xref: /linux/drivers/spi/spi-pxa2xx.c (revision cf2f33a4e54096f90652cca3511fd6a456ea5abe)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/err.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/pci.h>
25 #include <linux/platform_device.h>
26 #include <linux/spi/pxa2xx_spi.h>
27 #include <linux/spi/spi.h>
28 #include <linux/delay.h>
29 #include <linux/gpio.h>
30 #include <linux/slab.h>
31 #include <linux/clk.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/acpi.h>
34 
35 #include "spi-pxa2xx.h"
36 
37 MODULE_AUTHOR("Stephen Street");
38 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
39 MODULE_LICENSE("GPL");
40 MODULE_ALIAS("platform:pxa2xx-spi");
41 
42 #define TIMOUT_DFLT		1000
43 
44 /*
45  * for testing SSCR1 changes that require SSP restart, basically
46  * everything except the service and interrupt enables, the pxa270 developer
47  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
48  * list, but the PXA255 dev man says all bits without really meaning the
49  * service and interrupt enables
50  */
51 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
52 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
53 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
54 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
55 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
56 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
57 
58 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
59 				| QUARK_X1000_SSCR1_EFWR	\
60 				| QUARK_X1000_SSCR1_RFT		\
61 				| QUARK_X1000_SSCR1_TFT		\
62 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
63 
64 #define GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24)
65 #define SPI_CS_CONTROL_SW_MODE	BIT(0)
66 #define SPI_CS_CONTROL_CS_HIGH	BIT(1)
67 
68 struct lpss_config {
69 	/* LPSS offset from drv_data->ioaddr */
70 	unsigned offset;
71 	/* Register offsets from drv_data->lpss_base or -1 */
72 	int reg_general;
73 	int reg_ssp;
74 	int reg_cs_ctrl;
75 	/* FIFO thresholds */
76 	u32 rx_threshold;
77 	u32 tx_threshold_lo;
78 	u32 tx_threshold_hi;
79 };
80 
81 /* Keep these sorted with enum pxa_ssp_type */
82 static const struct lpss_config lpss_platforms[] = {
83 	{	/* LPSS_LPT_SSP */
84 		.offset = 0x800,
85 		.reg_general = 0x08,
86 		.reg_ssp = 0x0c,
87 		.reg_cs_ctrl = 0x18,
88 		.rx_threshold = 64,
89 		.tx_threshold_lo = 160,
90 		.tx_threshold_hi = 224,
91 	},
92 	{	/* LPSS_BYT_SSP */
93 		.offset = 0x400,
94 		.reg_general = 0x08,
95 		.reg_ssp = 0x0c,
96 		.reg_cs_ctrl = 0x18,
97 		.rx_threshold = 64,
98 		.tx_threshold_lo = 160,
99 		.tx_threshold_hi = 224,
100 	},
101 	{	/* LPSS_SPT_SSP */
102 		.offset = 0x200,
103 		.reg_general = -1,
104 		.reg_ssp = 0x20,
105 		.reg_cs_ctrl = 0x24,
106 		.rx_threshold = 1,
107 		.tx_threshold_lo = 32,
108 		.tx_threshold_hi = 56,
109 	},
110 };
111 
112 static inline const struct lpss_config
113 *lpss_get_config(const struct driver_data *drv_data)
114 {
115 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
116 }
117 
118 static bool is_lpss_ssp(const struct driver_data *drv_data)
