xref: /linux/drivers/spi/spi-pxa2xx.c (revision d195c39052d1da278a00a6744ce59c383b67b191)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/bitops.h>
9 #include <linux/clk.h>
10 #include <linux/delay.h>
11 #include <linux/device.h>
12 #include <linux/err.h>
13 #include <linux/errno.h>
14 #include <linux/gpio/consumer.h>
15 #include <linux/gpio.h>
16 #include <linux/init.h>
17 #include <linux/interrupt.h>
18 #include <linux/ioport.h>
19 #include <linux/kernel.h>
20 #include <linux/module.h>
21 #include <linux/mod_devicetable.h>
22 #include <linux/of.h>
23 #include <linux/pci.h>
24 #include <linux/platform_device.h>
25 #include <linux/pm_runtime.h>
26 #include <linux/property.h>
27 #include <linux/slab.h>
28 #include <linux/spi/pxa2xx_spi.h>
29 #include <linux/spi/spi.h>
30 
31 #include "spi-pxa2xx.h"
32 
33 MODULE_AUTHOR("Stephen Street");
34 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
35 MODULE_LICENSE("GPL");
36 MODULE_ALIAS("platform:pxa2xx-spi");
37 
38 #define TIMOUT_DFLT		1000
39 
40 /*
41  * for testing SSCR1 changes that require SSP restart, basically
42  * everything except the service and interrupt enables, the pxa270 developer
43  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
44  * list, but the PXA255 dev man says all bits without really meaning the
45  * service and interrupt enables
46  */
47 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
48 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
49 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
50 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
51 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
55 				| QUARK_X1000_SSCR1_EFWR	\
56 				| QUARK_X1000_SSCR1_RFT		\
57 				| QUARK_X1000_SSCR1_TFT		\
58 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
59 
60 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
61 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
62 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
63 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
64 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
65 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
66 
67 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
68 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
69 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 #define LPSS_PRIV_CLOCK_GATE 0x38
74 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
75 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
76 
77 struct lpss_config {
78 	/* LPSS offset from drv_data->ioaddr */
79 	unsigned offset;
80 	/* Register offsets from drv_data->lpss_base or -1 */
81 	int reg_general;
82 	int reg_ssp;
83 	int reg_cs_ctrl;
84 	int reg_capabilities;
85 	/* FIFO thresholds */
86 	u32 rx_threshold;
87 	u32 tx_threshold_lo;
88 	u32 tx_threshold_hi;
89 	/* Chip select control */
90 	unsigned cs_sel_shift;
91 	unsigned cs_sel_mask;
92 	unsigned cs_num;
93 	/* Quirks */
94 	unsigned cs_clk_stays_gated : 1;
95 };
96 
97 /* Keep these sorted with enum pxa_ssp_type */
98 static const struct lpss_config lpss_platforms[] = {
99 	{	/* LPSS_LPT_SSP */
100 		.offset = 0x800,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_BYT_SSP */
110 		.offset = 0x400,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BSW_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 		.cs_sel_shift = 2,
129 		.cs_sel_mask = 1 << 2,
130 		.cs_num = 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 	},
154 	{	/* LPSS_CNL_SSP */
155 		.offset = 0x200,
156 		.reg_general = -1,
157 		.reg_ssp = 0x20,
158 		.reg_cs_ctrl = 0x24,
159 		.reg_capabilities = 0xfc,
160 		.rx_threshold = 1,
161 		.tx_threshold_lo = 32,
162 		.tx_threshold_hi = 56,
163 		.cs_sel_shift = 8,
164 		.cs_sel_mask = 3 << 8,
165 		.cs_clk_stays_gated = true,
166 	},
167 };
168 
169 static inline const struct lpss_config
170 *lpss_get_config(const struct driver_data *drv_data)
171 {
172 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
173 }
174 
175 static bool is_lpss_ssp(const struct driver_data *drv_data)
176 {
177 	switch (drv_data->ssp_type) {
178 	case LPSS_LPT_SSP:
179 	case LPSS_BYT_SSP:
180 	case LPSS_BSW_SSP:
181 	case LPSS_SPT_SSP:
182 	case LPSS_BXT_SSP:
183 	case LPSS_CNL_SSP:
184 		return true;
185 	default:
186 		return false;
187 	}
188 }
189 
190 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
191 {
192 	return drv_data->ssp_type == QUARK_X1000_SSP;
193 }
194 
195 static bool is_mmp2_ssp(const struct driver_data *drv_data)
196 {
197 	return drv_data->ssp_type == MMP2_SSP;
198 }
199 
200 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
201 {
202 	switch (drv_data->ssp_type) {
203 	case QUARK_X1000_SSP:
204 		return QUARK_X1000_SSCR1_CHANGE_MASK;
205 	case CE4100_SSP:
206 		return CE4100_SSCR1_CHANGE_MASK;
207 	default:
208 		return SSCR1_CHANGE_MASK;
209 	}
210 }
211 
212 static u32
213 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
214 {
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		return RX_THRESH_QUARK_X1000_DFLT;
218 	case CE4100_SSP:
219 		return RX_THRESH_CE4100_DFLT;
220 	default:
221 		return RX_THRESH_DFLT;
222 	}
223 }
224 
225 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
226 {
227 	u32 mask;
228 
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		mask = QUARK_X1000_SSSR_TFL_MASK;
232 		break;
233 	case CE4100_SSP:
234 		mask = CE4100_SSSR_TFL_MASK;
235 		break;
236 	default:
237 		mask = SSSR_TFL_MASK;
238 		break;
239 	}
240 
241 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
242 }
243 
244 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
245 				     u32 *sccr1_reg)
246 {
247 	u32 mask;
248 
249 	switch (drv_data->ssp_type) {
250 	case QUARK_X1000_SSP:
251 		mask = QUARK_X1000_SSCR1_RFT;
252 		break;
253 	case CE4100_SSP:
254 		mask = CE4100_SSCR1_RFT;
255 		break;
256 	default:
257 		mask = SSCR1_RFT;
258 		break;
259 	}
260 	*sccr1_reg &= ~mask;
261 }
262 
263 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
264 				   u32 *sccr1_reg, u32 threshold)
265 {
266 	switch (drv_data->ssp_type) {
267 	case QUARK_X1000_SSP:
268 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
269 		break;
270 	case CE4100_SSP:
271 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
272 		break;
273 	default:
274 		*sccr1_reg |= SSCR1_RxTresh(threshold);
275 		break;
276 	}
277 }
278 
279 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
280 				  u32 clk_div, u8 bits)
281 {
282 	switch (drv_data->ssp_type) {
283 	case QUARK_X1000_SSP:
284 		return clk_div
285 			| QUARK_X1000_SSCR0_Motorola
286 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
287 			| SSCR0_SSE;
288 	default:
289 		return clk_div
290 			| SSCR0_Motorola
291 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
292 			| SSCR0_SSE
293 			| (bits > 16 ? SSCR0_EDSS : 0);
294 	}
295 }
296 
297 /*
298  * Read and write LPSS SSP private registers. Caller must first check that
299  * is_lpss_ssp() returns true before these can be called.
300  */
301 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
302 {
303 	WARN_ON(!drv_data->lpss_base);
304 	return readl(drv_data->lpss_base + offset);
305 }
306 
307 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
308 				  unsigned offset, u32 value)
309 {
310 	WARN_ON(!drv_data->lpss_base);
311 	writel(value, drv_data->lpss_base + offset);
312 }
313 
314 /*
315  * lpss_ssp_setup - perform LPSS SSP specific setup
316  * @drv_data: pointer to the driver private data
317  *
318  * Perform LPSS SSP specific setup. This function must be called first if
319  * one is going to use LPSS SSP private registers.
