1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Copyright (c) 2014, Fuzhou Rockchip Electronics Co., Ltd 4 * Author: Addy Ke <addy.ke@rock-chips.com> 5 */ 6 7 #include <linux/clk.h> 8 #include <linux/dmaengine.h> 9 #include <linux/interrupt.h> 10 #include <linux/module.h> 11 #include <linux/of.h> 12 #include <linux/pinctrl/consumer.h> 13 #include <linux/platform_device.h> 14 #include <linux/spi/spi.h> 15 #include <linux/pm_runtime.h> 16 #include <linux/scatterlist.h> 17 18 #define DRIVER_NAME "rockchip-spi" 19 20 #define ROCKCHIP_SPI_CLR_BITS(reg, bits) \ 21 writel_relaxed(readl_relaxed(reg) & ~(bits), reg) 22 #define ROCKCHIP_SPI_SET_BITS(reg, bits) \ 23 writel_relaxed(readl_relaxed(reg) | (bits), reg) 24 25 /* SPI register offsets */ 26 #define ROCKCHIP_SPI_CTRLR0 0x0000 27 #define ROCKCHIP_SPI_CTRLR1 0x0004 28 #define ROCKCHIP_SPI_SSIENR 0x0008 29 #define ROCKCHIP_SPI_SER 0x000c 30 #define ROCKCHIP_SPI_BAUDR 0x0010 31 #define ROCKCHIP_SPI_TXFTLR 0x0014 32 #define ROCKCHIP_SPI_RXFTLR 0x0018 33 #define ROCKCHIP_SPI_TXFLR 0x001c 34 #define ROCKCHIP_SPI_RXFLR 0x0020 35 #define ROCKCHIP_SPI_SR 0x0024 36 #define ROCKCHIP_SPI_IPR 0x0028 37 #define ROCKCHIP_SPI_IMR 0x002c 38 #define ROCKCHIP_SPI_ISR 0x0030 39 #define ROCKCHIP_SPI_RISR 0x0034 40 #define ROCKCHIP_SPI_ICR 0x0038 41 #define ROCKCHIP_SPI_DMACR 0x003c 42 #define ROCKCHIP_SPI_DMATDLR 0x0040 43 #define ROCKCHIP_SPI_DMARDLR 0x0044 44 #define ROCKCHIP_SPI_VERSION 0x0048 45 #define ROCKCHIP_SPI_TXDR 0x0400 46 #define ROCKCHIP_SPI_RXDR 0x0800 47 48 /* Bit fields in CTRLR0 */ 49 #define CR0_DFS_OFFSET 0 50 #define CR0_DFS_4BIT 0x0 51 #define CR0_DFS_8BIT 0x1 52 #define CR0_DFS_16BIT 0x2 53 54 #define CR0_CFS_OFFSET 2 55 56 #define CR0_SCPH_OFFSET 6 57 58 #define CR0_SCPOL_OFFSET 7 59 60 #define CR0_CSM_OFFSET 8 61 #define CR0_CSM_KEEP 0x0 62 /* ss_n be high for half sclk_out cycles */ 63 #define CR0_CSM_HALF 0X1 64 /* ss_n be high for one sclk_out cycle */ 65 #define CR0_CSM_ONE 0x2 66 67 /* ss_n to sclk_out delay */ 68 #define CR0_SSD_OFFSET 10 69 /* 70 * The period between ss_n active and 71 * sclk_out active is half sclk_out cycles 72 */ 73 #define CR0_SSD_HALF 0x0 74 /* 75 * The period between ss_n active and 76 * sclk_out active is one sclk_out cycle 77 */ 78 #define CR0_SSD_ONE 0x1 79 80 #define CR0_EM_OFFSET 11 81 #define CR0_EM_LITTLE 0x0 82 #define CR0_EM_BIG 0x1 83 84 #define CR0_FBM_OFFSET 12 85 #define CR0_FBM_MSB 0x0 86 #define CR0_FBM_LSB 0x1 87 88 #define CR0_BHT_OFFSET 13 89 #define CR0_BHT_16BIT 0x0 90 #define CR0_BHT_8BIT 0x1 91 92 #define CR0_RSD_OFFSET 14 93 #define CR0_RSD_MAX 0x3 94 95 #define CR0_FRF_OFFSET 16 96 #define CR0_FRF_SPI 0x0 97 #define CR0_FRF_SSP 0x1 98 #define CR0_FRF_MICROWIRE 0x2 99 100 #define CR0_XFM_OFFSET 18 101 #define CR0_XFM_MASK (0x03 << SPI_XFM_OFFSET) 102 #define CR0_XFM_TR 0x0 103 #define CR0_XFM_TO 0x1 104 #define CR0_XFM_RO 0x2 105 106 #define CR0_OPM_OFFSET 20 107 #define CR0_OPM_HOST 0x0 108 #define CR0_OPM_TARGET 0x1 109 110 #define CR0_SOI_OFFSET 23 111 112 #define CR0_MTM_OFFSET 0x21 113 114 /* Bit fields in SER, 2bit */ 115 #define SER_MASK 0x3 116 117 /* Bit fields in BAUDR */ 118 #define BAUDR_SCKDV_MIN 2 119 #define BAUDR_SCKDV_MAX 65534 120 121 /* Bit fields in SR, 6bit */ 122 #define SR_MASK 0x3f 123 #define SR_BUSY (1 << 0) 124 #define SR_TF_FULL (1 << 1) 125 #define SR_TF_EMPTY (1 << 2) 126 #define SR_RF_EMPTY (1 << 3) 127 #define SR_RF_FULL (1 << 4) 128 #define SR_TARGET_TX_BUSY (1 << 5) 129 130 /* Bit fields in ISR, IMR, ISR, RISR, 5bit */ 131 #define INT_MASK 0x1f 132 #define INT_TF_EMPTY (1 << 0) 133 #define INT_TF_OVERFLOW (1 << 1) 134 #define INT_RF_UNDERFLOW (1 << 2) 135 #define INT_RF_OVERFLOW (1 << 3) 136 #define INT_RF_FULL (1 << 4) 137 #define INT_CS_INACTIVE (1 << 6) 138 139 /* Bit fields in ICR, 4bit */ 140 #define ICR_MASK 0x0f 141 #define ICR_ALL (1 << 0) 142 #define ICR_RF_UNDERFLOW (1 << 1) 143 #define ICR_RF_OVERFLOW (1 << 2) 144 #define ICR_TF_OVERFLOW (1 << 3) 145 146 /* Bit fields in DMACR */ 147 #define RF_DMA_EN (1 << 0) 148 #define TF_DMA_EN (1 << 1) 149 150 /* Driver state flags */ 151 #define RXDMA (1 << 0) 152 #define TXDMA (1 << 1) 153 154 /* sclk_out: spi host internal logic in rk3x can support 50Mhz */ 155 #define MAX_SCLK_OUT 50000000U 156 157 /* 158 * SPI_CTRLR1 is 16-bits, so we should support lengths of 0xffff + 1. However, 159 * the controller seems to hang when given 0x10000, so stick with this for now. 160 */ 161 #define ROCKCHIP_SPI_MAX_TRANLEN 0xffff 162 163 #define ROCKCHIP_SPI_MAX_NATIVE_CS_NUM 2 164 #define ROCKCHIP_SPI_VER2_TYPE1 0x05EC0002 165 #define ROCKCHIP_SPI_VER2_TYPE2 0x00110002 166 167 #define ROCKCHIP_AUTOSUSPEND_TIMEOUT 2000 168 169 struct rockchip_spi { 170 struct device *dev; 171 172 struct clk *spiclk; 173 struct clk *apb_pclk; 174 175 void __iomem *regs; 176 dma_addr_t dma_addr_rx; 177 dma_addr_t dma_addr_tx; 178 179 const void *tx; 180 void *rx; 181 unsigned int tx_left; 182 unsigned int rx_left; 183 184 atomic_t state; 185 186 /*depth of the FIFO buffer */ 187 u32 fifo_len; 188 /* frequency of spiclk */ 189 u32 freq; 190 191 u8 n_bytes; 192 u8 rsd; 193 194 bool target_abort; 195 bool cs_inactive; /* spi target transmission stop when cs inactive */ 196 bool cs_high_supported; /* native CS supports active-high polarity */ 197 198 struct spi_transfer *xfer; /* Store xfer temporarily */ 199 }; 200 201 static inline void spi_enable_chip(struct rockchip_spi *rs, bool enable) 202 { 203 writel_relaxed((enable ? 1U : 0U), rs->regs + ROCKCHIP_SPI_SSIENR); 204 } 205 206 static inline void wait_for_tx_idle(struct rockchip_spi *rs, bool target_mode) 207 { 208 unsigned long timeout = jiffies + msecs_to_jiffies(5); 209 210 do { 211 if (target_mode) { 212 if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_TARGET_TX_BUSY) && 213 !((readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY))) 214 return; 215 } else { 216 if (!(readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)) 217 return; 218 } 219 } while (!time_after(jiffies, timeout)); 220 221 dev_warn(rs->dev, "spi controller is in busy state!\n"); 222 } 223 224 static u32 get_fifo_len(struct rockchip_spi *rs) 225 { 226 u32 ver; 227 228 ver = readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION); 229 230 switch (ver) { 231 case ROCKCHIP_SPI_VER2_TYPE1: 232 case ROCKCHIP_SPI_VER2_TYPE2: 233 return 64; 234 default: 235 return 32; 236 } 237 } 238 239 static void rockchip_spi_set_cs(struct spi_device *spi, bool enable) 240 { 241 struct spi_controller *ctlr = spi->controller; 242 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 243 bool cs_asserted = spi->mode & SPI_CS_HIGH ? enable : !enable; 244 245 if (cs_asserted) { 246 /* Keep things powered as long as CS is asserted */ 247 pm_runtime_get_sync(rs->dev); 248 249 if (spi_get_csgpiod(spi, 0)) 250 ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 1); 251 else 252 ROCKCHIP_SPI_SET_BITS(rs->regs + ROCKCHIP_SPI_SER, 253 BIT(spi_get_chipselect(spi, 0))); 254 } else { 255 if (spi_get_csgpiod(spi, 0)) 256 ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 1); 257 else 258 ROCKCHIP_SPI_CLR_BITS(rs->regs + ROCKCHIP_SPI_SER, 259 BIT(spi_get_chipselect(spi, 0))); 260 261 /* Drop reference from when we first asserted CS */ 262 pm_runtime_put(rs->dev); 263 } 264 } 265 266 static void rockchip_spi_handle_err(struct spi_controller *ctlr, 267 struct spi_message *msg) 268 { 269 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 270 271 /* stop running spi transfer 272 * this also flushes both