119 {
120 	switch (drv_data->ssp_type) {
121 	case LPSS_LPT_SSP:
122 	case LPSS_BYT_SSP:
123 	case LPSS_SPT_SSP:
124 		return true;
125 	default:
126 		return false;
127 	}
128 }
129 
130 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
131 {
132 	return drv_data->ssp_type == QUARK_X1000_SSP;
133 }
134 
135 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
136 {
137 	switch (drv_data->ssp_type) {
138 	case QUARK_X1000_SSP:
139 		return QUARK_X1000_SSCR1_CHANGE_MASK;
140 	default:
141 		return SSCR1_CHANGE_MASK;
142 	}
143 }
144 
145 static u32
146 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
147 {
148 	switch (drv_data->ssp_type) {
149 	case QUARK_X1000_SSP:
150 		return RX_THRESH_QUARK_X1000_DFLT;
151 	default:
152 		return RX_THRESH_DFLT;
153 	}
154 }
155 
156 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
157 {
158 	u32 mask;
159 
160 	switch (drv_data->ssp_type) {
161 	case QUARK_X1000_SSP:
162 		mask = QUARK_X1000_SSSR_TFL_MASK;
163 		break;
164 	default:
165 		mask = SSSR_TFL_MASK;
166 		break;
167 	}
168 
169 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
170 }
171 
172 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
173 				     u32 *sccr1_reg)
174 {
175 	u32 mask;
176 
177 	switch (drv_data->ssp_type) {
178 	case QUARK_X1000_SSP:
179 		mask = QUARK_X1000_SSCR1_RFT;
180 		break;
181 	default:
182 		mask = SSCR1_RFT;
183 		break;
184 	}
185 	*sccr1_reg &= ~mask;
186 }
187 
188 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
189 				   u32 *sccr1_reg, u32 threshold)
190 {
191 	switch (drv_data->ssp_type) {
192 	case QUARK_X1000_SSP:
193 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
194 		break;
195 	default:
196 		*sccr1_reg |= SSCR1_RxTresh(threshold);
197 		break;
198 	}
199 }
200 
201 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
202 				  u32 clk_div, u8 bits)
203 {
204 	switch (drv_data->ssp_type) {
205 	case QUARK_X1000_SSP:
206 		return clk_div
207 			| QUARK_X1000_SSCR0_Motorola
208 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
209 			| SSCR0_SSE;
210 	default:
211 		return clk_div
212 			| SSCR0_Motorola
213 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
214 			| SSCR0_SSE
215 			| (bits > 16 ? SSCR0_EDSS : 0);
216 	}
217 }
218 
219 /*
220  * Read and write LPSS SSP private registers. Caller must first check that
221  * is_lpss_ssp() returns true before these can be called.
222  */
223 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
224 {
225 	WARN_ON(!drv_data->lpss_base);
226 	return readl(drv_data->lpss_base + offset);
227 }
228 
229 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
230 				  unsigned offset, u32 value)
231 {
232 	WARN_ON(!drv_data->lpss_base);
233 	writel(value, drv_data->lpss_base + offset);
234 }
235 
236 /*
237  * lpss_ssp_setup - perform LPSS SSP specific setup
238  * @drv_data: pointer to the driver private data
239  *
240  * Perform LPSS SSP specific setup. This function must be called first if
241  * one is going to use LPSS SSP private registers.
