xref: /linux/drivers/spi/spi-pxa2xx.c (revision f79e4d5f92a129a1159c973735007d4ddc8541f3)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/gpio/consumer.h>
32 #include <linux/slab.h>
33 #include <linux/clk.h>
34 #include <linux/pm_runtime.h>
35 #include <linux/acpi.h>
36 
37 #include "spi-pxa2xx.h"
38 
39 MODULE_AUTHOR("Stephen Street");
40 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
41 MODULE_LICENSE("GPL");
42 MODULE_ALIAS("platform:pxa2xx-spi");
43 
44 #define TIMOUT_DFLT		1000
45 
46 /*
47  * for testing SSCR1 changes that require SSP restart, basically
48  * everything except the service and interrupt enables, the pxa270 developer
49  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
50  * list, but the PXA255 dev man says all bits without really meaning the
51  * service and interrupt enables
52  */
53 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
54 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
55 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
56 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
57 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
61 				| QUARK_X1000_SSCR1_EFWR	\
62 				| QUARK_X1000_SSCR1_RFT		\
63 				| QUARK_X1000_SSCR1_TFT		\
64 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
65 
66 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
67 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
68 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
69 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
70 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
71 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
72 
73 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
74 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
75 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
76 #define LPSS_CAPS_CS_EN_SHIFT			9
77 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	unsigned cs_num;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 	{	/* LPSS_CNL_SSP */
155 		.offset = 0x200,
156 		.reg_general = -1,
157 		.reg_ssp = 0x20,
158 		.reg_cs_ctrl = 0x24,
159 		.reg_capabilities = 0xfc,
160 		.rx_threshold = 1,
161 		.tx_threshold_lo = 32,
162 		.tx_threshold_hi = 56,
163 		.cs_sel_shift = 8,
164 		.cs_sel_mask = 3 << 8,
165 	},
166 };
167 
168 static inline const struct lpss_config
169 *lpss_get_config(const struct driver_data *drv_data)
170 {
171 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
172 }
173 
174 static bool is_lpss_ssp(const struct driver_data *drv_data)
175 {
176 	switch (drv_data->ssp_type) {
177 	case LPSS_LPT_SSP:
178 	case LPSS_BYT_SSP:
179 	case LPSS_BSW_SSP:
180 	case LPSS_SPT_SSP:
181 	case LPSS_BXT_SSP:
182 	case LPSS_CNL_SSP:
183 		return true;
184 	default:
185 		return false;
186 	}
187 }
188 
189 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
190 {
191 	return drv_data->ssp_type == QUARK_X1000_SSP;
192 }
193 
194 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
195 {
196 	switch (drv_data->ssp_type) {
197 	case QUARK_X1000_SSP:
198 		return QUARK_X1000_SSCR1_CHANGE_MASK;
199 	case CE4100_SSP:
200 		return CE4100_SSCR1_CHANGE_MASK;
201 	default:
202 		return SSCR1_CHANGE_MASK;
203 	}
204 }
205 
206 static u32
207 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
208 {
209 	switch (drv_data->ssp_type) {
210 	case QUARK_X1000_SSP:
211 		return RX_THRESH_QUARK_X1000_DFLT;
212 	case CE4100_SSP:
213 		return RX_THRESH_CE4100_DFLT;
214 	default:
215 		return RX_THRESH_DFLT;
216 	}
217 }
218 
219 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
220 {
221 	u32 mask;
222 
223 	switch (drv_data->ssp_type) {
224 	case QUARK_X1000_SSP:
225 		mask = QUARK_X1000_SSSR_TFL_MASK;
226 		break;
227 	case CE4100_SSP:
228 		mask = CE4100_SSSR_TFL_MASK;
229 		break;
230 	default:
231 		mask = SSSR_TFL_MASK;
232 		break;
233 	}
234 
235 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
236 }
237 
238 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
239 				     u32 *sccr1_reg)
240 {
241 	u32 mask;
242 
243 	switch (drv_data->ssp_type) {
244 	case QUARK_X1000_SSP:
245 		mask = QUARK_X1000_SSCR1_RFT;
246 		break;
247 	case CE4100_SSP:
248 		mask = CE4100_SSCR1_RFT;
249 		break;
250 	default:
251 		mask = SSCR1_RFT;
252 		break;
253 	}
254 	*sccr1_reg &= ~mask;
255 }
256 
257 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
258 				   u32 *sccr1_reg, u32 threshold)
259 {
260 	switch (drv_data->ssp_type) {
261 	case QUARK_X1000_SSP:
262 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
263 		break;
264 	case CE4100_SSP:
265 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
266 		break;
267 	default:
268 		*sccr1_reg |= SSCR1_RxTresh(threshold);
269 		break;
270 	}
271 }
272 
273 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
274 				  u32 clk_div, u8 bits)
275 {
276 	switch (drv_data->ssp_type) {
277 	case QUARK_X1000_SSP:
278 		return clk_div
279 			| QUARK_X1000_SSCR0_Motorola
280 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
281 			| SSCR0_SSE;
282 	default:
283 		return clk_div
284 			| SSCR0_Motorola
285 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
286 			| SSCR0_SSE
287 			| (bits > 16 ? SSCR0_EDSS : 0);
288 	}
289 }
290 
291 /*
292  * Read and write LPSS SSP private registers. Caller must first check that
293  * is_lpss_ssp() returns true before these can be called.
294  */
295 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
296 {
297 	WARN_ON(!drv_data->lpss_base);
298 	return readl(drv_data->lpss_base + offset);
299 }
300 
301 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
302 				  unsigned offset, u32 value)
303 {
304 	WARN_ON(!drv_data->lpss_base);
305 	writel(value, drv_data->lpss_base + offset);
306 }
307 
308 /*
309  * lpss_ssp_setup - perform LPSS SSP specific setup
310  * @drv_data: pointer to the driver private data
311  *
312  * Perform LPSS SSP specific setup. This function must be called first if
313  * one is going to use LPSS SSP private registers.
314  */
315 static void lpss_ssp_setup(struct driver_data *drv_data)
316 {
317 	const struct lpss_config *config;
318 	u32 value;
319 
320 	config = lpss_get_config(drv_data);
321 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
322 
323 	/* Enable software chip select control */
324 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
325 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
326 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
327 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
328 
329 	/* Enable multiblock DMA transfers */
330 	if (drv_data->master_info->enable_dma) {
331 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
332 
333 		if (config->reg_general >= 0) {
334 			value = __lpss_ssp_read_priv(drv_data,
335 						     config->reg_general);
336 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
337 			__lpss_ssp_write_priv(drv_data,
338 					      config->reg_general, value);
339 		}
340 	}
341 }
342 
343 static void lpss_ssp_select_cs(struct spi_device *spi,
344 			       const struct lpss_config *config)
345 {
346 	struct driver_data *drv_data =
347 		spi_controller_get_devdata(spi->controller);
348 	u32 value, cs;
349 
350 	if (!config->cs_sel_mask)
351 		return;
352 
353 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
354 
355 	cs = spi->chip_select;
356 	cs <<= config->cs_sel_shift;
357 	if (cs != (value & config->cs_sel_mask)) {
358 		/*
359 		 * When switching another chip select output active the
360 		 * output must be selected first and wait 2 ssp_clk cycles
361 		 * before changing state to active. Otherwise a short
362 		 * glitch will occur on the previous chip select since
363 		 * output select is latched but state control is not.