320  */
321 static void lpss_ssp_setup(struct driver_data *drv_data)
322 {
323 	const struct lpss_config *config;
324 	u32 value;
325 
326 	config = lpss_get_config(drv_data);
327 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
328 
329 	/* Enable software chip select control */
330 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
331 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
332 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
333 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
334 
335 	/* Enable multiblock DMA transfers */
336 	if (drv_data->controller_info->enable_dma) {
337 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
338 
339 		if (config->reg_general >= 0) {
340 			value = __lpss_ssp_read_priv(drv_data,
341 						     config->reg_general);
342 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
343 			__lpss_ssp_write_priv(drv_data,
344 					      config->reg_general, value);
345 		}
346 	}
347 }
348 
349 static void lpss_ssp_select_cs(struct spi_device *spi,
350 			       const struct lpss_config *config)
351 {
352 	struct driver_data *drv_data =
353 		spi_controller_get_devdata(spi->controller);
354 	u32 value, cs;
355 
356 	if (!config->cs_sel_mask)
357 		return;
358 
359 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
360 
361 	cs = spi->chip_select;
362 	cs <<= config->cs_sel_shift;
363 	if (cs != (value & config->cs_sel_mask)) {
364 		/*
365 		 * When switching another chip select output active the
366 		 * output must be selected first and wait 2 ssp_clk cycles
367 		 * before changing state to active. Otherwise a short
368 		 * glitch will occur on the previous chip select since
369 		 * output select is latched but state control is not.
370 		 */
371 		value &= ~config->cs_sel_mask;
372 		value |= cs;
373 		__lpss_ssp_write_priv(drv_data,
374 				      config->reg_cs_ctrl, value);
375 		ndelay(1000000000 /
376 		       (drv_data->controller->max_speed_hz / 2));
377 	}
378 }
379 
380 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
381 {
382 	struct driver_data *drv_data =
383 		spi_controller_get_devdata(spi->controller);
384 	const struct lpss_config *config;
385 	u32 value;
386 
387 	config = lpss_get_config(drv_data);
388 
389 	if (enable)
390 		lpss_ssp_select_cs(spi, config);
391 
392 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
393 	if (enable)
394 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
395 	else
396 		value |= LPSS_CS_CONTROL_CS_HIGH;
397 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
398 	if (config->cs_clk_stays_gated) {
399 		u32 clkgate;
400 
401 		/*
402 		 * Changing CS alone when dynamic clock gating is on won't
403 		 * actually flip CS at that time. This ruins SPI transfers
404 		 * that specify delays, or have no data. Toggle the clock mode
405 		 * to force on briefly to poke the CS pin to move.
406 		 */
407 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
408 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
409 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
410 
411 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
412 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
413 	}
414 }
415 
416 static void cs_assert(struct spi_device *spi)
417 {
418 	struct chip_data *chip = spi_get_ctldata(spi);
419 	struct driver_data *drv_data =
420 		spi_controller_get_devdata(spi->controller);
421 
422 	if (drv_data->ssp_type == CE4100_SSP) {
423 		pxa2xx_spi_write(drv_data, SSSR, chip->frm);
424 		return;
425 	}
426 
427 	if (chip->cs_control) {
428 		chip->cs_control(PXA2XX_CS_ASSERT);
429 		return;
430 	}
431 
432 	if (chip->gpiod_cs) {
433 		gpiod_set_value(chip->gpiod_cs, chip->gpio_cs_inverted);
434 		return;
435 	}
436 
437 	if (is_lpss_ssp(drv_data))
438 		lpss_ssp_cs_control(spi, true);
439 }
440 
441 static void cs_deassert(struct spi_device *spi)
442 {
443 	struct chip_data *chip = spi_get_ctldata(spi);
444 	struct driver_data *drv_data =
445 		spi_controller_get_devdata(spi->controller);
446 	unsigned long timeout;
447 
448 	if (drv_data->ssp_type == CE4100_SSP)
449 		return;
450 
451 	/* Wait until SSP becomes idle before deasserting the CS */
452 	timeout = jiffies + msecs_to_jiffies(10);
453 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
454 	       !time_after(jiffies, timeout))
455 		cpu_relax();
456 
457 	if (chip->cs_control) {
458 		chip->cs_control(PXA2XX_CS_DEASSERT);
459 		return;
460 	}
461 
462 	if (chip->gpiod_cs) {
463 		gpiod_set_value(chip->gpiod_cs, !chip->gpio_cs_inverted);
464 		return;
465 	}
466 
467 	if (is_lpss_ssp(drv_data))
468 		lpss_ssp_cs_control(spi, false);
469 }
470 
471 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
472 {
473 	if (level)
474 		cs_deassert(spi);
475 	else
476 		cs_assert(spi);
477 }
478 
479 int pxa2xx_spi_flush(struct driver_data *drv_data)
480 {
481 	unsigned long limit = loops_per_jiffy << 1;
482 
483 	do {
484 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
485 			pxa2xx_spi_read(drv_data, SSDR);
486 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
487 	write_SSSR_CS(drv_data, SSSR_ROR);
488 
489 	return limit;
490 }
491 
492 static void pxa2xx_spi_off(struct driver_data *drv_data)
493 {
494 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
495 	if (is_mmp2_ssp(drv_data))
496 		return;
497 
498 	pxa2xx_spi_write(drv_data, SSCR0,
499 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
500 }
501 
502 static int null_writer(struct driver_data *drv_data)
503 {
504 	u8 n_bytes = drv_data->n_bytes;
505 
506 	if (pxa2xx_spi_txfifo_full(drv_data)
507 		|| (drv_data->tx == drv_data->tx_end))
508 		return 0;
509 
510 	pxa2xx_spi_write(drv_data, SSDR, 0);
511 	drv_data->tx += n_bytes;
512 
513 	return 1;
514 }
515 
516 static int null_reader(struct driver_data *drv_data)
517 {
518 	u8 n_bytes = drv_data->n_bytes;
519 
520 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
521 	       && (drv_data->rx < drv_data->rx_end)) {
522 		pxa2xx_spi_read(drv_data, SSDR);
523 		drv_data->rx += n_bytes;
524 	}
525 
526 	return drv_data->rx == drv_data->rx_end;
527 }
528 
529 static int u8_writer(struct driver_data *drv_data)
530 {
531 	if (pxa2xx_spi_txfifo_full(drv_data)
532 		|| (drv_data->tx == drv_data->tx_end))
533 		return 0;
534 
535 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
536 	++drv_data->tx;
537 
538 	return 1;
539 }
540 
541 static int u8_reader(struct driver_data *drv_data)
542 {
543 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
544 	       && (drv_data->rx < drv_data->rx_end)) {
545 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
546 		++drv_data->rx;
547 	}
548 
549 	return drv_data->rx == drv_data->rx_end;
550 }
551 
552 static int u16_writer(struct driver_data *drv_data)
553 {
554 	if (pxa2xx_spi_txfifo_full(drv_data)
555 		|| (drv_data->tx == drv_data->tx_end))
556 		return 0;
557 
558 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
559 	drv_data->tx += 2;
560 
561 	return 1;
562 }
563 
564 static int u16_reader(struct driver_data *drv_data)
565 {
566 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
567 	       && (drv_data->rx < drv_data->rx_end)) {
568 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
569 		drv_data->rx += 2;
570 	}
571 
572 	return drv_data->rx == drv_data->rx_end;