242  */
243 static void lpss_ssp_setup(struct driver_data *drv_data)
244 {
245 	const struct lpss_config *config;
246 	u32 value;
247 
248 	config = lpss_get_config(drv_data);
249 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
250 
251 	/* Enable software chip select control */
252 	value = SPI_CS_CONTROL_SW_MODE | SPI_CS_CONTROL_CS_HIGH;
253 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
254 
255 	/* Enable multiblock DMA transfers */
256 	if (drv_data->master_info->enable_dma) {
257 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
258 
259 		if (config->reg_general >= 0) {
260 			value = __lpss_ssp_read_priv(drv_data,
261 						     config->reg_general);
262 			value |= GENERAL_REG_RXTO_HOLDOFF_DISABLE;
263 			__lpss_ssp_write_priv(drv_data,
264 					      config->reg_general, value);
265 		}
266 	}
267 }
268 
269 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
270 {
271 	const struct lpss_config *config;
272 	u32 value;
273 
274 	config = lpss_get_config(drv_data);
275 
276 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
277 	if (enable)
278 		value &= ~SPI_CS_CONTROL_CS_HIGH;
279 	else
280 		value |= SPI_CS_CONTROL_CS_HIGH;
281 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
282 }
283 
284 static void cs_assert(struct driver_data *drv_data)
285 {
286 	struct chip_data *chip = drv_data->cur_chip;
287 
288 	if (drv_data->ssp_type == CE4100_SSP) {
289 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
290 		return;
291 	}
292 
293 	if (chip->cs_control) {
294 		chip->cs_control(PXA2XX_CS_ASSERT);
295 		return;
296 	}
297 
298 	if (gpio_is_valid(chip->gpio_cs)) {
299 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
300 		return;
301 	}
302 
303 	if (is_lpss_ssp(drv_data))
304 		lpss_ssp_cs_control(drv_data, true);
305 }
306 
307 static void cs_deassert(struct driver_data *drv_data)
308 {
309 	struct chip_data *chip = drv_data->cur_chip;
310 
311 	if (drv_data->ssp_type == CE4100_SSP)
312 		return;
313 
314 	if (chip->cs_control) {
315 		chip->cs_control(PXA2XX_CS_DEASSERT);
316 		return;
317 	}
318 
319 	if (gpio_is_valid(chip->gpio_cs)) {
320 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
321 		return;
322 	}
323 
324 	if (is_lpss_ssp(drv_data))
325 		lpss_ssp_cs_control(drv_data, false);
326 }
327 
328 int pxa2xx_spi_flush(struct driver_data *drv_data)
329 {
330 	unsigned long limit = loops_per_jiffy << 1;
331 
332 	do {
333 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
334 			pxa2xx_spi_read(drv_data, SSDR);
335 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
336 	write_SSSR_CS(drv_data, SSSR_ROR);
337 
338 	return limit;
339 }
340 
341 static int null_writer(struct driver_data *drv_data)
342 {
343 	u8 n_bytes = drv_data->n_bytes;
344 
345 	if (pxa2xx_spi_txfifo_full(drv_data)
346 		|| (drv_data->tx == drv_data->tx_end))
347 		return 0;
348 
349 	pxa2xx_spi_write(drv_data, SSDR, 0);
350 	drv_data->tx += n_bytes;
351 
352 	return 1;
353 }
354 
355 static int null_reader(struct driver_data *drv_data)
356 {
357 	u8 n_bytes = drv_data->n_bytes;
358 
359 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
360 	       && (drv_data->rx < drv_data->rx_end)) {
361 		pxa2xx_spi_read(drv_data, SSDR);
362 		drv_data->rx += n_bytes;
363 	}
364 
365 	return drv_data->rx == drv_data->rx_end;
366 }
367 
368 static int u8_writer(struct driver_data *drv_data)
369 {
370 	if (pxa2xx_spi_txfifo_full(drv_data)
371 		|| (drv_data->tx == drv_data->tx_end))
372 		return 0;
373 
374 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
375 	++drv_data->tx;
376 
377 	return 1;
378 }
379 
380 static int u8_reader(struct driver_data *drv_data)
381 {
382 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
383 	       && (drv_data->rx < drv_data->rx_end)) {
384 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
385 		++drv_data->rx;
386 	}
387 