364 		 */
365 		value &= ~config->cs_sel_mask;
366 		value |= cs;
367 		__lpss_ssp_write_priv(drv_data,
368 				      config->reg_cs_ctrl, value);
369 		ndelay(1000000000 /
370 		       (drv_data->master->max_speed_hz / 2));
371 	}
372 }
373 
374 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
375 {
376 	struct driver_data *drv_data =
377 		spi_controller_get_devdata(spi->controller);
378 	const struct lpss_config *config;
379 	u32 value;
380 
381 	config = lpss_get_config(drv_data);
382 
383 	if (enable)
384 		lpss_ssp_select_cs(spi, config);
385 
386 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
387 	if (enable)
388 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
389 	else
390 		value |= LPSS_CS_CONTROL_CS_HIGH;
391 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
392 }
393 
394 static void cs_assert(struct spi_device *spi)
395 {
396 	struct chip_data *chip = spi_get_ctldata(spi);
397 	struct driver_data *drv_data =
398 		spi_controller_get_devdata(spi->controller);
399 
400 	if (drv_data->ssp_type == CE4100_SSP) {
401 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
402 		return;
403 	}
404 
405 	if (chip->cs_control) {
406 		chip->cs_control(PXA2XX_CS_ASSERT);
407 		return;
408 	}
409 
410 	if (chip->gpiod_cs) {
411 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
412 		return;
413 	}
414 
415 	if (is_lpss_ssp(drv_data))
416 		lpss_ssp_cs_control(spi, true);
417 }
418 
419 static void cs_deassert(struct spi_device *spi)
420 {
421 	struct chip_data *chip = spi_get_ctldata(spi);
422 	struct driver_data *drv_data =
423 		spi_controller_get_devdata(spi->controller);
424 	unsigned long timeout;
425 
426 	if (drv_data->ssp_type == CE4100_SSP)
427 		return;
428 
429 	/* Wait until SSP becomes idle before deasserting the CS */
430 	timeout = jiffies + msecs_to_jiffies(10);
431 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
432 	       !time_after(jiffies, timeout))
433 		cpu_relax();
434 
435 	if (chip->cs_control) {
436 		chip->cs_control(PXA2XX_CS_DEASSERT);
437 		return;
438 	}
439 
440 	if (chip->gpiod_cs) {
441 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
442 		return;
443 	}
444 
445 	if (is_lpss_ssp(drv_data))
446 		lpss_ssp_cs_control(spi, false);
447 }
448 
449 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
450 {
451 	if (level)
452 		cs_deassert(spi);
453 	else
454 		cs_assert(spi);
455 }
456 
457 int pxa2xx_spi_flush(struct driver_data *drv_data)
458 {
459 	unsigned long limit = loops_per_jiffy << 1;
460 
461 	do {
462 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
463 			pxa2xx_spi_read(drv_data, SSDR);
464 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
465 	write_SSSR_CS(drv_data, SSSR_ROR);
466 
467 	return limit;
468 }
469 
470 static int null_writer(struct driver_data *drv_data)
471 {
472 	u8 n_bytes = drv_data->n_bytes;
473 
474 	if (pxa2xx_spi_txfifo_full(drv_data)
475 		|| (drv_data->tx == drv_data->tx_end))
476 		return 0;
477 
478 	pxa2xx_spi_write(drv_data, SSDR, 0);
479 	drv_data->tx += n_bytes;
480 
481 	return 1;
482 }
483 
484 static int null_reader(struct driver_data *drv_data)
485 {
486 	u8 n_bytes = drv_data->n_bytes;
487 
488 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
489 	       && (drv_data->rx < drv_data->rx_end)) {
490 		pxa2xx_spi_read(drv_data, SSDR);
491 		drv_data->rx += n_bytes;
492 	}
493 
494 	return drv_data->rx == drv_data->rx_end;
495 }
496 
497 static int u8_writer(struct driver_data *drv_data)
498 {
499 	if (pxa2xx_spi_txfifo_full(drv_data)
500 		|| (drv_data->tx == drv_data->tx_end))
501 		return 0;
502 
503 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
504 	++drv_data->tx;
505 
506 	return 1;
507 }
508 
509 static int u8_reader(struct driver_data *drv_data)
510 {
511 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
512 	       && (drv_data->rx < drv_data->rx_end)) {
513 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
514 		++drv_data->rx;
515 	}
516 
517 	return drv_data->rx == drv_data->rx_end;
518 }
519 
520 static int u16_writer(struct driver_data *drv_data)
521 {
522 	if (pxa2xx_spi_txfifo_full(drv_data)
523 		|| (drv_data->tx == drv_data->tx_end))
524 		return 0;
525 
526 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
527 	drv_data->tx += 2;
528 
529 	return 1;
530 }
531 
532 static int u16_reader(struct driver_data *drv_data)
533 {
534 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
535 	       && (drv_data->rx < drv_data->rx_end)) {
536 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
537 		drv_data->rx += 2;
538 	}
539 
540 	return drv_data->rx == drv_data->rx_end;
541 }
542 
543 static int u32_writer(struct driver_data *drv_data)
544 {
545 	if (pxa2xx_spi_txfifo_full(drv_data)
546 		|| (drv_data->tx == drv_data->tx_end))
547 		return 0;
548 
549 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
550 	drv_data->tx += 4;
551 
552 	return 1;
553 }
554 
555 static int u32_reader(struct driver_data *drv_data)
556 {
557 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
558 	       && (drv_data->rx < drv_data->rx_end)) {
559 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
560 		drv_data->rx += 4;
561 	}
562 
563 	return drv_data->rx == drv_data->rx_end;
564 }
565 
566 static void reset_sccr1(struct driver_data *drv_data)
567 {
568 	struct chip_data *chip =
569 		spi_get_ctldata(drv_data->master->cur_msg->spi);
570 	u32 sccr1_reg;
571 
572 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
573 	switch (drv_data->ssp_type) {
574 	case QUARK_X1000_SSP:
575 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
576 		break;
577 	case CE4100_SSP:
578 		sccr1_reg &= ~CE4100_SSCR1_RFT;
579 		break;
580 	default:
581 		sccr1_reg &= ~SSCR1_RFT;
582 		break;
583 	}
584 	sccr1_reg |= chip->threshold;
585 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
586 }
587 
588 static void int_error_stop(struct driver_data *drv_data, const char* msg)