573 }
574 
575 static int u32_writer(struct driver_data *drv_data)
576 {
577 	if (pxa2xx_spi_txfifo_full(drv_data)
578 		|| (drv_data->tx == drv_data->tx_end))
579 		return 0;
580 
581 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
582 	drv_data->tx += 4;
583 
584 	return 1;
585 }
586 
587 static int u32_reader(struct driver_data *drv_data)
588 {
589 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
590 	       && (drv_data->rx < drv_data->rx_end)) {
591 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
592 		drv_data->rx += 4;
593 	}
594 
595 	return drv_data->rx == drv_data->rx_end;
596 }
597 
598 static void reset_sccr1(struct driver_data *drv_data)
599 {
600 	struct chip_data *chip =
601 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
602 	u32 sccr1_reg;
603 
604 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
605 	switch (drv_data->ssp_type) {
606 	case QUARK_X1000_SSP:
607 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
608 		break;
609 	case CE4100_SSP:
610 		sccr1_reg &= ~CE4100_SSCR1_RFT;
611 		break;
612 	default:
613 		sccr1_reg &= ~SSCR1_RFT;
614 		break;
615 	}
616 	sccr1_reg |= chip->threshold;
617 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
618 }
619 
620 static void int_error_stop(struct driver_data *drv_data, const char* msg)
621 {
622 	/* Stop and reset SSP */
623 	write_SSSR_CS(drv_data, drv_data->clear_sr);
624 	reset_sccr1(drv_data);
625 	if (!pxa25x_ssp_comp(drv_data))
626 		pxa2xx_spi_write(drv_data, SSTO, 0);
627 	pxa2xx_spi_flush(drv_data);
628 	pxa2xx_spi_off(drv_data);
629 
630 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
631 
632 	drv_data->controller->cur_msg->status = -EIO;
633 	spi_finalize_current_transfer(drv_data->controller);
634 }
635 
636 static void int_transfer_complete(struct driver_data *drv_data)
637 {
638 	/* Clear and disable interrupts */
639 	write_SSSR_CS(drv_data, drv_data->clear_sr);
640 	reset_sccr1(drv_data);
641 	if (!pxa25x_ssp_comp(drv_data))
642 		pxa2xx_spi_write(drv_data, SSTO, 0);
643 
644 	spi_finalize_current_transfer(drv_data->controller);
645 }
646 
647 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
648 {
649 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
650 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
651 
652 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
653 
654 	if (irq_status & SSSR_ROR) {
655 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
656 		return IRQ_HANDLED;
657 	}
658 
659 	if (irq_status & SSSR_TUR) {
660 		int_error_stop(drv_data, "interrupt_transfer: fifo underrun");
661 		return IRQ_HANDLED;
662 	}
663 
664 	if (irq_status & SSSR_TINT) {
665 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
666 		if (drv_data->read(drv_data)) {
667 			int_transfer_complete(drv_data);
668 			return IRQ_HANDLED;
669 		}
670 	}
671 
672 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
673 	do {
674 		if (drv_data->read(drv_data)) {
675 			int_transfer_complete(drv_data);
676 			return IRQ_HANDLED;
677 		}
678 	} while (drv_data->write(drv_data));
679 
680 	if (drv_data->read(drv_data)) {
681 		int_transfer_complete(drv_data);
682 		return IRQ_HANDLED;
683 	}
684 
685 	if (drv_data->tx == drv_data->tx_end) {
686 		u32 bytes_left;
687 		u32 sccr1_reg;
688 
689 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
690 		sccr1_reg &= ~SSCR1_TIE;
691 
692 		/*
693 		 * PXA25x_SSP has no timeout, set up rx threshould for the
694 		 * remaining RX bytes.
695 		 */
696 		if (pxa25x_ssp_comp(drv_data)) {
697 			u32 rx_thre;
698 
699 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
700 
701 			bytes_left = drv_data->rx_end - drv_data->rx;
702 			switch (drv_data->n_bytes) {
703 			case 4:
704 				bytes_left >>= 2;
705 				break;
706 			case 2:
707 				bytes_left >>= 1;
708 				break;
709 			}
710 
711 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
712 			if (rx_thre > bytes_left)
713 				rx_thre = bytes_left;
714 
715 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
716 		}
717 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
718 	}
719 
720 	/* We did something */
721 	return IRQ_HANDLED;
722 }
723 
724 static void handle_bad_msg(struct driver_data *drv_data)
725 {
726 	pxa2xx_spi_off(drv_data);
727 	pxa2xx_spi_write(drv_data, SSCR1,
728 			 pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1);
729 	if (!pxa25x_ssp_comp(drv_data))
730 		pxa2xx_spi_write(drv_data, SSTO, 0);
731 	write_SSSR_CS(drv_data, drv_data->clear_sr);
732 
733 	dev_err(&drv_data->pdev->dev,
734 		"bad message state in interrupt handler\n");
735 }
736 
737 static irqreturn_t ssp_int(int irq, void *dev_id)
738 {
739 	struct driver_data *drv_data = dev_id;
740 	u32 sccr1_reg;
741 	u32 mask = drv_data->mask_sr;
742 	u32 status;
743 
744 	/*
745 	 * The IRQ might be shared with other peripherals so we must first
746 	 * check that are we RPM suspended or not. If we are we assume that
747 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
748 	 * interrupt is enabled).
749 	 */
750 	if (pm_runtime_suspended(&drv_data->pdev->dev))
751 		return IRQ_NONE;
752 
753 	/*
754 	 * If the device is not yet in RPM suspended state and we get an
755 	 * interrupt that is meant for another device, check if status bits
756 	 * are all set to one. That means that the device is already
757 	 * powered off.
758 	 */
759 	status = pxa2xx_spi_read(drv_data, SSSR);
760 	if (status == ~0)
761 		return IRQ_NONE;
762 
763 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
764 
765 	/* Ignore possible writes if we don't need to write */
766 	if (!(sccr1_reg & SSCR1_TIE))
767 		mask &= ~SSSR_TFS;
768 
769 	/* Ignore RX timeout interrupt if it is disabled */
770 	if (!(sccr1_reg & SSCR1_TINTE))
771 		mask &= ~SSSR_TINT;
772 
773 	if (!(status & mask))
774 		return IRQ_NONE;
775 
776 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
777 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
778 
779 	if (!drv_data->controller->cur_msg) {
780 		handle_bad_msg(drv_data);
781 		/* Never fail */
782 		return IRQ_HANDLED;
783 	}
784 
785 	return drv_data->transfer_handler(drv_data);
786 }
787 
788 /*
789  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
790  * input frequency by fractions of 2^24. It also has a divider by 5.
791  *
792  * There are formulas to get baud rate value for given input frequency and
793  * divider parameters, such as DDS_CLK_RATE and SCR:
794  *
795  * Fsys = 200MHz
796  *
797  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
798  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
799  *
800  * DDS_CLK_RATE either 2^n or 2^n / 5.
801  * SCR is in range 0 .. 255
802  *
803  * Divisor = 5^i * 2^j * 2 * k
804  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
805  *       j = [0, 23]     j = 0 iff i = 1
806  *       k = [1, 256]
807  * Special case: j = 0, i = 1: Divisor = 2 / 5
808  *
809  * Accordingly to the specification the recommended values for DDS_CLK_RATE
810  * are:
811  *	Case 1:		2^n, n = [0, 23]
812  *	Case 2:		2^24 * 2 / 5 (0x666666)
813  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
814  *
815  * In all cases the lowest possible value is better.
816  *
817  * The function calculates parameters for all cases and chooses the one closest
818  * to the asked baud rate.