388 	return drv_data->rx == drv_data->rx_end;
389 }
390 
391 static int u16_writer(struct driver_data *drv_data)
392 {
393 	if (pxa2xx_spi_txfifo_full(drv_data)
394 		|| (drv_data->tx == drv_data->tx_end))
395 		return 0;
396 
397 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
398 	drv_data->tx += 2;
399 
400 	return 1;
401 }
402 
403 static int u16_reader(struct driver_data *drv_data)
404 {
405 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
406 	       && (drv_data->rx < drv_data->rx_end)) {
407 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
408 		drv_data->rx += 2;
409 	}
410 
411 	return drv_data->rx == drv_data->rx_end;
412 }
413 
414 static int u32_writer(struct driver_data *drv_data)
415 {
416 	if (pxa2xx_spi_txfifo_full(drv_data)
417 		|| (drv_data->tx == drv_data->tx_end))
418 		return 0;
419 
420 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
421 	drv_data->tx += 4;
422 
423 	return 1;
424 }
425 
426 static int u32_reader(struct driver_data *drv_data)
427 {
428 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
429 	       && (drv_data->rx < drv_data->rx_end)) {
430 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
431 		drv_data->rx += 4;
432 	}
433 
434 	return drv_data->rx == drv_data->rx_end;
435 }
436 
437 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
438 {
439 	struct spi_message *msg = drv_data->cur_msg;
440 	struct spi_transfer *trans = drv_data->cur_transfer;
441 
442 	/* Move to next transfer */
443 	if (trans->transfer_list.next != &msg->transfers) {
444 		drv_data->cur_transfer =
445 			list_entry(trans->transfer_list.next,
446 					struct spi_transfer,
447 					transfer_list);
448 		return RUNNING_STATE;
449 	} else
450 		return DONE_STATE;
451 }
452 
453 /* caller already set message->status; dma and pio irqs are blocked */
454 static void giveback(struct driver_data *drv_data)
455 {
456 	struct spi_transfer* last_transfer;
457 	struct spi_message *msg;
458 
459 	msg = drv_data->cur_msg;
460 	drv_data->cur_msg = NULL;
461 	drv_data->cur_transfer = NULL;
462 
463 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
464 					transfer_list);
465 
466 	/* Delay if requested before any change in chip select */
467 	if (last_transfer->delay_usecs)
468 		udelay(last_transfer->delay_usecs);
469 
470 	/* Drop chip select UNLESS cs_change is true or we are returning
471 	 * a message with an error, or next message is for another chip
472 	 */
473 	if (!last_transfer->cs_change)
474 		cs_deassert(drv_data);
475 	else {
476 		struct spi_message *next_msg;
477 
478 		/* Holding of cs was hinted, but we need to make sure
479 		 * the next message is for the same chip.  Don't waste
480 		 * time with the following tests unless this was hinted.
481 		 *
482 		 * We cannot postpone this until pump_messages, because
483 		 * after calling msg->complete (below) the driver that
484 		 * sent the current message could be unloaded, which
485 		 * could invalidate the cs_control() callback...
486 		 */
487 
488 		/* get a pointer to the next message, if any */
489 		next_msg = spi_get_next_queued_message(drv_data->master);
490 
491 		/* see if the next and current messages point
492 		 * to the same chip
493 		 */
494 		if (next_msg && next_msg->spi != msg->spi)
495 			next_msg = NULL;
496 		if (!next_msg || msg->state == ERROR_STATE)
497 			cs_deassert(drv_data);
498 	}
499 
500 	drv_data->cur_chip = NULL;
501 	spi_finalize_current_message(drv_data->master);
502 }
503 
504 static void reset_sccr1(struct driver_data *drv_data)
505 {
506 	struct chip_data *chip = drv_data->cur_chip;
507 	u32 sccr1_reg;
508 
509 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
510 	sccr1_reg &= ~SSCR1_RFT;
511 	sccr1_reg |= chip->threshold;
512 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
513 }
514 
515 static void int_error_stop(struct driver_data *drv_data, const char* msg)