589 {
590 	/* Stop and reset SSP */
591 	write_SSSR_CS(drv_data, drv_data->clear_sr);
592 	reset_sccr1(drv_data);
593 	if (!pxa25x_ssp_comp(drv_data))
594 		pxa2xx_spi_write(drv_data, SSTO, 0);
595 	pxa2xx_spi_flush(drv_data);
596 	pxa2xx_spi_write(drv_data, SSCR0,
597 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
598 
599 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
600 
601 	drv_data->master->cur_msg->status = -EIO;
602 	spi_finalize_current_transfer(drv_data->master);
603 }
604 
605 static void int_transfer_complete(struct driver_data *drv_data)
606 {
607 	/* Clear and disable interrupts */
608 	write_SSSR_CS(drv_data, drv_data->clear_sr);
609 	reset_sccr1(drv_data);
610 	if (!pxa25x_ssp_comp(drv_data))
611 		pxa2xx_spi_write(drv_data, SSTO, 0);
612 
613 	spi_finalize_current_transfer(drv_data->master);
614 }
615 
616 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
617 {
618 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
619 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
620 
621 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
622 
623 	if (irq_status & SSSR_ROR) {
624 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
625 		return IRQ_HANDLED;
626 	}
627 
628 	if (irq_status & SSSR_TINT) {
629 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
630 		if (drv_data->read(drv_data)) {
631 			int_transfer_complete(drv_data);
632 			return IRQ_HANDLED;
633 		}
634 	}
635 
636 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
637 	do {
638 		if (drv_data->read(drv_data)) {
639 			int_transfer_complete(drv_data);
640 			return IRQ_HANDLED;
641 		}
642 	} while (drv_data->write(drv_data));
643 
644 	if (drv_data->read(drv_data)) {
645 		int_transfer_complete(drv_data);
646 		return IRQ_HANDLED;
647 	}
648 
649 	if (drv_data->tx == drv_data->tx_end) {
650 		u32 bytes_left;
651 		u32 sccr1_reg;
652 
653 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
654 		sccr1_reg &= ~SSCR1_TIE;
655 
656 		/*
657 		 * PXA25x_SSP has no timeout, set up rx threshould for the
658 		 * remaining RX bytes.
659 		 */
660 		if (pxa25x_ssp_comp(drv_data)) {
661 			u32 rx_thre;
662 
663 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
664 
665 			bytes_left = drv_data->rx_end - drv_data->rx;
666 			switch (drv_data->n_bytes) {
667 			case 4:
668 				bytes_left >>= 1;
669 			case 2:
670 				bytes_left >>= 1;
671 			}
672 
673 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
674 			if (rx_thre > bytes_left)
675 				rx_thre = bytes_left;
676 
677 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
678 		}
679 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
680 	}
681 
682 	/* We did something */
683 	return IRQ_HANDLED;
684 }
685 
686 static void handle_bad_msg(struct driver_data *drv_data)
687 {
688 	pxa2xx_spi_write(drv_data, SSCR0,
689 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
690 	pxa2xx_spi_write(drv_data, SSCR1,
691 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
692 	if (!pxa25x_ssp_comp(drv_data))
693 		pxa2xx_spi_write(drv_data, SSTO, 0);
694 	write_SSSR_CS(drv_data, drv_data->clear_sr);
695 
696 	dev_err(&drv_data->pdev->dev,
697 		"bad message state in interrupt handler\n");
698 }
699 
700 static irqreturn_t ssp_int(int irq, void *dev_id)
701 {
702 	struct driver_data *drv_data = dev_id;
703 	u32 sccr1_reg;
704 	u32 mask = drv_data->mask_sr;
705 	u32 status;
706 
707 	/*
708 	 * The IRQ might be shared with other peripherals so we must first
709 	 * check that are we RPM suspended or not. If we are we assume that
710 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
711 	 * interrupt is enabled).
712 	 */
713 	if (pm_runtime_suspended(&drv_data->pdev->dev))
714 		return IRQ_NONE;
715 
716 	/*
717 	 * If the device is not yet in RPM suspended state and we get an
718 	 * interrupt that is meant for another device, check if status bits
719 	 * are all set to one. That means that the device is already
720 	 * powered off.
721 	 */
722 	status = pxa2xx_spi_read(drv_data, SSSR);
723 	if (status == ~0)
724 		return IRQ_NONE;
725 
726 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
727 
728 	/* Ignore possible writes if we don't need to write */
729 	if (!(sccr1_reg & SSCR1_TIE))
730 		mask &= ~SSSR_TFS;
731 
732 	/* Ignore RX timeout interrupt if it is disabled */
733 	if (!(sccr1_reg & SSCR1_TINTE))
734 		mask &= ~SSSR_TINT;
735 
736 	if (!(status & mask))
737 		return IRQ_NONE;
738 
739 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
740 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
741 
742 	if (!drv_data->master->cur_msg) {
743 		handle_bad_msg(drv_data);
744 		/* Never fail */
745 		return IRQ_HANDLED;
746 	}
747 
748 	return drv_data->transfer_handler(drv_data);
749 }
750 
751 /*
752  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
753  * input frequency by fractions of 2^24. It also has a divider by 5.
754  *
755  * There are formulas to get baud rate value for given input frequency and
756  * divider parameters, such as DDS_CLK_RATE and SCR:
757  *
758  * Fsys = 200MHz
759  *
760  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
761  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
762  *
763  * DDS_CLK_RATE either 2^n or 2^n / 5.
764  * SCR is in range 0 .. 255
765  *
766  * Divisor = 5^i * 2^j * 2 * k
767  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
768  *       j = [0, 23]     j = 0 iff i = 1
769  *       k = [1, 256]
770  * Special case: j = 0, i = 1: Divisor = 2 / 5
771  *
772  * Accordingly to the specification the recommended values for DDS_CLK_RATE
773  * are:
774  *	Case 1:		2^n, n = [0, 23]
775  *	Case 2:		2^24 * 2 / 5 (0x666666)
776  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
777  *
778  * In all cases the lowest possible value is better.
779  *
780  * The function calculates parameters for all cases and chooses the one closest
781  * to the asked baud rate.
