_DUAL | SPI_RX_QUAD)) { 966 /* Setup sequencer for messages with multiple transfer modes */ 967 ret = qspi_setup_sequencer(rspi, msg); 968 if (ret < 0) 969 return ret; 970 } 971 972 /* Enable SPI function in master mode */ 973 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) | SPCR_SPE, RSPI_SPCR); 974 return 0; 975 } 976 977 static int rspi_unprepare_message(struct spi_controller *ctlr, 978 struct spi_message *msg) 979 { 980 struct rspi_data *rspi = spi_controller_get_devdata(ctlr); 981 982 /* Disable SPI function */ 983 rspi_write8(rspi, rspi_read8(rspi, RSPI_SPCR) & ~SPCR_SPE, RSPI_SPCR); 984 985 /* Reset sequencer for Single SPI Transfers */ 986 rspi_write16(rspi, rspi->spcmd, RSPI_SPCMD0); 987 rspi_write8(rspi, 0, RSPI_SPSCR); 988 return 0; 989 } 990 991 static irqreturn_t rspi_irq_mux(int irq, void *_sr) 992 { 993 struct rspi_data *rspi = _sr; 994 u8 spsr; 995 irqreturn_t ret = IRQ_NONE; 996 u8 disable_irq = 0; 997 998 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 999 if (spsr & SPSR_SPRF) 1000 disable_irq |= SPCR_SPRIE; 1001 if (spsr & SPSR_SPTEF) 1002 disable_irq |= SPCR_SPTIE; 1003 1004 if (disable_irq) { 1005 ret = IRQ_HANDLED; 1006 rspi_disable_irq(rspi, disable_irq); 1007 wake_up(&rspi->wait); 1008 } 1009 1010 return ret; 1011 } 1012 1013 static irqreturn_t rspi_irq_rx(int irq, void *_sr) 1014 { 1015 struct rspi_data *rspi = _sr; 1016 u8 spsr; 1017 1018 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1019 if (spsr & SPSR_SPRF) { 1020 rspi_disable_irq(rspi, SPCR_SPRIE); 1021 wake_up(&rspi->wait); 1022 return IRQ_HANDLED; 1023 } 1024 1025 return 0; 1026 } 1027 1028 static irqreturn_t rspi_irq_tx(int irq, void *_sr) 1029 { 1030 struct rspi_data *rspi = _sr; 1031 u8 spsr; 1032 1033 rspi->spsr = spsr = rspi_read8(rspi, RSPI_SPSR); 1034 if (spsr & SPSR_SPTEF) { 1035 rspi_disable_irq(rspi, SPCR_SPTIE); 1036 wake_up(&rspi->wait); 1037 return IRQ_HANDLED; 1038 } 1039 1040 return 0; 1041 } 1042 1043 static struct dma_chan *rspi_request_dma_chan(struct device *dev, 1044 enum dma_transfer_direction dir, 1045 unsigned int id, 1046 dma_addr_t port_addr) 1047 { 1048 dma_cap_mask_t mask; 1049 struct dma_chan *chan; 1050 struct dma_slave_config cfg; 1051 int ret; 1052 1053 dma_cap_zero(mask); 1054 dma_cap_set(DMA_SLAVE, mask); 1055 1056 chan = dma_request_slave_channel_compat(mask, shdma_chan_filter, 1057 (void *)(unsigned long)id, dev, 1058 dir == DMA_MEM_TO_DEV ? "tx" : "rx"); 1059 if (!chan) { 1060 dev_warn(dev, "dma_request_slave_channel_compat failed\n"); 1061 return NULL; 1062 } 1063 1064 memset(&cfg, 0, sizeof(cfg)); 1065 cfg.direction = dir; 1066 if (dir == DMA_MEM_TO_DEV) { 1067 cfg.dst_addr = port_addr; 1068 cfg.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1069 } else { 1070 cfg.src_addr = port_addr; 1071 cfg.