819  */
820 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
821 {
822 	unsigned long xtal = 200000000;
823 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
824 						   see (2) */
825 						/* case 3 */
826 	unsigned long fref1 = fref / 2;		/* case 1 */
827 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
828 	unsigned long scale;
829 	unsigned long q, q1, q2;
830 	long r, r1, r2;
831 	u32 mul;
832 
833 	/* Case 1 */
834 
835 	/* Set initial value for DDS_CLK_RATE */
836 	mul = (1 << 24) >> 1;
837 
838 	/* Calculate initial quot */
839 	q1 = DIV_ROUND_UP(fref1, rate);
840 
841 	/* Scale q1 if it's too big */
842 	if (q1 > 256) {
843 		/* Scale q1 to range [1, 512] */
844 		scale = fls_long(q1 - 1);
845 		if (scale > 9) {
846 			q1 >>= scale - 9;
847 			mul >>= scale - 9;
848 		}
849 
850 		/* Round the result if we have a remainder */
851 		q1 += q1 & 1;
852 	}
853 
854 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
855 	scale = __ffs(q1);
856 	q1 >>= scale;
857 	mul >>= scale;
858 
859 	/* Get the remainder */
860 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
861 
862 	/* Case 2 */
863 
864 	q2 = DIV_ROUND_UP(fref2, rate);
865 	r2 = abs(fref2 / q2 - rate);
866 
867 	/*
868 	 * Choose the best between two: less remainder we have the better. We
869 	 * can't go case 2 if q2 is greater than 256 since SCR register can
870 	 * hold only values 0 .. 255.
871 	 */
872 	if (r2 >= r1 || q2 > 256) {
873 		/* case 1 is better */
874 		r = r1;
875 		q = q1;
876 	} else {
877 		/* case 2 is better */
878 		r = r2;
879 		q = q2;
880 		mul = (1 << 24) * 2 / 5;
881 	}
882 
883 	/* Check case 3 only if the divisor is big enough */
884 	if (fref / rate >= 80) {
885 		u64 fssp;
886 		u32 m;
887 
888 		/* Calculate initial quot */
889 		q1 = DIV_ROUND_UP(fref, rate);
890 		m = (1 << 24) / q1;
891 
892 		/* Get the remainder */
893 		fssp = (u64)fref * m;
894 		do_div(fssp, 1 << 24);
895 		r1 = abs(fssp - rate);
896 
897 		/* Choose this one if it suits better */
898 		if (r1 < r) {
899 			/* case 3 is better */
900 			q = 1;
901 			mul = m;
902 		}
903 	}
904 
905 	*dds = mul;
906 	return q - 1;
907 }
908 
909 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
910 {
911 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
912 	const struct ssp_device *ssp = drv_data->ssp;
913 
914 	rate = min_t(int, ssp_clk, rate);
915 
916 	/*
917 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
918 	 * that the SSP transmission rate can be greater than the device rate
919 	 */
920 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
921 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
922 	else
923 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
924 }
925 
926 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
927 					   int rate)
928 {
929 	struct chip_data *chip =
930 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
931 	unsigned int clk_div;
932 
933 	switch (drv_data->ssp_type) {
934 	case QUARK_X1000_SSP:
935 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
936 		break;
937 	default:
938 		clk_div = ssp_get_clk_div(drv_data, rate);
939 		break;
940 	}
941 	return clk_div << 8;
942 }
943 
944 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
945 			       struct spi_device *spi,
946 			       struct spi_transfer *xfer)
947 {
948 	struct chip_data *chip = spi_get_ctldata(spi);
949 
950 	return chip->enable_dma &&
951 	       xfer->len <= MAX_DMA_LEN &&
952 	       xfer->len >= chip->dma_burst_size;
953 }
954 
955 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
956 				   struct spi_device *spi,
957 				   struct spi_transfer *transfer)
958 {
959 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
960 	struct spi_message *message = controller->cur_msg;
961 	struct chip_data *chip = spi_get_ctldata(spi);
962 	u32 dma_thresh = chip->dma_threshold;
963 	u32 dma_burst = chip->dma_burst_size;
964 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
965 	u32 clk_div;
966 	u8 bits;
967 	u32 speed;
968 	u32 cr0;
969 	u32 cr1;
970 	int err;
971 	int dma_mapped;
972 
973 	/* Check if we can DMA this transfer */
974 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
975 
976 		/* reject already-mapped transfers; PIO won't always work */
977 		if (message->is_dma_mapped
978 				|| transfer->rx_dma || transfer->tx_dma) {
979 			dev_err(&spi->dev,
980 				"Mapped transfer length of %u is greater than %d\n",
981 				transfer->len, MAX_DMA_LEN);
982 			return -EINVAL;
983 		}
984 
985 		/* warn ... we force this to PIO mode */
986 		dev_warn_ratelimited(&spi->dev,
987 				     "DMA disabled for transfer length %ld greater than %d\n",
988 				     (long)transfer->len, MAX_DMA_LEN);
989 	}
990 
991 	/* Setup the transfer state based on the type of transfer */
992 	if (pxa2xx_spi_flush(drv_data) == 0) {
993 		dev_err(&spi->dev, "Flush failed\n");
994 		return -EIO;
995 	}
996 	drv_data->n_bytes = chip->n_bytes;
997 	drv_data->tx = (void *)transfer->tx_buf;
998 	drv_data->tx_end = drv_data->tx + transfer->len;
999 	drv_data->rx = transfer->rx_buf;
1000 	drv_data->rx_end = drv_data->rx + transfer->len;
1001 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1002 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1003 
1004 	/* Change speed and bit per word on a per transfer */
1005 	bits = transfer->bits_per_word;
1006 	speed = transfer->speed_hz;
1007 
1008 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1009 
1010 	if (bits <= 8) {
1011 		drv_data->n_bytes = 1;
1012 		drv_data->read = drv_data->read != null_reader ?
1013 					u8_reader : null_reader;
1014 		drv_data->write = drv_data->write != null_writer ?
1015 					u8_writer : null_writer;
1016 	} else if (bits <= 16) {
1017 		drv_data->n_bytes = 2;
1018 		drv_data->read = drv_data->read != null_reader ?
1019 					u16_reader : null_reader;
1020 		drv_data->write = drv_data->write != null_writer ?
1021 					u16_writer : null_writer;
1022 	} else if (bits <= 32) {
1023 		drv_data->n_bytes = 4;
1024 		drv_data->read = drv_data->read != null_reader ?
1025 					u32_reader : null_reader;
1026 		drv_data->write = drv_data->write != null_writer ?