782  */
783 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
784 {
785 	unsigned long xtal = 200000000;
786 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
787 						   see (2) */
788 						/* case 3 */
789 	unsigned long fref1 = fref / 2;		/* case 1 */
790 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
791 	unsigned long scale;
792 	unsigned long q, q1, q2;
793 	long r, r1, r2;
794 	u32 mul;
795 
796 	/* Case 1 */
797 
798 	/* Set initial value for DDS_CLK_RATE */
799 	mul = (1 << 24) >> 1;
800 
801 	/* Calculate initial quot */
802 	q1 = DIV_ROUND_UP(fref1, rate);
803 
804 	/* Scale q1 if it's too big */
805 	if (q1 > 256) {
806 		/* Scale q1 to range [1, 512] */
807 		scale = fls_long(q1 - 1);
808 		if (scale > 9) {
809 			q1 >>= scale - 9;
810 			mul >>= scale - 9;
811 		}
812 
813 		/* Round the result if we have a remainder */
814 		q1 += q1 & 1;
815 	}
816 
817 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
818 	scale = __ffs(q1);
819 	q1 >>= scale;
820 	mul >>= scale;
821 
822 	/* Get the remainder */
823 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
824 
825 	/* Case 2 */
826 
827 	q2 = DIV_ROUND_UP(fref2, rate);
828 	r2 = abs(fref2 / q2 - rate);
829 
830 	/*
831 	 * Choose the best between two: less remainder we have the better. We
832 	 * can't go case 2 if q2 is greater than 256 since SCR register can
833 	 * hold only values 0 .. 255.
834 	 */
835 	if (r2 >= r1 || q2 > 256) {
836 		/* case 1 is better */
837 		r = r1;
838 		q = q1;
839 	} else {
840 		/* case 2 is better */
841 		r = r2;
842 		q = q2;
843 		mul = (1 << 24) * 2 / 5;
844 	}
845 
846 	/* Check case 3 only if the divisor is big enough */
847 	if (fref / rate >= 80) {
848 		u64 fssp;
849 		u32 m;
850 
851 		/* Calculate initial quot */
852 		q1 = DIV_ROUND_UP(fref, rate);
853 		m = (1 << 24) / q1;
854 
855 		/* Get the remainder */
856 		fssp = (u64)fref * m;
857 		do_div(fssp, 1 << 24);
858 		r1 = abs(fssp - rate);
859 
860 		/* Choose this one if it suits better */
861 		if (r1 < r) {
862 			/* case 3 is better */
863 			q = 1;
864 			mul = m;
865 		}
866 	}
867 
868 	*dds = mul;
869 	return q - 1;
870 }
871 
872 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
873 {
874 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
875 	const struct ssp_device *ssp = drv_data->ssp;
876 
877 	rate = min_t(int, ssp_clk, rate);
878 
879 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
880 		return (ssp_clk / (2 * rate) - 1) & 0xff;
881 	else
882 		return (ssp_clk / rate - 1) & 0xfff;
883 }
884 
885 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
886 					   int rate)
887 {
888 	struct chip_data *chip =
889 		spi_get_ctldata(drv_data->master->cur_msg->spi);
890 	unsigned int clk_div;
891 
892 	switch (drv_data->ssp_type) {
893 	case QUARK_X1000_SSP:
894 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
895 		break;
896 	default:
897 		clk_div = ssp_get_clk_div(drv_data, rate);
898 		break;
899 	}
900 	return clk_div << 8;
901 }
902 
903 static bool pxa2xx_spi_can_dma(struct spi_controller *master,
904 			       struct spi_device *spi,
905 			       struct spi_transfer *xfer)
906 {
907 	struct chip_data *chip = spi_get_ctldata(spi);
908 
909 	return chip->enable_dma &&
910 	       xfer->len <= MAX_DMA_LEN &&
911 	       xfer->len >= chip->dma_burst_size;
912 }
913 
914 static int pxa2xx_spi_transfer_one(struct spi_controller *master,
915 				   struct spi_device *spi,
916 				   struct spi_transfer *transfer)
917 {
918 	struct driver_data *drv_data = spi_controller_get_devdata(master);
919 	struct spi_message *message = master->cur_msg;
920 	struct chip_data *chip = spi_get_ctldata(message->spi);
921 	u32 dma_thresh = chip->dma_threshold;
922 	u32 dma_burst = chip->dma_burst_size;
923 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
924 	u32 clk_div;
925 	u8 bits;
926 	u32 speed;
927 	u32 cr0;
928 	u32 cr1;
929 	int err;
930 	int dma_mapped;
931 
932 	/* Check if we can DMA this transfer */
933 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
934 
935 		/* reject already-mapped transfers; PIO won't always work */
936 		if (message->is_dma_mapped
937 				|| transfer->rx_dma || transfer->tx_dma) {
938 			dev_err(&drv_data->pdev->dev,
939 				"Mapped transfer length of %u is greater than %d\n",
940 				transfer->len, MAX_DMA_LEN);
941 			return -EINVAL;
942 		}
943 
944 		/* warn ... we force this to PIO mode */
945 		dev_warn_ratelimited(&message->spi->dev,
946 				     "DMA disabled for transfer length %ld greater than %d\n",
947 				     (long)transfer->len, MAX_DMA_LEN);
948 	}
949 
950 	/* Setup the transfer state based on the type of transfer */
951 	if (pxa2xx_spi_flush(drv_data) == 0) {
952 		dev_err(&drv_data->pdev->dev, "Flush failed\n");
953 		return -EIO;
954 	}
955 	drv_data->n_bytes = chip->n_bytes;
956 	drv_data->tx = (void *)transfer->tx_buf;
957 	drv_data->tx_end = drv_data->tx + transfer->len;
958 	drv_data->rx = transfer->rx_buf;
959 	drv_data->rx_end = drv_data->rx + transfer->len;
960 	drv_data->write = drv_data->tx ? chip->write : null_writer;
961 	drv_data->read = drv_data->rx ? chip->read : null_reader;
962 
963 	/* Change speed and bit per word on a per transfer */
964 	bits = transfer->bits_per_word;
965 	speed = transfer->speed_hz;
966 
967 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
968 
969 	if (bits <= 8) {
970 		drv_data->n_bytes = 1;
971 		drv_data->read = drv_data->read != null_reader ?
972 					u8_reader : null_reader;
973 		drv_data->write = drv_data->write != null_writer ?
974 					u8_writer : null_writer;
975 	} else if (bits <= 16) {
976 		drv_data->n_bytes = 2;
977 		drv_data->read = drv_data->read != null_reader ?
978 					u16_reader : null_reader;
979 		drv_data->write = drv_data->write != null_writer ?
980 					u16_writer : null_writer;
981 	} else if (bits <= 32) {
982 		drv_data->n_bytes = 4;
983 		drv_data->read = drv_data->read != null_reader ?
984 					u32_reader : null_reader;
985 		drv_data->write = drv_data->write != null_writer ?