rx and tx fifos 273 */ 274 spi_enable_chip(rs, false); 275 276 /* make sure all interrupts are masked and status cleared */ 277 writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); 278 writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); 279 280 if (atomic_read(&rs->state) & TXDMA) 281 dmaengine_terminate_async(ctlr->dma_tx); 282 283 if (atomic_read(&rs->state) & RXDMA) 284 dmaengine_terminate_async(ctlr->dma_rx); 285 } 286 287 static void rockchip_spi_pio_writer(struct rockchip_spi *rs) 288 { 289 u32 tx_free = rs->fifo_len - readl_relaxed(rs->regs + ROCKCHIP_SPI_TXFLR); 290 u32 words = min(rs->tx_left, tx_free); 291 292 rs->tx_left -= words; 293 for (; words; words--) { 294 u32 txw; 295 296 if (rs->n_bytes == 1) 297 txw = *(u8 *)rs->tx; 298 else 299 txw = *(u16 *)rs->tx; 300 301 writel_relaxed(txw, rs->regs + ROCKCHIP_SPI_TXDR); 302 rs->tx += rs->n_bytes; 303 } 304 } 305 306 static void rockchip_spi_pio_reader(struct rockchip_spi *rs) 307 { 308 u32 words = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); 309 u32 rx_left = (rs->rx_left > words) ? rs->rx_left - words : 0; 310 311 /* the hardware doesn't allow us to change fifo threshold 312 * level while spi is enabled, so instead make sure to leave 313 * enough words in the rx fifo to get the last interrupt 314 * exactly when all words have been received 315 */ 316 if (rx_left) { 317 u32 ftl = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFTLR) + 1; 318 319 if (rx_left < ftl) { 320 rx_left = ftl; 321 words = rs->rx_left - rx_left; 322 } 323 } 324 325 rs->rx_left = rx_left; 326 for (; words; words--) { 327 u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); 328 329 if (!rs->rx) 330 continue; 331 332 if (rs->n_bytes == 1) 333 *(u8 *)rs->rx = (u8)rxw; 334 else 335 *(u16 *)rs->rx = (u16)rxw; 336 rs->rx += rs->n_bytes; 337 } 338 } 339 340 static irqreturn_t rockchip_spi_isr(int irq, void *dev_id) 341 { 342 struct spi_controller *ctlr = dev_id; 343 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 344 345 /* When int_cs_inactive comes, spi target abort */ 346 if (rs->cs_inactive && readl_relaxed(rs->regs + ROCKCHIP_SPI_IMR) & INT_CS_INACTIVE) { 347 ctlr->target_abort(ctlr); 348 writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); 349 writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); 350 351 return IRQ_HANDLED; 352 } 353 354 if (rs->tx_left) 355 rockchip_spi_pio_writer(rs); 356 357 rockchip_spi_pio_reader(rs); 358 if (!rs->rx_left) { 359 spi_enable_chip(rs, false); 360 writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); 361 writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); 362 spi_finalize_current_transfer(ctlr); 363 } 364 365 return IRQ_HANDLED; 366 } 367 368 static int rockchip_spi_prepare_irq(struct rockchip_spi *rs, 369 struct spi_controller *ctlr, 370 struct spi_transfer *xfer) 371 { 372 rs->tx = xfer->tx_buf; 373 rs->rx = xfer->rx_buf; 374 rs->tx_left = rs->tx ? xfer->len / rs->n_bytes : 0; 375 rs->rx_left = xfer->len / rs->n_bytes; 376 377 writel_relaxed(0xffffffff, rs->regs + ROCKCHIP_SPI_ICR); 378 379 spi_enable_chip(rs, true); 380 381 if (rs->tx_left) 382 rockchip_spi_pio_writer(rs); 383 384 if (rs->cs_inactive) 385 writel_relaxed(INT_RF_FULL | INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR); 386 else 387 writel_relaxed(INT_RF_FULL, rs->regs + ROCKCHIP_SPI_IMR); 388 389 /* 1 means the transfer is in progress */ 390 return 1; 391 } 392 393 static void rockchip_spi_dma_rxcb(void *data) 394 { 395 struct spi_controller *ctlr = data; 396 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 397 int state = atomic_fetch_andnot(RXDMA, &rs->state); 398 399 if (state & TXDMA && !rs->target_abort) 400 return; 401 402 if (rs->cs_inactive) 403 writel_relaxed(0, rs->regs + ROCKCHIP_SPI_IMR); 404 405 spi_enable_chip(rs, false); 406 spi_finalize_current_transfer(ctlr); 407 } 408 409 static void rockchip_spi_dma_txcb(void *data) 410 { 411 struct spi_controller *ctlr = data; 412 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 413 int state = atomic_fetch_andnot(TXDMA, &rs->state); 414 415 if (state & RXDMA && !rs->target_abort) 416 return; 417 418 /* Wait until the FIFO data completely. */ 419 wait_for_tx_idle(rs, ctlr->target); 420 421 spi_enable_chip(rs, false); 422 spi_finalize_current_transfer(ctlr); 423 } 424 425 static u32 rockchip_spi_calc_burst_size(u32 data_len) 426 { 427 u32 i; 428 429 /* burst size: 1, 2, 4, 8 */ 430 for (i = 1; i < 8; i <<= 1) { 431 if (data_len & i) 432 break; 433 } 434 435 return i; 436 } 437 438 static int rockchip_spi_prepare_dma(struct rockchip_spi *rs, 439 struct spi_controller *ctlr, struct spi_transfer *xfer) 440 { 441 struct dma_async_tx_descriptor *rxdesc, *txdesc; 442 443 atomic_set(&rs->state, 0); 444 445 rs->tx = xfer->tx_buf; 446 rs->rx = xfer->rx_buf; 447 448 rxdesc = NULL; 449 if (xfer->rx_buf) { 450 struct dma_slave_config rxconf = { 451 .direction = DMA_DEV_TO_MEM, 452 .src_addr = rs->dma_addr_rx, 453 .src_addr_width = rs->n_bytes, 454 .src_maxburst = rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes), 455 }; 456 457 dmaengine_slave_config(ctlr->dma_rx, &rxconf); 458 459 rxdesc = dmaengine_prep_slave_sg( 460 ctlr->dma_rx, 461 xfer->rx_sg.sgl, xfer->rx_sg.nents, 462 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT); 463 if (!rxdesc) 464 return -EINVAL; 465 466 rxdesc->callback = rockchip_spi_dma_rxcb; 467 rxdesc->callback_param = ctlr; 468 } 469 470 txdesc = NULL; 471 if (xfer->tx_buf) { 472 struct dma_slave_config txconf = { 473 .direction = DMA_MEM_TO_DEV, 474 .dst_addr = rs->dma_addr_tx, 475 .dst_addr_width = rs->n_bytes, 476 .dst_maxburst = rs->fifo_len / 4, 477 }; 478 479 dmaengine_slave_config(ctlr->dma_tx, &txconf); 480 481 txdesc = dmaengine_prep_slave_sg( 482 ctlr->dma_tx, 483 xfer->tx_sg.sgl, xfer->tx_sg.nents, 484 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT); 485 if (!txdesc) { 486 if (rxdesc) 487 dmaengine_terminate_sync(ctlr->dma_rx); 488 return -EINVAL; 489 } 490 491 txdesc->callback = rockchip_spi_dma_txcb; 492 txdesc->callback_param = ctlr; 493 } 494 495 /* rx must be started before tx due to spi instinct */ 496 if (rxdesc) { 497 atomic_or(RXDMA, &rs->state); 498 ctlr->dma_rx->cookie = dmaengine_submit(rxdesc); 499 dma_async_issue_pending(ctlr->dma_rx); 500 } 501 502 if (rs->cs_inactive) 503 writel_relaxed(INT_CS_INACTIVE, rs->regs + ROCKCHIP_SPI_IMR); 504 505 spi_enable_chip(rs, true); 506 507 if (txdesc) { 508 atomic_or(TXDMA, &rs->state); 509 dmaengine_submit(txdesc); 510 dma_async_issue_pending(ctlr->dma_tx); 511 } 512 513 /* 1 means the transfer is in progress */ 514 return 1; 515 } 516 517 static int rockchip_spi_config(struct rockchip_spi *rs, 518 struct spi_device *spi, struct spi_transfer *xfer, 519 bool use_dma, bool target_mode) 520 { 521 u32 cr0 = CR0_FRF_SPI << CR0_FRF_OFFSET 522 | CR0_BHT_8BIT << CR0_BHT_OFFSET 523 | CR0_SSD_ONE << CR0_SSD_OFFSET 524 | CR0_EM_BIG << CR0_EM_OFFSET; 525 u32 cr1; 526 u32 dmacr = 0; 527 528 if (target_mode) 529 cr0 |= CR0_OPM_TARGET << CR0_OPM_OFFSET; 530 rs->target_abort = false; 531 532 cr0 |= rs->rsd << CR0_RSD_OFFSET; 533 cr0 |= (spi->mode & 0x3U) << CR0_SCPH_OFFSET; 534 if (spi->mode & SPI_LSB_FIRST) 535 cr0 |= CR0_FBM_LSB << CR0_FBM_OFFSET; 536 if (spi->mode & SPI_CS_HIGH) 537 cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET; 538 539 if (xfer->rx_buf && xfer->tx_buf) 540 cr0 |= CR0_XFM_TR << CR0_XFM_OFFSET; 541 else if (xfer->rx_buf) 542 cr0 |= CR0_XFM_RO << CR0_XFM_OFFSET; 543 else if (use_dma) 544 cr0 |= CR0_XFM_TO << CR0_XFM_OFFSET; 545 546 switch (xfer->bits_per_word) { 547 case 4: 548 cr0 |= CR0_DFS_4BIT << CR0_DFS_OFFSET; 549 cr1 = xfer->len - 1; 550 break; 551 case 8: 552 cr0 |= CR0_DFS_8BIT << CR0_DFS_OFFSET; 553 cr1 = xfer->len - 1; 554 break; 555 case 16: 556 cr0 |= CR0_DFS_16BIT << CR0_DFS_OFFSET; 557 cr1 = xfer->len / 2 - 1; 558 break; 559 default: 560 /* we only whitelist 4, 8 and 16 bit words in 561 * ctlr->bits_per_word_mask, so this shouldn't 562 * happen 563 */ 564 dev_err(rs->dev, "unknown bits per word: %d\n", 565 xfer->bits_per_word); 566 return -EINVAL; 567 } 568 569 if (use_dma) { 570 if (xfer->tx_buf) 571 dmacr |= TF_DMA_EN; 572 if (xfer->rx_buf) 573 dmacr |= RF_DMA_EN; 574 } 575 576 writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0); 577 writel_relaxed(cr1, rs->regs + ROCKCHIP_SPI_CTRLR1); 578 579 /* unfortunately setting the fifo threshold level to generate an 580 * interrupt exactly when the fifo is full doesn't seem to work, 581 * so we need the strict inequality here 582 */ 583 if ((xfer->len / rs->n_bytes) < rs->fifo_len) 584 writel_relaxed(xfer->len / rs->n_bytes - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); 585 else 586 writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_RXFTLR); 587 588 writel_relaxed(rs->fifo_len / 2 - 1, rs->regs + ROCKCHIP_SPI_DMATDLR); 589 writel_relaxed(rockchip_spi_calc_burst_size(xfer->len / rs->n_bytes) - 1, 590 rs->regs + ROCKCHIP_SPI_DMARDLR); 591 writel_relaxed(dmacr, rs->regs + ROCKCHIP_SPI_DMACR); 592 593 /* the hardware only supports an even clock divisor, so 594 * round divisor = spiclk / speed up to nearest even number 595 * so that the resulting speed is <= the requested speed 596 */ 597 writel_relaxed(2 * DIV_ROUND_UP(rs->freq, 2 * xfer->speed_hz), 598 rs->regs + ROCKCHIP_SPI_BAUDR); 599 600 return 0; 601 } 602 603 static size_t rockchip_spi_max_transfer_size(struct spi_device *spi) 604 { 605 return ROCKCHIP_SPI_MAX_TRANLEN; 606 } 607 608 static int rockchip_spi_target_abort(struct spi_controller *ctlr) 609 { 610 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 611 u32 rx_fifo_left; 612 struct dma_tx_state state; 613 enum dma_status status; 614 615 /* Get current dma rx point */ 616 if (atomic_read(&rs->state) & RXDMA) { 617 dmaengine_pause(ctlr->dma_rx); 618 status = dmaengine_tx_status(ctlr->dma_rx, ctlr->dma_rx->cookie, &state); 619 if (status == DMA_ERROR) { 620 rs->rx = rs->xfer->rx_buf; 621 rs->xfer->len = 0; 622 rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); 623 for (; rx_fifo_left; rx_fifo_left--) 624 readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); 625 goto out; 626 } else { 627 rs->rx += rs->xfer->len - rs->n_bytes * state.residue; 628 } 629 } 630 631 /* Get the valid data left in rx fifo and set rs->xfer->len real rx size */ 632 if (rs->rx) { 633 rx_fifo_left = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXFLR); 634 for (; rx_fifo_left; rx_fifo_left--) { 635 u32 rxw = readl_relaxed(rs->regs + ROCKCHIP_SPI_RXDR); 636 637 if (rs->n_bytes == 1) 638 *(u8 *)rs->rx = (u8)rxw; 639 else 640 *(u16 *)rs->rx = (u16)rxw; 641 rs->rx += rs->n_bytes; 642 } 643 rs->xfer->len = (unsigned int)(rs->rx - rs->xfer->rx_buf); 644 } 645 646 out: 647 if (atomic_read(&rs->state) & RXDMA) 648 dmaengine_terminate_sync(ctlr->dma_rx); 649 if (atomic_read(&rs->state) & TXDMA) 650 dmaengine_terminate_sync(ctlr->dma_tx); 651 atomic_set(&rs->state, 0); 652 spi_enable_chip(rs, false); 653 rs->target_abort = true; 654 spi_finalize_current_transfer(ctlr); 655 656 return 0; 657 } 658 659 static int rockchip_spi_transfer_one( 660 struct spi_controller *ctlr, 661 struct spi_device *spi, 662 struct spi_transfer *xfer) 663 { 664 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 665 int ret; 666 bool