1027 					u32_writer : null_writer;
1028 	}
1029 	/*
1030 	 * if bits/word is changed in dma mode, then must check the
1031 	 * thresholds and burst also
1032 	 */
1033 	if (chip->enable_dma) {
1034 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1035 						spi,
1036 						bits, &dma_burst,
1037 						&dma_thresh))
1038 			dev_warn_ratelimited(&spi->dev,
1039 					     "DMA burst size reduced to match bits_per_word\n");
1040 	}
1041 
1042 	dma_mapped = controller->can_dma &&
1043 		     controller->can_dma(controller, spi, transfer) &&
1044 		     controller->cur_msg_mapped;
1045 	if (dma_mapped) {
1046 
1047 		/* Ensure we have the correct interrupt handler */
1048 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1049 
1050 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1051 		if (err)
1052 			return err;
1053 
1054 		/* Clear status and start DMA engine */
1055 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1056 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1057 
1058 		pxa2xx_spi_dma_start(drv_data);
1059 	} else {
1060 		/* Ensure we have the correct interrupt handler	*/
1061 		drv_data->transfer_handler = interrupt_transfer;
1062 
1063 		/* Clear status  */
1064 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1065 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1066 	}
1067 
1068 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1069 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1070 	if (!pxa25x_ssp_comp(drv_data))
1071 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1072 			controller->max_speed_hz
1073 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1074 			dma_mapped ? "DMA" : "PIO");
1075 	else
1076 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1077 			controller->max_speed_hz / 2
1078 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1079 			dma_mapped ? "DMA" : "PIO");
1080 
1081 	if (is_lpss_ssp(drv_data)) {
1082 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1083 		    != chip->lpss_rx_threshold)
1084 			pxa2xx_spi_write(drv_data, SSIRF,
1085 					 chip->lpss_rx_threshold);
1086 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1087 		    != chip->lpss_tx_threshold)
1088 			pxa2xx_spi_write(drv_data, SSITF,
1089 					 chip->lpss_tx_threshold);
1090 	}
1091 
1092 	if (is_quark_x1000_ssp(drv_data) &&
1093 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1094 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1095 
1096 	/* see if we need to reload the config registers */
1097 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1098 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1099 	    != (cr1 & change_mask)) {
1100 		/* stop the SSP, and update the other bits */
1101 		if (!is_mmp2_ssp(drv_data))
1102 			pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1103 		if (!pxa25x_ssp_comp(drv_data))
1104 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1105 		/* first set CR1 without interrupt and service enables */
1106 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1107 		/* restart the SSP */
1108 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1109 
1110 	} else {
1111 		if (!pxa25x_ssp_comp(drv_data))
1112 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1113 	}
1114 
1115 	if (is_mmp2_ssp(drv_data)) {
1116 		u8 tx_level = (pxa2xx_spi_read(drv_data, SSSR)
1117 					& SSSR_TFL_MASK) >> 8;
1118 
1119 		if (tx_level) {
1120 			/* On MMP2, flipping SSE doesn't to empty TXFIFO. */
1121 			dev_warn(&spi->dev, "%d bytes of garbage in TXFIFO!\n",
1122 								tx_level);
1123 			if (tx_level > transfer->len)
1124 				tx_level = transfer->len;
1125 			drv_data->tx += tx_level;
1126 		}
1127 	}
1128 
1129 	if (spi_controller_is_slave(controller)) {
1130 		while (drv_data->write(drv_data))
1131 			;
1132 		if (drv_data->gpiod_ready) {
1133 			gpiod_set_value(drv_data->gpiod_ready, 1);
1134 			udelay(1);
1135 			gpiod_set_value(drv_data->gpiod_ready, 0);
1136 		}
1137 	}
1138 
1139 	/*
1140 	 * Release the data by enabling service requests and interrupts,
1141 	 * without changing any mode bits
1142 	 */
1143 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1144 
1145 	return 1;
1146 }
1147 
1148 static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1149 {
1150 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1151 
1152 	/* Stop and reset SSP */
1153 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1154 	reset_sccr1(drv_data);
1155 	if (!pxa25x_ssp_comp(drv_data))
1156 		pxa2xx_spi_write(drv_data, SSTO, 0);
1157 	pxa2xx_spi_flush(drv_data);
1158 	pxa2xx_spi_off(drv_data);
1159 
1160 	dev_dbg(&drv_data->pdev->dev, "transfer aborted\n");
1161 
1162 	drv_data->controller->cur_msg->status = -EINTR;
1163 	spi_finalize_current_transfer(drv_data->controller);
1164 
1165 	return 0;
1166 }
1167 
1168 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1169 				 struct spi_message *msg)
1170 {
1171 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1172 
1173 	/* Disable the SSP */
1174 	pxa2xx_spi_off(drv_data);
1175 	/* Clear and disable interrupts and service requests */
1176 	write_SSSR_CS(drv_data, drv_data->clear_sr);
1177 	pxa2xx_spi_write(drv_data, SSCR1,
1178 			 pxa2xx_spi_read(drv_data, SSCR1)
1179 			 & ~(drv_data->int_cr1 | drv_data->dma_cr1));
1180 	if (!pxa25x_ssp_comp(drv_data))
1181 		pxa2xx_spi_write(drv_data, SSTO, 0);
1182 
1183 	/*
1184 	 * Stop the DMA if running. Note DMA callback handler may have unset
1185 	 * the dma_running already, which is fine as stopping is not needed
1186 	 * then but we shouldn't rely this flag for anything else than
1187 	 * stopping. For instance to differentiate between PIO and DMA
1188 	 * transfers.
1189 	 */
1190 	if (atomic_read(&drv_data->dma_running))
1191 		pxa2xx_spi_dma_stop(drv_data);
1192 }
1193 
1194 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1195 {
1196 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1197 
1198 	/* Disable the SSP now */
1199 	pxa2xx_spi_off(drv_data);
1200 
1201 	return 0;
1202 }
1203 
1204 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1205 		    struct pxa2xx_spi_chip *chip_info)
1206 {
1207 	struct driver_data *drv_data =
1208 		spi_controller_get_devdata(spi->controller);
1209 	struct gpio_desc *gpiod;
1210 	int err = 0;
1211 
1212 	if (chip == NULL)
1213 		return 0;
1214 
1215 	if (drv_data->cs_gpiods) {
1216 		gpiod = drv_data->cs_gpiods[spi->chip_select];
1217 		if (gpiod) {
1218 			chip->gpiod_cs = gpiod;
1219 			chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1220 			gpiod_set_value(gpiod, chip->gpio_cs_inverted);
1221 		}
1222 
1223 		return 0;
1224 	}
1225 
1226 	if (chip_info == NULL)
1227 		return 0;
1228 
1229 	/* NOTE: setup() can be called multiple times, possibly with
1230 	 * different chip_info, release previously requested GPIO
1231 	 */
1232 	if (chip->gpiod_cs) {
1233 		gpiod_put(chip->gpiod_cs);
1234 		chip->gpiod_cs = NULL;
1235 	}
1236 
1237 	/* If (*cs_control) is provided, ignore GPIO chip select */
1238 	if (chip_info->cs_control) {
1239 		chip->cs_control = chip_info->cs_control;
1240 		return 0;
1241 	}
1242 
1243 	if (gpio_is_valid(chip_info->gpio_cs)) {
1244 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1245 		if (err) {
1246 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1247 				chip_info->gpio_cs);
1248 			return err;
1249 		}
1250 
1251 		gpiod = gpio_to_desc(chip_info->gpio_cs);
1252 		chip->gpiod_cs = gpiod;
1253 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1254 
1255 		err = gpiod_direction_output(gpiod, !chip->gpio_cs_inverted);
1256 	}
1257 
1258 	return err;
1259 }
1260 
1261 static int setup(struct spi_device *spi)
1262 {
1263 	struct pxa2xx_spi_chip *chip_info;
1264 	struct chip_data *chip;
1265 	const struct lpss_config *config;
1266 	struct driver_data *drv_data =
1267 		spi_controller_get_devdata(spi->controller);
1268 	uint tx_thres, tx_hi_thres, rx_thres;
1269 
1270 	switch (drv_data->ssp_type) {
1271 	case QUARK_X1000_SSP:
1272 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1273 		tx_hi_thres = 0;
1274 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1275 		break;
1276 	case CE4100_SSP:
1277 		tx_thres = TX_THRESH_CE4100_DFLT;
1278 		tx_hi_thres = 0;
1279 		rx_thres = RX_THRESH_CE4100_DFLT;
1280 		break;
1281 	case LPSS_LPT_SSP:
1282 	case LPSS_BYT_SSP:
1283 	case LPSS_BSW_SSP:
1284 	case LPSS_SPT_SSP:
1285 	case LPSS_BXT_SSP:
1286 	case LPSS_CNL_SSP:
1287 		config = lpss_get_config(drv_data);
1288 		tx_thres = config->tx_threshold_lo;
1289 		tx_hi_thres = config->tx_threshold_hi;
1290 		rx_thres = config->rx_threshold;
1291 		break;
1292 	default:
1293 		tx_hi_thres = 0;
1294 		if (spi_controller_is_slave(drv_data->controller)) {
1295 			tx_thres = 1;
1296 			rx_thres = 2;
1297 		} else {
1298 			tx_thres = TX_THRESH_DFLT;
1299 			rx_thres = RX_THRESH_DFLT;
1300 		}
1301 		break;
1302 	}
1303 
1304 	/* Only alloc on first setup */
1305 	chip = spi_get_ctldata(spi);
1306 	if (!chip) {
1307 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1308 		if (!chip)
1309 			return -ENOMEM;
1310 
1311 		if (drv_data->ssp_type == CE4100_SSP) {
1312 			if (spi->chip_select > 4) {
1313 				dev_err(&spi->dev,
1314 					"failed setup: cs number must not be > 4.\n");
1315 				kfree(chip);
1316 				return -EINVAL;
1317 			}
1318 
1319 			chip->frm = spi->chip_select;
1320 		}
1321 		chip->enable_dma = drv_data->controller_info->enable_dma;
1322 		chip->timeout = TIMOUT_DFLT;
1323 	}
1324 
1325 	/* protocol drivers may change the chip settings, so...