986 					u32_writer : null_writer;
987 	}
988 	/*
989 	 * if bits/word is changed in dma mode, then must check the
990 	 * thresholds and burst also
991 	 */
992 	if (chip->enable_dma) {
993 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
994 						message->spi,
995 						bits, &dma_burst,
996 						&dma_thresh))
997 			dev_warn_ratelimited(&message->spi->dev,
998 					     "DMA burst size reduced to match bits_per_word\n");
999 	}
1000 
1001 	dma_mapped = master->can_dma &&
1002 		     master->can_dma(master, message->spi, transfer) &&
1003 		     master->cur_msg_mapped;
1004 	if (dma_mapped) {
1005 
1006 		/* Ensure we have the correct interrupt handler */
1007 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1008 
1009 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1010 		if (err)
1011 			return err;
1012 
1013 		/* Clear status and start DMA engine */
1014 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1015 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1016 
1017 		pxa2xx_spi_dma_start(drv_data);
1018 	} else {
1019 		/* Ensure we have the correct interrupt handler	*/
1020 		drv_data->transfer_handler = interrupt_transfer;
1021 
1022 		/* Clear status  */
1023 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1024 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1025 	}
1026 
1027 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1028 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1029 	if (!pxa25x_ssp_comp(drv_data))
1030 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1031 			master->max_speed_hz
1032 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1033 			dma_mapped ? "DMA" : "PIO");
1034 	else
1035 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1036 			master->max_speed_hz / 2
1037 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1038 			dma_mapped ? "DMA" : "PIO");
1039 
1040 	if (is_lpss_ssp(drv_data)) {
1041 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1042 		    != chip->lpss_rx_threshold)
1043 			pxa2xx_spi_write(drv_data, SSIRF,
1044 					 chip->lpss_rx_threshold);
1045 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1046 		    != chip->lpss_tx_threshold)
1047 			pxa2xx_spi_write(drv_data, SSITF,
1048 					 chip->lpss_tx_threshold);
1049 	}
1050 
1051 	if (is_quark_x1000_ssp(drv_data) &&
1052 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1053 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1054 
1055 	/* see if we need to reload the config registers */
1056 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1057 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1058 	    != (cr1 & change_mask)) {
1059 		/* stop the SSP, and update the other bits */
1060 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1061 		if (!pxa25x_ssp_comp(drv_data))
1062 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1063 		/* first set CR1 without interrupt and service enables */
1064 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1065 		/* restart the SSP */
1066 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1067 
1068 	} else {
1069 		if (!pxa25x_ssp_comp(drv_data))
1070 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1071 	}
1072 
1073 	/*
1074 	 * Release the data by enabling service requests and interrupts,
1075 	 * without changing any mode bits
1076 	 */
1077 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1078 
1079 	return 1;
1080 }
1081 
1082 static void pxa2xx_spi_handle_err(struct spi_controller *master,
1083 				 struct spi_message *msg)
1084 {
1085 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1086 
1087 	/* Disable the SSP */
1088 	pxa2xx_spi_write(drv_data, SSCR0,
1089 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1090 	/* Clear and disable interrupts and service requests */
1091 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1092 	pxa2xx_spi_write(drv_data, SSCR1,
1093 			 pxa2xx_spi_read(drv_data, SSCR1)
1094 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1095 	if (!pxa25x_ssp_comp(drv_data))
1096 		pxa2xx_spi_write(drv_data, SSTO, 0);
1097 
1098 	/*
1099 	 * Stop the DMA if running. Note DMA callback handler may have unset
1100 	 * the dma_running already, which is fine as stopping is not needed
1101 	 * then but we shouldn't rely this flag for anything else than
1102 	 * stopping. For instance to differentiate between PIO and DMA
1103 	 * transfers.
1104 	 */
1105 	if (atomic_read(&drv_data->dma_running))
1106 		pxa2xx_spi_dma_stop(drv_data);
1107 }
1108 
1109 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *master)
1110 {
1111 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1112 
1113 	/* Disable the SSP now */
1114 	pxa2xx_spi_write(drv_data, SSCR0,
1115 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1116 
1117 	return 0;
1118 }
1119 
1120 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1121 		    struct pxa2xx_spi_chip *chip_info)
1122 {
1123 	struct driver_data *drv_data =
1124 		spi_controller_get_devdata(spi->controller);
1125 	struct gpio_desc *gpiod;
1126 	int err = 0;
1127 
1128 	if (chip == NULL)
1129 		return 0;
1130 
1131 	if (drv_data->cs_gpiods) {
1132 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1133 		if (gpiod) {
1134 			chip->gpiod_cs = gpiod;
1135 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1136 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1137 		}
1138 
1139 		return 0;
1140 	}
1141 
1142 	if (chip_info == NULL)
1143 		return 0;
1144 
1145 	/* NOTE: setup() can be called multiple times, possibly with
1146 	 * different chip_info, release previously requested GPIO
1147 	 */
1148 	if (chip->gpiod_cs) {
1149 		gpiod_put(chip->gpiod_cs);
1150 		chip->gpiod_cs = NULL;
1151 	}
1152 
1153 	/* If (*cs_control) is provided, ignore GPIO chip select */
1154 	if (chip_info->cs_control) {
1155 		chip->cs_control = chip_info->cs_control;
1156 		return 0;
1157 	}
1158 
1159 	if (gpio_is_valid(chip_info->gpio_cs)) {
1160 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1161 		if (err) {
1162 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1163 				chip_info->gpio_cs);
1164 			return err;
1165 		}
1166 
1167 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1168 		chip->gpiod_cs = gpiod;
1169 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1170 
1171 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1172 	}
1173 
1174 	return err;
1175 }
1176 
1177 static int setup(struct spi_device *spi)
1178 {
1179 	struct pxa2xx_spi_chip *chip_info;
1180 	struct chip_data *chip;
1181 	const struct lpss_config *config;
1182 	struct driver_data *drv_data =
1183 		spi_controller_get_devdata(spi->controller);
1184 	uint tx_thres, tx_hi_thres, rx_thres;
1185 
1186 	switch (drv_data->ssp_type) {
1187 	case QUARK_X1000_SSP:
1188 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1189 		tx_hi_thres = 0;
1190 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1191 		break;
1192 	case CE4100_SSP:
1193 		tx_thres = TX_THRESH_CE4100_DFLT;
1194 		tx_hi_thres = 0;
1195 		rx_thres = RX_THRESH_CE4100_DFLT;
1196 		break;
1197 	case LPSS_LPT_SSP:
1198 	case LPSS_BYT_SSP:
1199 	case LPSS_BSW_SSP:
1200 	case LPSS_SPT_SSP:
1201 	case LPSS_BXT_SSP:
1202 	case LPSS_CNL_SSP:
1203 		config = lpss_get_config(drv_data);
1204 		tx_thres = config->tx_threshold_lo;
1205 		tx_hi_thres = config->tx_threshold_hi;
1206 		rx_thres = config->rx_threshold;
1207 		break;
1208 	default:
1209 		tx_thres = TX_THRESH_DFLT;
1210 		tx_hi_thres = 0;
1211 		rx_thres = RX_THRESH_DFLT;
1212 		break;
1213 	}
1214 
1215 	/* Only alloc on first setup */
1216 	chip = spi_get_ctldata(spi);
1217 	if (!chip) {
1218 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1219 		if (!chip)
1220 			return -ENOMEM;
1221 
1222 		if (drv_data->ssp_type == CE4100_SSP) {
1223 			if (spi->chip_select > 4) {
1224 				dev_err(&spi->dev,
1225 					"failed setup: cs number must not be > 4.\n");
1226 				kfree(chip);
1227 				return -EINVAL;
1228 			}
1229 
1230 			chip->frm = spi->chip_select;
1231 		}
1232 		chip->enable_dma = drv_data->master_info->enable_dma;
1233 		chip->timeout = TIMOUT_DFLT;
1234 	}
1235 
1236 	/* protocol drivers may change the chip settings, so...