use_dma; 667 668 /* Zero length transfers won't trigger an interrupt on completion */ 669 if (!xfer->len) { 670 spi_finalize_current_transfer(ctlr); 671 return 1; 672 } 673 674 WARN_ON(readl_relaxed(rs->regs + ROCKCHIP_SPI_SSIENR) && 675 (readl_relaxed(rs->regs + ROCKCHIP_SPI_SR) & SR_BUSY)); 676 677 if (!xfer->tx_buf && !xfer->rx_buf) { 678 dev_err(rs->dev, "No buffer for transfer\n"); 679 return -EINVAL; 680 } 681 682 if (xfer->len > ROCKCHIP_SPI_MAX_TRANLEN) { 683 dev_err(rs->dev, "Transfer is too long (%d)\n", xfer->len); 684 return -EINVAL; 685 } 686 687 rs->n_bytes = xfer->bits_per_word <= 8 ? 1 : 2; 688 rs->xfer = xfer; 689 use_dma = ctlr->can_dma ? ctlr->can_dma(ctlr, spi, xfer) : false; 690 691 ret = rockchip_spi_config(rs, spi, xfer, use_dma, ctlr->target); 692 if (ret) 693 return ret; 694 695 if (use_dma) 696 return rockchip_spi_prepare_dma(rs, ctlr, xfer); 697 698 return rockchip_spi_prepare_irq(rs, ctlr, xfer); 699 } 700 701 static bool rockchip_spi_can_dma(struct spi_controller *ctlr, 702 struct spi_device *spi, 703 struct spi_transfer *xfer) 704 { 705 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 706 unsigned int bytes_per_word = xfer->bits_per_word <= 8 ? 1 : 2; 707 708 /* if the numbor of spi words to transfer is less than the fifo 709 * length we can just fill the fifo and wait for a single irq, 710 * so don't bother setting up dma 711 */ 712 return xfer->len / bytes_per_word >= rs->fifo_len; 713 } 714 715 static int rockchip_spi_setup(struct spi_device *spi) 716 { 717 struct rockchip_spi *rs = spi_controller_get_devdata(spi->controller); 718 u32 cr0; 719 720 if (!spi_get_csgpiod(spi, 0) && (spi->mode & SPI_CS_HIGH) && !rs->cs_high_supported) { 721 dev_warn(&spi->dev, "setup: non GPIO CS can't be active-high\n"); 722 return -EINVAL; 723 } 724 725 pm_runtime_get_sync(rs->dev); 726 727 cr0 = readl_relaxed(rs->regs + ROCKCHIP_SPI_CTRLR0); 728 729 cr0 &= ~(0x3 << CR0_SCPH_OFFSET); 730 cr0 |= ((spi->mode & 0x3) << CR0_SCPH_OFFSET); 731 if (spi->mode & SPI_CS_HIGH && spi_get_chipselect(spi, 0) <= 1) 732 cr0 |= BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET; 733 else if (spi_get_chipselect(spi, 0) <= 1) 734 cr0 &= ~(BIT(spi_get_chipselect(spi, 0)) << CR0_SOI_OFFSET); 735 736 writel_relaxed(cr0, rs->regs + ROCKCHIP_SPI_CTRLR0); 737 738 pm_runtime_put(rs->dev); 739 740 return 0; 741 } 742 743 static int rockchip_spi_probe(struct platform_device *pdev) 744 { 745 struct device_node *np = pdev->dev.of_node; 746 struct spi_controller *ctlr; 747 struct rockchip_spi *rs; 748 struct resource *mem; 749 u32 rsd_nsecs, num_cs; 750 bool target_mode; 751 int ret; 752 753 target_mode = of_property_read_bool(np, "spi-slave"); 754 755 if (target_mode) 756 ctlr = spi_alloc_target(&pdev->dev, sizeof(struct rockchip_spi)); 757 else 758 ctlr = spi_alloc_host(&pdev->dev, sizeof(struct rockchip_spi)); 759 760 if (!ctlr) 761 return -ENOMEM; 762 763 platform_set_drvdata(pdev, ctlr); 764 765 rs = spi_controller_get_devdata(ctlr); 766 767 /* Get basic io resource and map it */ 768 rs->regs = devm_platform_get_and_ioremap_resource(pdev, 0, &mem); 769 if (IS_ERR(rs->regs)) { 770 ret = PTR_ERR(rs->regs); 771 goto err_put_ctlr; 772 } 773 774 rs->apb_pclk = devm_clk_get_enabled(&pdev->dev, "apb_pclk"); 775 if (IS_ERR(rs->apb_pclk)) { 776 ret = dev_err_probe(&pdev->dev, PTR_ERR(rs->apb_pclk), 777 "Failed to get apb_pclk\n"); 778 goto err_put_ctlr; 779 } 780 781 rs->spiclk = devm_clk_get_enabled(&pdev->dev, "spiclk"); 782 if (IS_ERR(rs->spiclk)) { 783 ret = dev_err_probe(&pdev->dev, PTR_ERR(rs->spiclk), 784 "Failed to get spi_pclk\n"); 785 goto err_put_ctlr; 786 } 787 788 spi_enable_chip(rs, false); 789 790 ret = platform_get_irq(pdev, 0); 791 if (ret < 0) 792 goto err_put_ctlr; 793 794 ret = devm_request_threaded_irq(&pdev->dev, ret, rockchip_spi_isr, NULL, 795 IRQF_ONESHOT, dev_name(&pdev->dev), ctlr); 796 if (ret) 797 goto err_put_ctlr; 798 799 rs->dev = &pdev->dev; 800 rs->freq = clk_get_rate(rs->spiclk); 801 802 if (!of_property_read_u32(pdev->dev.of_node, "rx-sample-delay-ns", 803 &rsd_nsecs)) { 804 /* rx sample delay is expressed in parent clock cycles (max 3) */ 805 u32 rsd = DIV_ROUND_CLOSEST(rsd_nsecs * (rs->freq >> 8), 1000000000 >> 8); 806 if (!rsd) { 807 dev_warn(rs->dev, "%u Hz are too slow to express %u ns delay\n", 808 rs->freq, rsd_nsecs); 809 } else if (rsd > CR0_RSD_MAX) { 810 rsd = CR0_RSD_MAX; 811 dev_warn(rs->dev, 812 "%u Hz are too fast to express %u ns delay, clamping at %u ns\n", 813 rs->freq, rsd_nsecs, CR0_RSD_MAX * 1000000000U / rs->freq); 814 } 815 rs->rsd = rsd; 816 } 817 818 rs->fifo_len = get_fifo_len(rs); 819 if (!rs->fifo_len) { 820 ret = dev_err_probe(&pdev->dev, -EINVAL, "Failed to get fifo length\n"); 821 goto err_put_ctlr; 822 } 823 824 pm_runtime_set_autosuspend_delay(&pdev->dev, ROCKCHIP_AUTOSUSPEND_TIMEOUT); 825 pm_runtime_use_autosuspend(&pdev->dev); 826 pm_runtime_set_active(&pdev->dev); 827 pm_runtime_enable(&pdev->dev); 828 829 ctlr->auto_runtime_pm = true; 830 ctlr->bus_num = pdev->id; 831 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LOOP | SPI_LSB_FIRST; 832 if (target_mode) { 833 ctlr->mode_bits |= SPI_NO_CS; 834 ctlr->target_abort = rockchip_spi_target_abort; 835 } else { 836 ctlr->flags = SPI_CONTROLLER_GPIO_SS; 837 ctlr->max_native_cs = ROCKCHIP_SPI_MAX_NATIVE_CS_NUM; 838 /* 839 * rk spi0 has two native cs, spi1..5 one cs only 840 * if num-cs is missing in the dts, default to 1 841 */ 842 if (of_property_read_u32(np, "num-cs", &num_cs)) 843 num_cs = 1; 844 ctlr->num_chipselect = num_cs; 845 ctlr->use_gpio_descriptors = true; 846 } 847 ctlr->dev.of_node = pdev->dev.of_node; 848 ctlr->bits_per_word_mask = SPI_BPW_MASK(16) | SPI_BPW_MASK(8) | SPI_BPW_MASK(4); 849 ctlr->min_speed_hz = rs->freq / BAUDR_SCKDV_MAX; 850 ctlr->max_speed_hz = min(rs->freq / BAUDR_SCKDV_MIN, MAX_SCLK_OUT); 851 852 ctlr->setup = rockchip_spi_setup; 853 ctlr->set_cs = rockchip_spi_set_cs; 854 ctlr->transfer_one = rockchip_spi_transfer_one; 855 ctlr->max_transfer_size = rockchip_spi_max_transfer_size; 856 ctlr->handle_err = rockchip_spi_handle_err; 857 858 ctlr->dma_tx = dma_request_chan(rs->dev, "tx"); 859 if (IS_ERR(ctlr->dma_tx)) { 860 /* Check tx to see if we need to defer driver probing */ 861 ret = dev_warn_probe(rs->dev, PTR_ERR(ctlr->dma_tx), 862 "Failed to request optional TX DMA channel\n"); 863 if (ret == -EPROBE_DEFER) 864 goto err_disable_pm_runtime; 865 ctlr->dma_tx = NULL; 866 } 867 868 ctlr->dma_rx = dma_request_chan(rs->dev, "rx"); 869 if (IS_ERR(ctlr->dma_rx)) { 870 /* Check rx to see if we need to defer driver probing */ 871 ret = dev_warn_probe(rs->dev, PTR_ERR(ctlr->dma_rx), 872 "Failed to request optional RX DMA channel\n"); 873 if (ret == -EPROBE_DEFER) 874 goto err_free_dma_tx; 875 ctlr->dma_rx = NULL; 876 } 877 878 if (ctlr->dma_tx && ctlr->dma_rx) { 879 rs->dma_addr_tx = mem->start + ROCKCHIP_SPI_TXDR; 880 rs->dma_addr_rx = mem->start + ROCKCHIP_SPI_RXDR; 881 ctlr->can_dma = rockchip_spi_can_dma; 882 } 883 884 switch (readl_relaxed(rs->regs + ROCKCHIP_SPI_VERSION)) { 885 case ROCKCHIP_SPI_VER2_TYPE2: 886 rs->cs_high_supported = true; 887 ctlr->mode_bits |= SPI_CS_HIGH; 888 if (ctlr->can_dma && target_mode) 889 rs->cs_inactive = true; 890 else 891 rs->cs_inactive = false; 892 break; 893 default: 894 rs->cs_inactive = false; 895 break; 896 } 897 898 ret = devm_spi_register_controller(&pdev->dev, ctlr); 899 if (ret < 0) { 900 dev_err(&pdev->dev, "Failed to register controller\n"); 901 goto err_free_dma_rx; 902 } 903 904 return 0; 