516 {
517 	/* Stop and reset SSP */
518 	write_SSSR_CS(drv_data, drv_data->clear_sr);
519 	reset_sccr1(drv_data);
520 	if (!pxa25x_ssp_comp(drv_data))
521 		pxa2xx_spi_write(drv_data, SSTO, 0);
522 	pxa2xx_spi_flush(drv_data);
523 	pxa2xx_spi_write(drv_data, SSCR0,
524 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
525 
526 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
527 
528 	drv_data->cur_msg->state = ERROR_STATE;
529 	tasklet_schedule(&drv_data->pump_transfers);
530 }
531 
532 static void int_transfer_complete(struct driver_data *drv_data)
533 {
534 	/* Stop SSP */
535 	write_SSSR_CS(drv_data, drv_data->clear_sr);
536 	reset_sccr1(drv_data);
537 	if (!pxa25x_ssp_comp(drv_data))
538 		pxa2xx_spi_write(drv_data, SSTO, 0);
539 
540 	/* Update total byte transferred return count actual bytes read */
541 	drv_data->cur_msg->actual_length += drv_data->len -
542 				(drv_data->rx_end - drv_data->rx);
543 
544 	/* Transfer delays and chip select release are
545 	 * handled in pump_transfers or giveback
546 	 */
547 
548 	/* Move to next transfer */
549 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
550 
551 	/* Schedule transfer tasklet */
552 	tasklet_schedule(&drv_data->pump_transfers);
553 }
554 
555 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
556 {
557 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
558 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
559 
560 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
561 
562 	if (irq_status & SSSR_ROR) {
563 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
564 		return IRQ_HANDLED;
565 	}
566 
567 	if (irq_status & SSSR_TINT) {
568 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
569 		if (drv_data->read(drv_data)) {
570 			int_transfer_complete(drv_data);
571 			return IRQ_HANDLED;
572 		}
573 	}
574 
575 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
576 	do {
577 		if (drv_data->read(drv_data)) {
578 			int_transfer_complete(drv_data);
579 			return IRQ_HANDLED;
580 		}
581 	} while (drv_data->write(drv_data));
582 
583 	if (drv_data->read(drv_data)) {
584 		int_transfer_complete(drv_data);
585 		return IRQ_HANDLED;
586 	}
587 
588 	if (drv_data->tx == drv_data->tx_end) {
589 		u32 bytes_left;
590 		u32 sccr1_reg;
591 
592 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
593 		sccr1_reg &= ~SSCR1_TIE;
594 
595 		/*
596 		 * PXA25x_SSP has no timeout, set up rx threshould for the
597 		 * remaining RX bytes.
598 		 */
599 		if (pxa25x_ssp_comp(drv_data)) {
600 			u32 rx_thre;
601 
602 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
603 
604 			bytes_left = drv_data->rx_end - drv_data->rx;
605 			switch (drv_data->n_bytes) {
606 			case 4:
607 				bytes_left >>= 1;
608 			case 2:
609 				bytes_left >>= 1;
610 			}
611 
612 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
613 			if (rx_thre > bytes_left)
614 				rx_thre = bytes_left;
615 
616 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
617 		}
618 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
619 	}
620 
621 	/* We did something */
622 	return IRQ_HANDLED;
623 }
624 
625 static irqreturn_t ssp_int(int irq, void *dev_id)
626 {
627 	struct driver_data *drv_data = dev_id;
628 	u32 sccr1_reg;
629 	u32 mask = drv_data->mask_sr;
630 	u32 status;
631 
632 	/*
633 	 * The IRQ might be shared with other peripherals so we must first
634 	 * check that are we RPM suspended or not. If we are we assume that
635 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
636 	 * interrupt is enabled).
637 	 */
638 	if (pm_runtime_suspended(&drv_data->pdev->dev))
639 		return IRQ_NONE;
640 
641 	/*
642 	 * If the device is not yet in RPM suspended state and we get an
643 	 * interrupt that is meant for another device, check if status bits
644 	 * are all set to one. That means that the device is already
645 	 * powered off.