1326 	 * if chip_info exists, use it */
1327 	chip_info = spi->controller_data;
1328 
1329 	/* chip_info isn't always needed */
1330 	chip->cr1 = 0;
1331 	if (chip_info) {
1332 		if (chip_info->timeout)
1333 			chip->timeout = chip_info->timeout;
1334 		if (chip_info->tx_threshold)
1335 			tx_thres = chip_info->tx_threshold;
1336 		if (chip_info->tx_hi_threshold)
1337 			tx_hi_thres = chip_info->tx_hi_threshold;
1338 		if (chip_info->rx_threshold)
1339 			rx_thres = chip_info->rx_threshold;
1340 		chip->dma_threshold = 0;
1341 		if (chip_info->enable_loopback)
1342 			chip->cr1 = SSCR1_LBM;
1343 	}
1344 	if (spi_controller_is_slave(drv_data->controller)) {
1345 		chip->cr1 |= SSCR1_SCFR;
1346 		chip->cr1 |= SSCR1_SCLKDIR;
1347 		chip->cr1 |= SSCR1_SFRMDIR;
1348 		chip->cr1 |= SSCR1_SPH;
1349 	}
1350 
1351 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1352 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1353 				| SSITF_TxHiThresh(tx_hi_thres);
1354 
1355 	/* set dma burst and threshold outside of chip_info path so that if
1356 	 * chip_info goes away after setting chip->enable_dma, the
1357 	 * burst and threshold can still respond to changes in bits_per_word */
1358 	if (chip->enable_dma) {
1359 		/* set up legal burst and threshold for dma */
1360 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1361 						spi->bits_per_word,
1362 						&chip->dma_burst_size,
1363 						&chip->dma_threshold)) {
1364 			dev_warn(&spi->dev,
1365 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1366 		}
1367 		dev_dbg(&spi->dev,
1368 			"in setup: DMA burst size set to %u\n",
1369 			chip->dma_burst_size);
1370 	}
1371 
1372 	switch (drv_data->ssp_type) {
1373 	case QUARK_X1000_SSP:
1374 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1375 				   & QUARK_X1000_SSCR1_RFT)
1376 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1377 				   & QUARK_X1000_SSCR1_TFT);
1378 		break;
1379 	case CE4100_SSP:
1380 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1381 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1382 		break;
1383 	default:
1384 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1385 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1386 		break;
1387 	}
1388 
1389 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1390 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1391 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1392 
1393 	if (spi->mode & SPI_LOOP)
1394 		chip->cr1 |= SSCR1_LBM;
1395 
1396 	if (spi->bits_per_word <= 8) {
1397 		chip->n_bytes = 1;
1398 		chip->read = u8_reader;
1399 		chip->write = u8_writer;
1400 	} else if (spi->bits_per_word <= 16) {
1401 		chip->n_bytes = 2;
1402 		chip->read = u16_reader;
1403 		chip->write = u16_writer;
1404 	} else if (spi->bits_per_word <= 32) {
1405 		chip->n_bytes = 4;
1406 		chip->read = u32_reader;
1407 		chip->write = u32_writer;
1408 	}
1409 
1410 	spi_set_ctldata(spi, chip);
1411 
1412 	if (drv_data->ssp_type == CE4100_SSP)
1413 		return 0;
1414 
1415 	return setup_cs(spi, chip, chip_info);
1416 }
1417 
1418 static void cleanup(struct spi_device *spi)
1419 {
1420 	struct chip_data *chip = spi_get_ctldata(spi);
1421 	struct driver_data *drv_data =
1422 		spi_controller_get_devdata(spi->controller);
1423 
1424 	if (!chip)
1425 		return;
1426 
1427 	if (drv_data->ssp_type != CE4100_SSP && !drv_data->cs_gpiods &&
1428 	    chip->gpiod_cs)
1429 		gpiod_put(chip->gpiod_cs);
1430 
1431 	kfree(chip);
1432 }
1433 
1434 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1435 	{ "INT33C0", LPSS_LPT_SSP },
1436 	{ "INT33C1", LPSS_LPT_SSP },
1437 	{ "INT3430", LPSS_LPT_SSP },
1438 	{ "INT3431", LPSS_LPT_SSP },
1439 	{ "80860F0E", LPSS_BYT_SSP },
1440 	{ "8086228E", LPSS_BSW_SSP },
1441 	{ },
1442 };
1443 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1444 
1445 /*
1446  * PCI IDs of compound devices that integrate both host controller and private
1447  * integrated DMA engine. Please note these are not used in module
1448  * autoloading and probing in this module but matching the LPSS SSP type.