905 906 err_free_dma_rx: 907 if (ctlr->dma_rx) 908 dma_release_channel(ctlr->dma_rx); 909 err_free_dma_tx: 910 if (ctlr->dma_tx) 911 dma_release_channel(ctlr->dma_tx); 912 err_disable_pm_runtime: 913 pm_runtime_disable(&pdev->dev); 914 err_put_ctlr: 915 spi_controller_put(ctlr); 916 917 return ret; 918 } 919 920 static void rockchip_spi_remove(struct platform_device *pdev) 921 { 922 struct spi_controller *ctlr = spi_controller_get(platform_get_drvdata(pdev)); 923 924 pm_runtime_get_sync(&pdev->dev); 925 926 pm_runtime_put_noidle(&pdev->dev); 927 pm_runtime_disable(&pdev->dev); 928 pm_runtime_set_suspended(&pdev->dev); 929 930 if (ctlr->dma_tx) 931 dma_release_channel(ctlr->dma_tx); 932 if (ctlr->dma_rx) 933 dma_release_channel(ctlr->dma_rx); 934 935 spi_controller_put(ctlr); 936 } 937 938 #ifdef CONFIG_PM_SLEEP 939 static int rockchip_spi_suspend(struct device *dev) 940 { 941 int ret; 942 struct spi_controller *ctlr = dev_get_drvdata(dev); 943 944 ret = spi_controller_suspend(ctlr); 945 if (ret < 0) 946 return ret; 947 948 ret = pm_runtime_force_suspend(dev); 949 if (ret < 0) { 950 spi_controller_resume(ctlr); 951 return ret; 952 } 953 954 pinctrl_pm_select_sleep_state(dev); 955 956 return 0; 957 } 958 959 static int rockchip_spi_resume(struct device *dev) 960 { 961 int ret; 962 struct spi_controller *ctlr = dev_get_drvdata(dev); 963 964 pinctrl_pm_select_default_state(dev); 965 966 ret = pm_runtime_force_resume(dev); 967 if (ret < 0) 968 return ret; 969 970 return spi_controller_resume(ctlr); 971 } 972 #endif /* CONFIG_PM_SLEEP */ 973 974 #ifdef CONFIG_PM 975 static int rockchip_spi_runtime_suspend(struct device *dev) 976 { 977 struct spi_controller *ctlr = dev_get_drvdata(dev); 978 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 979 980 clk_disable_unprepare(rs->spiclk); 981 clk_disable_unprepare(rs->apb_pclk); 982 983 return 0; 984 } 985 986 static int rockchip_spi_runtime_resume(struct device *dev) 987 { 988 int ret; 989 struct spi_controller *ctlr = dev_get_drvdata(dev); 990 struct rockchip_spi *rs = spi_controller_get_devdata(ctlr); 991 992 ret = clk_prepare_enable(rs->apb_pclk); 993 if (ret < 0) 994 return ret; 995 996 ret = clk_prepare_enable(rs->spiclk); 997 if (ret < 0) 998 clk_disable_unprepare(rs->apb_pclk); 999 1000 return 0; 1001 } 1002 #endif /* CONFIG_PM */ 1003 1004 static const struct dev_pm_ops rockchip_spi_pm = { 1005 SET_NOIRQ_SYSTEM_SLEEP_PM_OPS(rockchip_spi_suspend, rockchip_spi_resume) 1006 SET_RUNTIME_PM_OPS(rockchip_spi_runtime_suspend, 1007 rockchip_spi_runtime_resume, NULL) 1008 }; 1009 1010 static const struct of_device_id rockchip_spi_dt_match[] = { 1011 { .compatible = "rockchip,px30-spi", }, 1012 { .compatible = "rockchip,rk3036-spi", }, 1013 { .compatible = "rockchip,rk3066-spi", }, 1014 { .compatible = "rockchip,rk3188-spi", }, 1015 { .compatible = "rockchip,rk3228-spi", }, 1016 { .compatible = "rockchip,rk3288-spi", }, 1017 { .compatible = "rockchip,rk3308-spi", }, 1018 { .compatible = "rockchip,rk3328-spi", }, 1019 { .compatible = "rockchip,rk3368-spi", }, 1020 { .compatible = "rockchip,rk3399-spi", }, 1021 { .compatible = "rockchip,rv1108-spi", }, 1022 { .compatible = "rockchip,rv1126-spi", }, 1023 { }, 1024 }; 1025 MODULE_DEVICE_TABLE(of, rockchip_spi_dt_match); 1026 1027 static struct platform_driver rockchip_spi_driver = { 1028 .driver = { 1029 .name = DRIVER_NAME, 1030 .pm = &rockchip_spi_pm, 1031 .of_match_table = of_match_ptr(rockchip_spi_dt_match), 1032 }, 1033 .probe = rockchip_spi_probe, 1034 .remove = rockchip_spi_remove, 1035 }; 1036 1037 module_platform_driver(rockchip_spi_driver); 1038 1039 MODULE_AUTHOR("Addy Ke <addy.ke@rock-chips.com>"); 1040 MODULE_DESCRIPTION("ROCKCHIP SPI Controller Driver"); 1041 MODULE_LICENSE("GPL v2"); 1042