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1072 } 1073 1074 ret = dmaengine_slave_config(chan, &cfg); 1075 if (ret) { 1076 dev_warn(dev, "dmaengine_slave_config failed %d\n", ret); 1077 dma_release_channel(chan); 1078 return NULL; 1079 } 1080 1081 return chan; 1082 } 1083 1084 static int rspi_request_dma(struct device *dev, struct spi_controller *ctlr, 1085 const struct resource *res) 1086 { 1087 const struct rspi_plat_data *rspi_pd = dev_get_platdata(dev); 1088 unsigned int dma_tx_id, dma_rx_id; 1089 1090 if (dev->of_node) { 1091 /* In the OF case we will get the slave IDs from the DT */ 1092 dma_tx_id = 0; 1093 dma_rx_id = 0; 1094 } else if (rspi_pd && rspi_pd->dma_tx_id && rspi_pd->dma_rx_id) { 1095 dma_tx_id = rspi_pd->dma_tx_id; 1096 dma_rx_id = rspi_pd->dma_rx_id; 1097 } else { 1098 /* The driver assumes no error. */ 1099 return 0; 1100 } 1101 1102 ctlr->dma_tx = rspi_request_dma_chan(dev, DMA_MEM_TO_DEV, dma_tx_id, 1103 res->start + RSPI_SPDR); 1104 if (!ctlr->dma_tx) 1105 return -ENODEV; 1106 1107 ctlr->dma_rx = rspi_request_dma_chan(dev, DMA_DEV_TO_MEM, dma_rx_id, 1108 res->start + RSPI_SPDR); 1109 if (!ctlr->dma_rx) { 1110 dma_release_channel(ctlr->dma_tx); 1111 ctlr->dma_tx = NULL; 1112 return -ENODEV; 1113 } 1114 1115 ctlr->can_dma = rspi_can_dma; 1116 dev_info(dev, "DMA available"); 1117 return 0; 1118 } 1119 1120 static void rspi_release_dma(struct spi_controller *ctlr) 1121 { 1122 if (ctlr->dma_tx) 1123 dma_release_channel(ctlr->dma_tx); 1124 if (ctlr->dma_rx) 1125 dma_release_channel(ctlr->dma_rx); 1126 } 1127 1128 static int rspi_remove(struct platform_device *pdev) 1129 { 1130 struct rspi_data *rspi = platform_get_drvdata(pdev); 1131 1132 rspi_release_dma(rspi->ctlr); 1133 pm_runtime_disable(&pdev->dev); 1134 1135 return 0; 1136 } 1137 1138 static const struct spi_ops rspi_ops = { 1139 .set_config_register = rspi_set_config_register, 1140 .transfer_one = rspi_transfer_one, 1141 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1142 .flags = SPI_CONTROLLER_MUST_TX, 1143 .fifo_size = 8, 1144 }; 1145 1146 static const struct spi_ops rspi_rz_ops = { 1147 .set_config_register = rspi_rz_set_config_register, 1148 .transfer_one = rspi_rz_transfer_one, 1149 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP, 1150 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1151 .fifo_size = 8, /* 8 for TX, 32 for RX */ 1152 }; 1153 1154 static const struct spi_ops qspi_ops = { 1155 .set_config_register = qspi_set_config_register, 1156 .transfer_one = qspi_transfer_one, 1157 .mode_bits = SPI_CPHA | SPI_CPOL | SPI_LOOP | 1158 SPI_TX_DUAL | SPI_TX_QUAD | 1159 SPI_RX_DUAL | SPI_RX_QUAD, 1160 .flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX, 1161 .fifo_size = 32, 1162 }; 1163 1164 #ifdef CONFIG_OF 1165 static const struct of_device_id rspi_of_match[] = { 1166 /* RSPI on legacy SH */ 1167 { .compatible = "renesas,rspi", .data = &rspi_ops }, 1168 /* RSPI on RZ/A1H */ 1169 { .compatible = "renesas,rspi-rz", .data = &rspi_rz_ops }, 1170 /* QSPI on R-Car Gen2 */ 1171 { .compatible = "renesas,qspi", .data = &qspi_ops }, 1172 { /* sentinel */ } 1173 }; 1174 1175 MODULE_DEVICE_TABLE(of, rspi_of_match); 1176 1177 static int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1178 { 1179 u32 num_cs; 1180 int error; 1181 1182 /* Parse DT properties */ 1183 error = of_property_read_u32(dev->of_node, "num-cs", &num_cs); 1184 if (error) { 1185 dev_err(dev, "of_property_read_u32 num-cs failed %d\n", error); 1186 return error; 1187 } 1188 1189 ctlr->num_chipselect = num_cs; 1190 return 0; 1191 } 1192 #else 1193 #define rspi_of_match NULL 1194 static inline int rspi_parse_dt(struct device *dev, struct spi_controller *ctlr) 1195 { 1196 return -EINVAL; 1197 } 1198 #endif /* CONFIG_OF */ 1199 1200 static int rspi_request_irq(struct device *dev, unsigned int irq, 1201 irq_handler_t handler, const char *suffix, 1202 void *dev_id) 1203 { 1204 const char *name = devm_kasprintf(dev, GFP_KERNEL, "%s:%s", 1205 dev_name(dev), suffix); 1206 if (!name) 1207 return -ENOMEM; 1208 1209 return devm_request_irq(dev, irq, handler, 0, name, dev_id); 1210 } 1211 1212 static int rspi_probe(struct platform_device *pdev) 1213 { 1214 struct resource *res; 1215 struct spi_controller *ctlr; 1216 struct rspi_data *rspi; 1217 int ret; 1218 const struct rspi_plat_data *rspi_pd; 1219 const struct spi_ops *ops; 1220 1221 ctlr = spi_alloc_master(&pdev->dev, sizeof(struct rspi_data)); 1222 if (ctlr == NULL) 1223 return -ENOMEM; 1224 1225 ops = of_device_get_match_data(&pdev->dev); 1226 if (ops) { 1227 ret = rspi_parse_dt(&pdev->dev, ctlr); 1228 if (ret) 1229 goto error1; 1230 } else { 1231 ops = (struct spi_ops *)pdev->id_entry->driver_data; 1232 rspi_pd = dev_get_platdata(&pdev->dev); 1233 if (rspi_pd && rspi_pd->num_chipselect) 1234 ctlr->num_chipselect = rspi_pd->num_chipselect; 1235 else 1236 ctlr->num_chipselect = 2; /* default */ 1237 } 1238 1239 /* ops parameter check */ 1240 if (!ops->set_config_register) { 1241 dev_err(&pdev->dev, "there is no set_config_register\n"); 1242 ret = -ENODEV; 1243 goto error1; 1244 } 1245 1246 rspi = spi_controller_get_devdata(ctlr); 1247 platform_set_drvdata(pdev, rspi); 1248 rspi->ops = ops; 1249 rspi->ctlr = ctlr; 1250 1251 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1252 rspi->addr = devm_ioremap_resource(&pdev->dev, res); 1253 if (IS_ERR(rspi->addr)) { 1254 ret = PTR_ERR(rspi->addr); 1255 goto error1; 1256 } 1257 1258 rspi->clk = devm_clk_get(&pdev->dev, NULL); 1259 if (IS_ERR(rspi->clk)) { 1260 dev_err(&pdev->dev, "cannot get clock\n"); 1261 ret = PTR_ERR(rspi->clk); 1262 goto error1; 1263 } 1264 1265 pm_runtime_enable(&pdev->dev); 1266 1267 init_waitqueue_head(&rspi->wait); 1268 1269 ctlr->bus_num = pdev->id; 1270 ctlr->setup = rspi_setup; 1271 ctlr->auto_runtime_pm = true; 1272 ctlr->transfer_one = ops->transfer_one; 1273 ctlr->prepare_message = rspi_prepare_message; 1274 ctlr->unprepare_message = rspi_unprepare_message; 1275 ctlr->mode_bits = ops->mode_bits; 1276 ctlr->flags = ops->flags; 1277 ctlr->dev.of_node = pdev->dev.of_node; 1278 1279 ret = platform_get_irq_byname(pdev, "rx"); 1280 if (ret < 0) { 1281 ret = platform_get_irq_byname(pdev, "mux"); 1282 if (ret < 0) 1283 ret = platform_get_irq(pdev, 0); 1284 if (ret >= 0) 1285 rspi->rx_irq = rspi->tx_irq = ret; 1286 } else { 1287 rspi->rx_irq = ret; 1288 ret = platform_get_irq_byname(pdev, "tx"); 1289 if (ret >= 0) 1290 rspi->tx_irq = ret; 1291 } 1292 if (ret < 0) { 1293 dev_err(&pdev->dev, "platform_get_irq error\n"); 1294 goto error2; 1295 } 1296 1297 if (rspi->rx_irq == rspi->tx_irq) { 1298 /* Single multiplexed interrupt */ 1299 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_mux, 1300 "mux", rspi); 1301 } else { 1302 /* Multi-interrupt mode, only SPRI and SPTI are used */ 1303 ret = rspi_request_irq(&pdev->dev, rspi->rx_irq, rspi_irq_rx, 1304 "rx", rspi); 1305 if (!ret) 1306 ret = rspi_request_irq(&pdev->dev, rspi->tx_irq, 1307 rspi_irq_tx, "tx", rspi); 1308 } 1309 if (ret < 0) { 1310 dev_err(&pdev->dev, "request_irq error\n"); 1311 goto error2; 1312 } 1313 1314 ret = rspi_request_dma(&pdev->dev, ctlr, res); 1315 if (ret < 0) 1316 dev_warn(&pdev->dev, "DMA not available, using PIO\n"); 1317 1318 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1319 if (ret < 0) { 1320 dev_err(&pdev->dev, "devm_spi_register_controller error.\n"); 1321 goto error3; 1322 } 1323 1324 dev_info(&pdev->dev, "probed\n"); 1325 1326 return 0; 1327 1328 error3: 1329 rspi_release_dma(ctlr); 1330 error2: 1331 pm_runtime_disable(&pdev->dev); 1332 error1: 1333 spi_controller_put(ctlr); 1334 1335 return ret; 1336 } 1337 1338 static const struct platform_device_id spi_driver_ids[] = { 1339 { "rspi", (kernel_ulong_t)&rspi_ops }, 1340 { "rspi-rz", (kernel_ulong_t)&rspi_rz_ops }, 1341 { "qspi", (kernel_ulong_t)&qspi_ops }, 1342 {}, 1343 }; 1344 1345 MODULE_DEVICE_TABLE(platform, spi_driver_ids); 1346 1347 #ifdef CONFIG_PM_SLEEP 1348 static int rspi_suspend(struct device *dev) 1349 { 1350 struct rspi_data *rspi = dev_get_drvdata(dev); 1351 1352 return spi_controller_suspend(rspi->ctlr); 1353 } 1354 1355 static int rspi_resume(struct device *dev) 1356 { 1357 struct rspi_data *rspi = dev_get_drvdata(dev); 1358 1359 return spi_controller_resume(rspi->ctlr); 1360 } 1361 1362 static SIMPLE_DEV_PM_OPS(rspi_pm_ops, rspi_suspend, rspi_resume); 1363 #define DEV_PM_OPS &rspi_pm_ops 1364 #else 1365 #define DEV_PM_OPS NULL 1366 #endif /* CONFIG_PM_SLEEP */ 1367 1368 static struct platform_driver rspi_driver = { 1369 .probe = rspi_probe, 1370 .remove = rspi_remove, 1371 .id_table = spi_driver_ids, 1372 .driver = { 1373 .name = "renesas_spi", 1374 .pm = DEV_PM_OPS, 1375 .of_match_table = of_match_ptr(rspi_of_match), 1376 }, 1377 }; 1378 module_platform_driver(rspi_driver); 1379 1380 MODULE_DESCRIPTION("Renesas RSPI bus driver"); 1381 MODULE_LICENSE("GPL v2"); 1382 MODULE_AUTHOR("Yoshihiro Shimoda"); 1383 MODULE_ALIAS("platform:rspi"); 1384