1449  */
1450 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1451 	/* SPT-LP */
1452 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1453 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1454 	/* SPT-H */
1455 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1456 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1457 	/* KBL-H */
1458 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1459 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1460 	/* CML-V */
1461 	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1462 	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1463 	/* BXT A-Step */
1464 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1465 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1466 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1467 	/* BXT B-Step */
1468 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1469 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1470 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1471 	/* GLK */
1472 	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1473 	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1474 	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1475 	/* ICL-LP */
1476 	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1477 	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1478 	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1479 	/* EHL */
1480 	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1481 	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1482 	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1483 	/* JSL */
1484 	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1485 	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1486 	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1487 	/* APL */
1488 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1489 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1490 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1491 	/* CNL-LP */
1492 	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1493 	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1494 	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1495 	/* CNL-H */
1496 	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1497 	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1498 	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1499 	/* CML-LP */
1500 	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1501 	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1502 	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1503 	/* CML-H */
1504 	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1505 	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1506 	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1507 	/* TGL-LP */
1508 	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1509 	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1510 	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1511 	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1512 	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1513 	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1514 	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1515 	{ },
1516 };
1517 
1518 static const struct of_device_id pxa2xx_spi_of_match[] = {
1519 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1520 	{},
1521 };
1522 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1523 
1524 #ifdef CONFIG_ACPI
1525 
1526 static int pxa2xx_spi_get_port_id(struct device *dev)
1527 {
1528 	struct acpi_device *adev;
1529 	unsigned int devid;
1530 	int port_id = -1;
1531 
1532 	adev = ACPI_COMPANION(dev);
1533 	if (adev && adev->pnp.unique_id &&
1534 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1535 		port_id = devid;
1536 	return port_id;
1537 }
1538 
1539 #else /* !CONFIG_ACPI */
1540 
1541 static int pxa2xx_spi_get_port_id(struct device *dev)
1542 {
1543 	return -1;
1544 }
1545 
1546 #endif /* CONFIG_ACPI */
1547 
1548 
1549 #ifdef CONFIG_PCI
1550 
1551 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1552 {
1553 	return param == chan->device->dev;
1554 }
1555 
1556 #endif /* CONFIG_PCI */
1557 
1558 static struct pxa2xx_spi_controller *
1559 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1560 {
1561 	struct pxa2xx_spi_controller *pdata;
1562 	struct ssp_device *ssp;
1563 	struct resource *res;
1564 	struct device *parent = pdev->dev.parent;
1565 	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1566 	const struct pci_device_id *pcidev_id = NULL;
1567 	enum pxa_ssp_type type;
1568 	const void *match;
1569 
1570 	if (pcidev)
1571 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1572 
1573 	match = device_get_match_data(&pdev->dev);
1574 	if (match)
1575 		type = (enum pxa_ssp_type)match;
1576 	else if (pcidev_id)
1577 		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1578 	else
1579 		return ERR_PTR(-EINVAL);
1580 
1581 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1582 	if (!pdata)
1583 		return ERR_PTR(-ENOMEM);
1584 
1585 	ssp = &pdata->ssp;
1586 
1587 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1588 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1589 	if (IS_ERR(ssp->mmio_base))
1590 		return ERR_CAST(ssp->mmio_base);
1591 
1592 	ssp->phys_base = res->start;
1593 
1594 #ifdef CONFIG_PCI
1595 	if (pcidev_id) {
1596 		pdata->tx_param = parent;
1597 		pdata->rx_param = parent;
1598 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1599 	}
1600 #endif
1601 
1602 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1603 	if (IS_ERR(ssp->clk))
1604 		return ERR_CAST(ssp->clk);
1605 
1606 	ssp->irq = platform_get_irq(pdev, 0);
1607 	if (ssp->irq < 0)
1608 		return ERR_PTR(ssp->irq);
1609 
1610 	ssp->type = type;
1611 	ssp->dev = &pdev->dev;
1612 	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1613 
1614 	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1615 	pdata->num_chipselect = 1;
1616 	pdata->enable_dma = true;
1617 	pdata->dma_burst_size = 1;
1618 
1619 	return pdata;
1620 }
1621 
1622 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1623 				      unsigned int cs)
1624 {
1625 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1626 
1627 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1628 		switch (drv_data->ssp_type) {
1629 		/*
1630 		 * For Atoms the ACPI DeviceSelection used by the Windows
1631 		 * driver starts from 1 instead of 0 so translate it here
1632 		 * to match what Linux expects.
1633 		 */
1634 		case LPSS_BYT_SSP:
1635 		case LPSS_BSW_SSP:
1636 			return cs - 1;
1637 
1638 		default:
1639 			break;
1640 		}
1641 	}
1642 
1643 	return cs;
1644 }
1645 
1646 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1647 {
1648 	return MAX_DMA_LEN;
1649 }
1650 
1651 static int pxa2xx_spi_probe(struct platform_device *pdev)
1652 {
1653 	struct device *dev = &pdev->dev;
1654 	struct pxa2xx_spi_controller *platform_info;
1655 	struct spi_controller *controller;
1656 	struct driver_data *drv_data;
1657 	struct ssp_device *ssp;
1658 	const struct lpss_config *config;
1659 	int status, count;
1660 	u32 tmp;
1661 
1662 	platform_info = dev_get_platdata(dev);
1663 	if (!platform_info) {
1664 		platform_info = pxa2xx_spi_init_pdata(pdev);
1665 		if (IS_ERR(platform_info)) {
1666 			dev_err(&pdev->dev, "missing platform data\n");
1667 			return PTR_ERR(platform_info);
1668 		}
1669 	}
1670 
1671 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1672 	if (!ssp)
1673 		ssp = &platform_info->ssp;
1674 
1675 	if (!ssp->mmio_base) {
1676 		dev_err(&pdev->dev, "failed to get ssp\n");
1677 		return -ENODEV;
1678 	}
1679 
1680 	if (platform_info->is_slave)
1681 		controller = spi_alloc_slave(dev, sizeof(struct driver_data));
1682 	else
1683 		controller = spi_alloc_master(dev, sizeof(struct driver_data));
1684 
1685 	if (!controller) {
1686 		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1687 		pxa_ssp_free(ssp);
1688 		return -ENOMEM;
1689 	}
1690 	drv_data = spi_controller_get_devdata(controller);
1691 	drv_data->controller = controller;
1692 	drv_data->controller_info = platform_info;
1693 	drv_data->pdev = pdev;
1694 	drv_data->ssp = ssp;
1695 
1696 	controller->dev.of_node = pdev->dev.of_node;
1697 	/* the spi->mode bits understood by this driver: */
1698 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1699 
1700 	controller->bus_num = ssp->port_id;
1701 	controller->dma_alignment = DMA_ALIGNMENT;
1702 	controller->cleanup = cleanup;
1703 	controller->setup = setup;
1704 	controller->set_cs = pxa2xx_spi_set_cs;
1705 	controller->transfer_one = pxa2xx_spi_transfer_one;
1706 	controller->slave_abort = pxa2xx_spi_slave_abort;
1707 	controller->handle_err = pxa2xx_spi_handle_err;
1708 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1709 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1710 	controller->auto_runtime_pm = true;
1711 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1712 
1713 	drv_data->ssp_type = ssp->type;
1714 
1715 	drv_data->ioaddr = ssp->mmio_base;
1716 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1717 	if (pxa25x_ssp_comp(drv_data)) {
1718 		switch (drv_data->ssp_type) {
1719 		case QUARK_X1000_SSP:
1720 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1721 			break;
1722 		default:
1723 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1724 			break;
1725 		}
1726 
1727 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1728 		drv_data->dma_cr1 = 0;
1729 		drv_data->clear_sr = SSSR_ROR;
1730 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1731 	} else {
1732 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1733 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1734 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1735 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1736 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1737 						| SSSR_ROR | SSSR_TUR;
1738 	}
1739 
1740 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1741 			drv_data);
1742 	if (status < 0) {
1743 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1744 		goto out_error_controller_alloc;
1745 	}
1746 
1747 	/* Setup DMA if requested */
1748 	if (platform_info->enable_dma) {
1749 		status = pxa2xx_spi_dma_setup(drv_data);
1750 		if (status) {
1751 			dev_warn(dev, "no DMA channels available, using PIO\n");
1752 			platform_info->enable_dma = false;
1753 		} else {
1754 			controller->can_dma = pxa2xx_spi_can_dma;
1755 			controller->max_dma_len = MAX_DMA_LEN;
1756 			controller->max_transfer_size =
1757 				pxa2xx_spi_max_dma_transfer_size;
1758 		}
1759 	}
1760 
1761 	/* Enable SOC clock */
1762 	status = clk_prepare_enable(ssp->clk);
1763 	if (status)
1764 		goto out_error_dma_irq_alloc;
1765 
1766 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1767 	/*
1768 	 * Set minimum speed for all other platforms than Intel Quark which is
1769 	 * able do under 1 Hz transfers.