1237 	 * if chip_info exists, use it */
1238 	chip_info = spi->controller_data;
1239 
1240 	/* chip_info isn't always needed */
1241 	chip->cr1 = 0;
1242 	if (chip_info) {
1243 		if (chip_info->timeout)
1244 			chip->timeout = chip_info->timeout;
1245 		if (chip_info->tx_threshold)
1246 			tx_thres = chip_info->tx_threshold;
1247 		if (chip_info->tx_hi_threshold)
1248 			tx_hi_thres = chip_info->tx_hi_threshold;
1249 		if (chip_info->rx_threshold)
1250 			rx_thres = chip_info->rx_threshold;
1251 		chip->dma_threshold = 0;
1252 		if (chip_info->enable_loopback)
1253 			chip->cr1 = SSCR1_LBM;
1254 	}
1255 
1256 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1257 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1258 				| SSITF_TxHiThresh(tx_hi_thres);
1259 
1260 	/* set dma burst and threshold outside of chip_info path so that if
1261 	 * chip_info goes away after setting chip->enable_dma, the
1262 	 * burst and threshold can still respond to changes in bits_per_word */
1263 	if (chip->enable_dma) {
1264 		/* set up legal burst and threshold for dma */
1265 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1266 						spi->bits_per_word,
1267 						&chip->dma_burst_size,
1268 						&chip->dma_threshold)) {
1269 			dev_warn(&spi->dev,
1270 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1271 		}
1272 	}
1273 
1274 	switch (drv_data->ssp_type) {
1275 	case QUARK_X1000_SSP:
1276 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1277 				   & QUARK_X1000_SSCR1_RFT)
1278 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1279 				   & QUARK_X1000_SSCR1_TFT);
1280 		break;
1281 	case CE4100_SSP:
1282 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1283 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1284 		break;
1285 	default:
1286 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1287 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1288 		break;
1289 	}
1290 
1291 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1292 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1293 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1294 
1295 	if (spi->mode & SPI_LOOP)
1296 		chip->cr1 |= SSCR1_LBM;
1297 
1298 	if (spi->bits_per_word <= 8) {
1299 		chip->n_bytes = 1;
1300 		chip->read = u8_reader;
1301 		chip->write = u8_writer;
1302 	} else if (spi->bits_per_word <= 16) {
1303 		chip->n_bytes = 2;
1304 		chip->read = u16_reader;
1305 		chip->write = u16_writer;
1306 	} else if (spi->bits_per_word <= 32) {
1307 		chip->n_bytes = 4;
1308 		chip->read = u32_reader;
1309 		chip->write = u32_writer;
1310 	}
1311 
1312 	spi_set_ctldata(spi, chip);
1313 
1314 	if (drv_data->ssp_type == CE4100_SSP)
1315 		return 0;
1316 
1317 	return setup_cs(spi, chip, chip_info);
1318 }
1319 
1320 static void cleanup(struct spi_device *spi)
1321 {
1322 	struct chip_data *chip = spi_get_ctldata(spi);
1323 	struct driver_data *drv_data =
1324 		spi_controller_get_devdata(spi->controller);
1325 
1326 	if (!chip)
1327 		return;
1328 
1329 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1330 	    chip->gpiod_cs)
1331 		gpiod_put(chip->gpiod_cs);
1332 
1333 	kfree(chip);
1334 }
1335 
1336 #ifdef CONFIG_PCI
1337 #ifdef CONFIG_ACPI
1338 
1339 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1340 	{ "INT33C0", LPSS_LPT_SSP },
1341 	{ "INT33C1", LPSS_LPT_SSP },
1342 	{ "INT3430", LPSS_LPT_SSP },
1343 	{ "INT3431", LPSS_LPT_SSP },
1344 	{ "80860F0E", LPSS_BYT_SSP },
1345 	{ "8086228E", LPSS_BSW_SSP },
1346 	{ },
1347 };
1348 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1349 
1350 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1351 {
1352 	unsigned int devid;
1353 	int port_id = -1;
1354 
1355 	if (adev && adev->pnp.unique_id &&
1356 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1357 		port_id = devid;
1358 	return port_id;
1359 }
1360 #else /* !CONFIG_ACPI */
1361 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1362 {
1363 	return -1;
1364 }
1365 #endif
1366 
1367 /*
1368  * PCI IDs of compound devices that integrate both host controller and private
1369  * integrated DMA engine. Please note these are not used in module
1370  * autoloading and probing in this module but matching the LPSS SSP type.