646 	 */
647 	status = pxa2xx_spi_read(drv_data, SSSR);
648 	if (status == ~0)
649 		return IRQ_NONE;
650 
651 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
652 
653 	/* Ignore possible writes if we don't need to write */
654 	if (!(sccr1_reg & SSCR1_TIE))
655 		mask &= ~SSSR_TFS;
656 
657 	if (!(status & mask))
658 		return IRQ_NONE;
659 
660 	if (!drv_data->cur_msg) {
661 
662 		pxa2xx_spi_write(drv_data, SSCR0,
663 				 pxa2xx_spi_read(drv_data, SSCR0)
664 				 & ~SSCR0_SSE);
665 		pxa2xx_spi_write(drv_data, SSCR1,
666 				 pxa2xx_spi_read(drv_data, SSCR1)
667 				 & ~drv_data->int_cr1);
668 		if (!pxa25x_ssp_comp(drv_data))
669 			pxa2xx_spi_write(drv_data, SSTO, 0);
670 		write_SSSR_CS(drv_data, drv_data->clear_sr);
671 
672 		dev_err(&drv_data->pdev->dev,
673 			"bad message state in interrupt handler\n");
674 
675 		/* Never fail */
676 		return IRQ_HANDLED;
677 	}
678 
679 	return drv_data->transfer_handler(drv_data);
680 }
681 
682 /*
683  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
684  * input frequency by fractions of 2^24. It also has a divider by 5.
685  *
686  * There are formulas to get baud rate value for given input frequency and
687  * divider parameters, such as DDS_CLK_RATE and SCR:
688  *
689  * Fsys = 200MHz
690  *
691  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
692  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
693  *
694  * DDS_CLK_RATE either 2^n or 2^n / 5.
695  * SCR is in range 0 .. 255
696  *
697  * Divisor = 5^i * 2^j * 2 * k
698  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
699  *       j = [0, 23]     j = 0 iff i = 1
700  *       k = [1, 256]
701  * Special case: j = 0, i = 1: Divisor = 2 / 5
702  *
703  * Accordingly to the specification the recommended values for DDS_CLK_RATE
704  * are:
705  *	Case 1:		2^n, n = [0, 23]
706  *	Case 2:		2^24 * 2 / 5 (0x666666)
707  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
708  *
709  * In all cases the lowest possible value is better.
710  *
711  * The function calculates parameters for all cases and chooses the one closest
712  * to the asked baud rate.
713  */
714 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
715 {
716 	unsigned long xtal = 200000000;
717 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
718 						   see (2) */
719 						/* case 3 */
720 	unsigned long fref1 = fref / 2;		/* case 1 */
721 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
722 	unsigned long scale;
723 	unsigned long q, q1, q2;
724 	long r, r1, r2;
725 	u32 mul;
726 
727 	/* Case 1 */
728 
729 	/* Set initial value for DDS_CLK_RATE */
730 	mul = (1 << 24) >> 1;
731 
732 	/* Calculate initial quot */
733 	q1 = DIV_ROUND_CLOSEST(fref1, rate);
734 
735 	/* Scale q1 if it's too big */
736 	if (q1 > 256) {
737 		/* Scale q1 to range [1, 512] */
738 		scale = fls_long(q1 - 1);
739 		if (scale > 9) {
740 			q1 >>= scale - 9;
741 			mul >>= scale - 9;
742 		}
743 
744 		/* Round the result if we have a remainder */
745 		q1 += q1 & 1;
746 	}
747 
748 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
749 	scale = __ffs(q1);
750 	q1 >>= scale;
751 	mul >>= scale;
752 
753 	/* Get the remainder */
754 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
755 
756 	/* Case 2 */
757 
758 	q2 = DIV_ROUND_CLOSEST(fref2, rate);
759 	r2 = abs(fref2 / q2 - rate);
760 
761 	/*
762 	 * Choose the best between two: less remainder we have the better. We
763 	 * can't go case 2 if q2 is greater than 256 since SCR register can
764 	 * hold only values 0 .. 255.