1770 	 */
1771 	if (!pxa25x_ssp_comp(drv_data))
1772 		controller->min_speed_hz =
1773 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1774 	else if (!is_quark_x1000_ssp(drv_data))
1775 		controller->min_speed_hz =
1776 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1777 
1778 	/* Load default SSP configuration */
1779 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1780 	switch (drv_data->ssp_type) {
1781 	case QUARK_X1000_SSP:
1782 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1783 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1784 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1785 
1786 		/* using the Motorola SPI protocol and use 8 bit frame */
1787 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1788 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1789 		break;
1790 	case CE4100_SSP:
1791 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1792 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1793 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1794 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1795 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1796 		break;
1797 	default:
1798 
1799 		if (spi_controller_is_slave(controller)) {
1800 			tmp = SSCR1_SCFR |
1801 			      SSCR1_SCLKDIR |
1802 			      SSCR1_SFRMDIR |
1803 			      SSCR1_RxTresh(2) |
1804 			      SSCR1_TxTresh(1) |
1805 			      SSCR1_SPH;
1806 		} else {
1807 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1808 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1809 		}
1810 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1811 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1812 		if (!spi_controller_is_slave(controller))
1813 			tmp |= SSCR0_SCR(2);
1814 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1815 		break;
1816 	}
1817 
1818 	if (!pxa25x_ssp_comp(drv_data))
1819 		pxa2xx_spi_write(drv_data, SSTO, 0);
1820 
1821 	if (!is_quark_x1000_ssp(drv_data))
1822 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1823 
1824 	if (is_lpss_ssp(drv_data)) {
1825 		lpss_ssp_setup(drv_data);
1826 		config = lpss_get_config(drv_data);
1827 		if (config->reg_capabilities >= 0) {
1828 			tmp = __lpss_ssp_read_priv(drv_data,
1829 						   config->reg_capabilities);
1830 			tmp &= LPSS_CAPS_CS_EN_MASK;
1831 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1832 			platform_info->num_chipselect = ffz(tmp);
1833 		} else if (config->cs_num) {
1834 			platform_info->num_chipselect = config->cs_num;
1835 		}
1836 	}
1837 	controller->num_chipselect = platform_info->num_chipselect;
1838 
1839 	count = gpiod_count(&pdev->dev, "cs");
1840 	if (count > 0) {
1841 		int i;
1842 
1843 		controller->num_chipselect = max_t(int, count,
1844 			controller->num_chipselect);
1845 
1846 		drv_data->cs_gpiods = devm_kcalloc(&pdev->dev,
1847 			controller->num_chipselect, sizeof(struct gpio_desc *),
1848 			GFP_KERNEL);
1849 		if (!drv_data->cs_gpiods) {
1850 			status = -ENOMEM;
1851 			goto out_error_clock_enabled;
1852 		}
1853 
1854 		for (i = 0; i < controller->num_chipselect; i++) {
1855 			struct gpio_desc *gpiod;
1856 
1857 			gpiod = devm_gpiod_get_index(dev, "cs", i, GPIOD_ASIS);
1858 			if (IS_ERR(gpiod)) {
1859 				/* Means use native chip select */
1860 				if (PTR_ERR(gpiod) == -ENOENT)
1861 					continue;
1862 
1863 				status = PTR_ERR(gpiod);
1864 				goto out_error_clock_enabled;
1865 			} else {
1866 				drv_data->cs_gpiods[i] = gpiod;
1867 			}
1868 		}
1869 	}
1870 
1871 	if (platform_info->is_slave) {
1872 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1873 						"ready", GPIOD_OUT_LOW);
1874 		if (IS_ERR(drv_data->gpiod_ready)) {
1875 			status = PTR_ERR(drv_data->gpiod_ready);
1876 			goto out_error_clock_enabled;
1877 		}
1878 	}
1879 
1880 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1881 	pm_runtime_use_autosuspend(&pdev->dev);
1882 	pm_runtime_set_active(&pdev->dev);
1883 	pm_runtime_enable(&pdev->dev);
1884 
1885 	/* Register with the SPI framework */
1886 	platform_set_drvdata(pdev, drv_data);
1887 	status = devm_spi_register_controller(&pdev->dev, controller);
1888 	if (status != 0) {
1889 		dev_err(&pdev->dev, "problem registering spi controller\n");
1890 		goto out_error_pm_runtime_enabled;
1891 	}
1892 
1893 	return status;
1894 
1895 out_error_pm_runtime_enabled:
1896 	pm_runtime_put_noidle(&pdev->dev);
1897 	pm_runtime_disable(&pdev->dev);
1898 
1899 out_error_clock_enabled:
1900 	clk_disable_unprepare(ssp->clk);
1901 
1902 out_error_dma_irq_alloc:
1903 	pxa2xx_spi_dma_release(drv_data);
1904 	free_irq(ssp->irq, drv_data);
1905 
1906 out_error_controller_alloc:
1907 	spi_controller_put(controller);
1908 	pxa_ssp_free(ssp);
1909 	return status;
1910 }
1911 
1912 static int pxa2xx_spi_remove(struct platform_device *pdev)
1913 {
1914 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1915 	struct ssp_device *ssp = drv_data->ssp;
1916 
1917 	pm_runtime_get_sync(&pdev->dev);
1918 
1919 	/* Disable the SSP at the peripheral and SOC level */
1920 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1921 	clk_disable_unprepare(ssp->clk);
1922 
1923 	/* Release DMA */
1924 	if (drv_data->controller_info->enable_dma)
1925 		pxa2xx_spi_dma_release(drv_data);
1926 
1927 	pm_runtime_put_noidle(&pdev->dev);
1928 	pm_runtime_disable(&pdev->dev);
1929 
1930 	/* Release IRQ */
1931 	free_irq(ssp->irq, drv_data);
1932 
1933 	/* Release SSP */
1934 	pxa_ssp_free(ssp);
1935 
1936 	return 0;
1937 }
1938 
1939 #ifdef CONFIG_PM_SLEEP
1940 static int pxa2xx_spi_suspend(struct device *dev)
1941 {
1942 	struct driver_data *drv_data = dev_get_drvdata(dev);
1943 	struct ssp_device *ssp = drv_data->ssp;
1944 	int status;
1945 
1946 	status = spi_controller_suspend(drv_data->controller);
1947 	if (status != 0)
1948 		return status;
1949 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1950 
1951 	if (!pm_runtime_suspended(dev))
1952 		clk_disable_unprepare(ssp->clk);
1953 
1954 	return 0;
1955 }
1956 
1957 static int pxa2xx_spi_resume(struct device *dev)
1958 {
1959 	struct driver_data *drv_data = dev_get_drvdata(dev);
1960 	struct ssp_device *ssp = drv_data->ssp;
1961 	int status;
1962 
1963 	/* Enable the SSP clock */
1964 	if (!pm_runtime_suspended(dev)) {
1965 		status = clk_prepare_enable(ssp->clk);
1966 		if (status)
1967 			return status;
1968 	}
1969 
1970 	/* Start the queue running */
1971 	return spi_controller_resume(drv_data->controller);
1972 }
1973 #endif
1974 
1975 #ifdef CONFIG_PM
1976 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1977 {
1978 	struct driver_data *drv_data = dev_get_drvdata(dev);
1979 
1980 	clk_disable_unprepare(drv_data->ssp->clk);
1981 	return 0;
1982 }
1983 
1984 static int pxa2xx_spi_runtime_resume(struct device *dev)
1985 {
1986 	struct driver_data *drv_data = dev_get_drvdata(dev);
1987 	int status;
1988 
1989 	status = clk_prepare_enable(drv_data->ssp->clk);
1990 	return status;
1991 }
1992 #endif
1993 
1994 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1995 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1996 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1997 			   pxa2xx_spi_runtime_resume, NULL)
1998 };
1999 
2000 static struct platform_driver driver = {
2001 	.driver = {
2002 		.name	= "pxa2xx-spi",
2003 		.pm	= &pxa2xx_spi_pm_ops,
2004 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
2005 		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
2006 	},
2007 	.probe = pxa2xx_spi_probe,
2008 	.remove = pxa2xx_spi_remove,
2009 };
2010 
2011 static int __init pxa2xx_spi_init(void)
2012 {
2013 	return platform_driver_register(&driver);
2014 }
2015 subsys_initcall(pxa2xx_spi_init);
2016 
2017 static void __exit pxa2xx_spi_exit(void)
2018 {
2019 	platform_driver_unregister(&driver);
2020 }
2021 module_exit(pxa2xx_spi_exit);
2022 
2023 MODULE_SOFTDEP("pre: dw_dmac");
2024