1371  */
1372 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1373 	/* SPT-LP */
1374 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1375 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1376 	/* SPT-H */
1377 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1378 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1379 	/* KBL-H */
1380 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1381 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1382 	/* BXT A-Step */
1383 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1384 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1385 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1386 	/* BXT B-Step */
1387 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1388 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1389 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1390 	/* GLK */
1391 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1392 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1393 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1394 	/* APL */
1395 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1396 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1397 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1398 	/* CNL-LP */
1399 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1400 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1401 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1402 	/* CNL-H */
1403 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1404 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1405 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1406 	{ },
1407 };
1408 
1409 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1410 {
1411 	struct device *dev = param;
1412 
1413 	if (dev != chan->device->dev->parent)
1414 		return false;
1415 
1416 	return true;
1417 }
1418 
1419 static struct pxa2xx_spi_master *
1420 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1421 {
1422 	struct pxa2xx_spi_master *pdata;
1423 	struct acpi_device *adev;
1424 	struct ssp_device *ssp;
1425 	struct resource *res;
1426 	const struct acpi_device_id *adev_id = NULL;
1427 	const struct pci_device_id *pcidev_id = NULL;
1428 	int type;
1429 
1430 	adev = ACPI_COMPANION(&pdev->dev);
1431 
1432 	if (dev_is_pci(pdev->dev.parent))
1433 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1434 					 to_pci_dev(pdev->dev.parent));
1435 	else if (adev)
1436 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1437 					    &pdev->dev);
1438 	else
1439 		return NULL;
1440 
1441 	if (adev_id)
1442 		type = (int)adev_id->driver_data;
1443 	else if (pcidev_id)
1444 		type = (int)pcidev_id->driver_data;
1445 	else
1446 		return NULL;
1447 
1448 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1449 	if (!pdata)
1450 		return NULL;
1451 
1452 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1453 	if (!res)
1454 		return NULL;
1455 
1456 	ssp = &pdata->ssp;
1457 
1458 	ssp->phys_base = res->start;
1459 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1460 	if (IS_ERR(ssp->mmio_base))
1461 		return NULL;
1462 
1463 	if (pcidev_id) {
1464 		pdata->tx_param = pdev->dev.parent;
1465 		pdata->rx_param = pdev->dev.parent;
1466 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1467 	}
1468 
1469 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1470 	ssp->irq = platform_get_irq(pdev, 0);
1471 	ssp->type = type;
1472 	ssp->pdev = pdev;
1473 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1474 
1475 	pdata->num_chipselect = 1;
1476 	pdata->enable_dma = true;
1477 
1478 	return pdata;
1479 }
1480 
1481 #else /* !CONFIG_PCI */
1482 static inline struct pxa2xx_spi_master *
1483 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1484 {
1485 	return NULL;
1486 }
1487 #endif
1488 
1489 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *master,
1490 				      unsigned int cs)
1491 {
1492 	struct driver_data *drv_data = spi_controller_get_devdata(master);
1493 
1494 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1495 		switch (drv_data->ssp_type) {
1496 		/*
1497 		 * For Atoms the ACPI DeviceSelection used by the Windows
1498 		 * driver starts from 1 instead of 0 so translate it here
1499 		 * to match what Linux expects.
1500 		 */
1501 		case LPSS_BYT_SSP:
1502 		case LPSS_BSW_SSP:
1503 			return cs - 1;
1504 
1505 		default:
1506 			break;
1507 		}
1508 	}
1509 
1510 	return cs;
1511 }
1512 
1513 static int pxa2xx_spi_probe(struct platform_device *pdev)
1514 {
1515 	struct device *dev = &pdev->dev;
1516 	struct pxa2xx_spi_master *platform_info;
1517 	struct spi_controller *master;
1518 	struct driver_data *drv_data;
1519 	struct ssp_device *ssp;
1520 	const struct lpss_config *config;
1521 	int status, count;
1522 	u32 tmp;
1523 
1524 	platform_info = dev_get_platdata(dev);
1525 	if (!platform_info) {
1526 		platform_info = pxa2xx_spi_init_pdata(pdev);
1527 		if (!platform_info) {
1528 			dev_err(&pdev->dev, "missing platform data\n");
1529 			return -ENODEV;
1530 		}
1531 	}
1532 
1533 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1534 	if (!ssp)
1535 		ssp = &platform_info->ssp;
1536 
1537 	if (!ssp->mmio_base) {
1538 		dev_err(&pdev->dev, "failed to get ssp\n");
1539 		return -ENODEV;
1540 	}
1541 
1542 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1543 	if (!master) {
1544 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1545 		pxa_ssp_free(ssp);
1546 		return -ENOMEM;
1547 	}
1548 	drv_data = spi_controller_get_devdata(master);
1549 	drv_data->master = master;
1550 	drv_data->master_info = platform_info;
1551 	drv_data->pdev = pdev;
1552 	drv_data->ssp = ssp;
1553 
1554 	master->dev.of_node = pdev->dev.of_node;
1555 	/* the spi->mode bits understood by this driver: */
1556 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1557 
1558 	master->bus_num = ssp->port_id;
1559 	master->dma_alignment = DMA_ALIGNMENT;
1560 	master->cleanup = cleanup;
1561 	master->setup = setup;
1562 	master->set_cs = pxa2xx_spi_set_cs;
1563 	master->transfer_one = pxa2xx_spi_transfer_one;
1564 	master->handle_err = pxa2xx_spi_handle_err;
1565 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1566 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1567 	master->auto_runtime_pm = true;
1568 	master->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1569 
1570 	drv_data->ssp_type = ssp->type;
1571 
1572 	drv_data->ioaddr = ssp->mmio_base;
1573 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1574 	if (pxa25x_ssp_comp(drv_data)) {
1575 		switch (drv_data->ssp_type) {
1576 		case QUARK_X1000_SSP:
1577 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1578 			break;
1579 		default:
1580 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1581 			break;
1582 		}
1583 
1584 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1585 		drv_data->dma_cr1 = 0;
1586 		drv_data->clear_sr = SSSR_ROR;
1587 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1588 	} else {
1589 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1590 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1591 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1592 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1593 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1594 	}
1595 
1596 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1597 			drv_data);
1598 	if (status < 0) {
1599 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1600 		goto out_error_master_alloc;
1601 	}
1602 
1603 	/* Setup DMA if requested */
1604 	if (platform_info->enable_dma) {
1605 		status = pxa2xx_spi_dma_setup(drv_data);
1606 		if (status) {