765 	 */
766 	if (r2 >= r1 || q2 > 256) {
767 		/* case 1 is better */
768 		r = r1;
769 		q = q1;
770 	} else {
771 		/* case 2 is better */
772 		r = r2;
773 		q = q2;
774 		mul = (1 << 24) * 2 / 5;
775 	}
776 
777 	/* Check case 3 only If the divisor is big enough */
778 	if (fref / rate >= 80) {
779 		u64 fssp;
780 		u32 m;
781 
782 		/* Calculate initial quot */
783 		q1 = DIV_ROUND_CLOSEST(fref, rate);
784 		m = (1 << 24) / q1;
785 
786 		/* Get the remainder */
787 		fssp = (u64)fref * m;
788 		do_div(fssp, 1 << 24);
789 		r1 = abs(fssp - rate);
790 
791 		/* Choose this one if it suits better */
792 		if (r1 < r) {
793 			/* case 3 is better */
794 			q = 1;
795 			mul = m;
796 		}
797 	}
798 
799 	*dds = mul;
800 	return q - 1;
801 }
802 
803 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
804 {
805 	unsigned long ssp_clk = drv_data->max_clk_rate;
806 	const struct ssp_device *ssp = drv_data->ssp;
807 
808 	rate = min_t(int, ssp_clk, rate);
809 
810 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
811 		return (ssp_clk / (2 * rate) - 1) & 0xff;
812 	else
813 		return (ssp_clk / rate - 1) & 0xfff;
814 }
815 
816 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
817 					   struct chip_data *chip, int rate)
818 {
819 	unsigned int clk_div;
820 
821 	switch (drv_data->ssp_type) {
822 	case QUARK_X1000_SSP:
823 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
824 		break;
825 	default:
826 		clk_div = ssp_get_clk_div(drv_data, rate);
827 		break;
828 	}
829 	return clk_div << 8;
830 }
831 
832 static void pump_transfers(unsigned long data)
833 {
834 	struct driver_data *drv_data = (struct driver_data *)data;
835 	struct spi_message *message = NULL;
836 	struct spi_transfer *transfer = NULL;
837 	struct spi_transfer *previous = NULL;
838 	struct chip_data *chip = NULL;
839 	u32 clk_div = 0;
840 	u8 bits = 0;
841 	u32 speed = 0;
842 	u32 cr0;
843 	u32 cr1;
844 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
845 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
846 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
847 
848 	/* Get current state information */
849 	message = drv_data->cur_msg;
850 	transfer = drv_data->cur_transfer;
851 	chip = drv_data->cur_chip;
852 
853 	/* Handle for abort */
854 	if (message->state == ERROR_STATE) {
855 		message->status = -EIO;
856 		giveback(drv_data);
857 		return;
858 	}
859 
860 	/* Handle end of message */
861 	if (message->state == DONE_STATE) {
862 		message->status = 0;
863 		giveback(drv_data);
864 		return;
865 	}
866 
867 	/* Delay if requested at end of transfer before CS change */
868 	if (message->state == RUNNING_STATE) {
869 		previous = list_entry(transfer->transfer_list.prev,
870 					struct spi_transfer,
871 					transfer_list);
872 		if (previous->delay_usecs)
873 			udelay(previous->delay_usecs);
874 
875 		/* Drop chip select only if cs_change is requested */
876 		if (previous->cs_change)
877 			cs_deassert(drv_data);
878 	}
879 
880 	/* Check if we can DMA this transfer */
881 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
882 
883 		/* reject already-mapped transfers; PIO won't always work */
884 		if (message->is_dma_mapped
885 				|| transfer->rx_dma || transfer->tx_dma) {
886 			dev_err(&drv_data->pdev->dev,
887 				"pump_transfers: mapped transfer length of "
888 				"%u is greater than %d\n",
889 				transfer->len, MAX_DMA_LEN);
890 			message->status = -EINVAL;
891 			giveback(drv_data);
892 			return;
893 		}
894 
895 		/* warn ... we force this to PIO mode */
896 		dev_warn_ratelimited(&message->spi->dev,
897 				     "pump_transfers: DMA disabled for transfer length %ld "
898 				     "greater than %d\n",
899 				     (long)drv_data->len, MAX_DMA_LEN);
900 	}
901 
902 	/* Setup the transfer state based on the type of transfer */
903 	if (pxa2xx_spi_flush(drv_data) == 0) {
904 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
905 		message->status = -EIO;
906 		giveback(drv_data);
907 		return;
908 	}
909 	drv_data->n_bytes = chip->n_bytes;
910 	drv_data->tx = (void *)transfer->tx_buf;