1607 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1608 			platform_info->enable_dma = false;
1609 		} else {
1610 			master->can_dma = pxa2xx_spi_can_dma;
1611 		}
1612 	}
1613 
1614 	/* Enable SOC clock */
1615 	status = clk_prepare_enable(ssp->clk);
1616 	if (status)
1617 		goto out_error_dma_irq_alloc;
1618 
1619 	master->max_speed_hz = clk_get_rate(ssp->clk);
1620 
1621 	/* Load default SSP configuration */
1622 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1623 	switch (drv_data->ssp_type) {
1624 	case QUARK_X1000_SSP:
1625 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1626 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1627 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1628 
1629 		/* using the Motorola SPI protocol and use 8 bit frame */
1630 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1631 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1632 		break;
1633 	case CE4100_SSP:
1634 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1635 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1636 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1637 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1638 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1639 		break;
1640 	default:
1641 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1642 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1643 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1644 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1645 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1646 		break;
1647 	}
1648 
1649 	if (!pxa25x_ssp_comp(drv_data))
1650 		pxa2xx_spi_write(drv_data, SSTO, 0);
1651 
1652 	if (!is_quark_x1000_ssp(drv_data))
1653 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1654 
1655 	if (is_lpss_ssp(drv_data)) {
1656 		lpss_ssp_setup(drv_data);
1657 		config = lpss_get_config(drv_data);
1658 		if (config->reg_capabilities >= 0) {
1659 			tmp = __lpss_ssp_read_priv(drv_data,
1660 						   config->reg_capabilities);
1661 			tmp &= LPSS_CAPS_CS_EN_MASK;
1662 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1663 			platform_info->num_chipselect = ffz(tmp);
1664 		} else if (config->cs_num) {
1665 			platform_info->num_chipselect = config->cs_num;
1666 		}
1667 	}
1668 	master->num_chipselect = platform_info->num_chipselect;
1669 
1670 	count = gpiod_count(&pdev->dev, "cs");
1671 	if (count > 0) {
1672 		int i;
1673 
1674 		master->num_chipselect = max_t(int, count,
1675 			master->num_chipselect);
1676 
1677 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1678 			master->num_chipselect, sizeof(struct gpio_desc *),
1679 			GFP_KERNEL);
1680 		if (!drv_data->cs_gpiods) {
1681 			status = -ENOMEM;
1682 			goto out_error_clock_enabled;
1683 		}
1684 
1685 		for (i = 0; i < master->num_chipselect; i++) {
1686 			struct gpio_desc *gpiod;
1687 
1688 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1689 			if (IS_ERR(gpiod)) {
1690 				/* Means use native chip select */
1691 				if (PTR_ERR(gpiod) == -ENOENT)
1692 					continue;
1693 
1694 				status = (int)PTR_ERR(gpiod);
1695 				goto out_error_clock_enabled;
1696 			} else {
1697 				drv_data->cs_gpiods[i] = gpiod;
1698 			}
1699 		}
1700 	}
1701 
1702 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1703 	pm_runtime_use_autosuspend(&pdev->dev);
1704 	pm_runtime_set_active(&pdev->dev);
1705 	pm_runtime_enable(&pdev->dev);
1706 
1707 	/* Register with the SPI framework */
1708 	platform_set_drvdata(pdev, drv_data);
1709 	status = devm_spi_register_controller(&pdev->dev, master);
1710 	if (status != 0) {
1711 		dev_err(&pdev->dev, "problem registering spi master\n");
1712 		goto out_error_clock_enabled;
1713 	}
1714 
1715 	return status;
1716 
1717 out_error_clock_enabled:
1718 	pm_runtime_put_noidle(&pdev->dev);
1719 	pm_runtime_disable(&pdev->dev);
1720 	clk_disable_unprepare(ssp->clk);
1721 
1722 out_error_dma_irq_alloc:
1723 	pxa2xx_spi_dma_release(drv_data);
1724 	free_irq(ssp->irq, drv_data);
1725 
1726 out_error_master_alloc:
1727 	spi_controller_put(master);
1728 	pxa_ssp_free(ssp);
1729 	return status;
1730 }
1731 
1732 static int pxa2xx_spi_remove(struct platform_device *pdev)
1733 {
1734 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1735 	struct ssp_device *ssp;
1736 
1737 	if (!drv_data)
1738 		return 0;
1739 	ssp = drv_data->ssp;
1740 
1741 	pm_runtime_get_sync(&pdev->dev);
1742 
1743 	/* Disable the SSP at the peripheral and SOC level */
1744 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1745 	clk_disable_unprepare(ssp->clk);
1746 
1747 	/* Release DMA */
1748 	if (drv_data->master_info->enable_dma)
1749 		pxa2xx_spi_dma_release(drv_data);
1750 
1751 	pm_runtime_put_noidle(&pdev->dev);
1752 	pm_runtime_disable(&pdev->dev);
1753 
1754 	/* Release IRQ */
1755 	free_irq(ssp->irq, drv_data);
1756 
1757 	/* Release SSP */
1758 	pxa_ssp_free(ssp);
1759 
1760 	return 0;
1761 }
1762 
1763 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1764 {
1765 	int status = 0;
1766 
1767 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1768 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1769 }
1770 
1771 #ifdef CONFIG_PM_SLEEP
1772 static int pxa2xx_spi_suspend(struct device *dev)
1773 {
1774 	struct driver_data *drv_data = dev_get_drvdata(dev);
1775 	struct ssp_device *ssp = drv_data->ssp;
1776 	int status;
1777 
1778 	status = spi_controller_suspend(drv_data->master);
1779 	if (status != 0)
1780 		return status;
1781 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1782 
1783 	if (!pm_runtime_suspended(dev))
1784 		clk_disable_unprepare(ssp->clk);
1785 
1786 	return 0;
1787 }
1788 
1789 static int pxa2xx_spi_resume(struct device *dev)
1790 {
1791 	struct driver_data *drv_data = dev_get_drvdata(dev);
1792 	struct ssp_device *ssp = drv_data->ssp;
1793 	int status;
1794 
1795 	/* Enable the SSP clock */
1796 	if (!pm_runtime_suspended(dev)) {
1797 		status = clk_prepare_enable(ssp->clk);
1798 		if (status)
1799 			return status;
1800 	}
1801 
1802 	/* Restore LPSS private register bits */
1803 	if (is_lpss_ssp(drv_data))
1804 		lpss_ssp_setup(drv_data);
1805 
1806 	/* Start the queue running */
1807 	status = spi_controller_resume(drv_data->master);
1808 	if (status != 0) {
1809 		dev_err(dev, "problem starting queue (%d)\n", status);
1810 		return status;
1811 	}
1812 
1813 	return 0;
1814 }
1815 #endif
1816 
1817 #ifdef CONFIG_PM
1818 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1819 {
1820 	struct driver_data *drv_data = dev_get_drvdata(dev);
1821 
1822 	clk_disable_unprepare(drv_data->ssp->clk);
1823 	return 0;
1824 }
1825 
1826 static int pxa2xx_spi_runtime_resume(struct device *dev)
1827 {
1828 	struct driver_data *drv_data = dev_get_drvdata(dev);
1829 	int status;
1830 
1831 	status = clk_prepare_enable(drv_data->ssp->clk);
1832 	return status;
1833 }
1834 #endif
1835 
1836 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1837 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1838 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1839 			   pxa2xx_spi_runtime_resume, NULL)
1840 };
1841 
1842 static struct platform_driver driver = {
1843 	.driver = {
1844 		.name	= "pxa2xx-spi",
1845 		.pm	= &pxa2xx_spi_pm_ops,
1846 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1847 	},
1848 	.probe = pxa2xx_spi_probe,
1849 	.remove = pxa2xx_spi_remove,
1850 	.shutdown = pxa2xx_spi_shutdown,
1851 };
1852 
1853 static int __init pxa2xx_spi_init(void)
1854 {
1855 	return platform_driver_register(&driver);
1856 }
1857 subsys_initcall(pxa2xx_spi_init);
1858 
1859 static void __exit pxa2xx_spi_exit(void)
1860 {
1861 	platform_driver_unregister(&driver);
1862 }
1863 module_exit(pxa2xx_spi_exit);
1864