911 	drv_data->tx_end = drv_data->tx + transfer->len;
912 	drv_data->rx = transfer->rx_buf;
913 	drv_data->rx_end = drv_data->rx + transfer->len;
914 	drv_data->rx_dma = transfer->rx_dma;
915 	drv_data->tx_dma = transfer->tx_dma;
916 	drv_data->len = transfer->len;
917 	drv_data->write = drv_data->tx ? chip->write : null_writer;
918 	drv_data->read = drv_data->rx ? chip->read : null_reader;
919 
920 	/* Change speed and bit per word on a per transfer */
921 	cr0 = chip->cr0;
922 	if (transfer->speed_hz || transfer->bits_per_word) {
923 
924 		bits = chip->bits_per_word;
925 		speed = chip->speed_hz;
926 
927 		if (transfer->speed_hz)
928 			speed = transfer->speed_hz;
929 
930 		if (transfer->bits_per_word)
931 			bits = transfer->bits_per_word;
932 
933 		clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, speed);
934 
935 		if (bits <= 8) {
936 			drv_data->n_bytes = 1;
937 			drv_data->read = drv_data->read != null_reader ?
938 						u8_reader : null_reader;
939 			drv_data->write = drv_data->write != null_writer ?
940 						u8_writer : null_writer;
941 		} else if (bits <= 16) {
942 			drv_data->n_bytes = 2;
943 			drv_data->read = drv_data->read != null_reader ?
944 						u16_reader : null_reader;
945 			drv_data->write = drv_data->write != null_writer ?
946 						u16_writer : null_writer;
947 		} else if (bits <= 32) {
948 			drv_data->n_bytes = 4;
949 			drv_data->read = drv_data->read != null_reader ?
950 						u32_reader : null_reader;
951 			drv_data->write = drv_data->write != null_writer ?
952 						u32_writer : null_writer;
953 		}
954 		/* if bits/word is changed in dma mode, then must check the
955 		 * thresholds and burst also */
956 		if (chip->enable_dma) {
957 			if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
958 							message->spi,
959 							bits, &dma_burst,
960 							&dma_thresh))
961 				dev_warn_ratelimited(&message->spi->dev,
962 						     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
963 		}
964 
965 		cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
966 	}
967 
968 	message->state = RUNNING_STATE;
969 
970 	drv_data->dma_mapped = 0;
971 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
972 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
973 	if (drv_data->dma_mapped) {
974 
975 		/* Ensure we have the correct interrupt handler */
976 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
977 
978 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
979 
980 		/* Clear status and start DMA engine */
981 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
982 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
983 
984 		pxa2xx_spi_dma_start(drv_data);
985 	} else {
986 		/* Ensure we have the correct interrupt handler	*/
987 		drv_data->transfer_handler = interrupt_transfer;
988 
989 		/* Clear status  */
990 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
991 		write_SSSR_CS(drv_data, drv_data->clear_sr);
992 	}
993 
994 	if (is_lpss_ssp(drv_data)) {
995 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
996 		    != chip->lpss_rx_threshold)
997 			pxa2xx_spi_write(drv_data, SSIRF,
998 					 chip->lpss_rx_threshold);
999 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1000 		    != chip->lpss_tx_threshold)
1001 			pxa2xx_spi_write(drv_data, SSITF,
1002 					 chip->lpss_tx_threshold);
1003 	}
1004 
1005 	if (is_quark_x1000_ssp(drv_data) &&
1006 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1007 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1008 
1009 	/* see if we need to reload the config registers */
1010 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1011 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1012 	    != (cr1 & change_mask)) {
1013 		/* stop the SSP, and update the other bits */
1014 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1015 		if (!pxa25x_ssp_comp(drv_data))
1016 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1017 		/* first set CR1 without interrupt and service enables */
1018 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1019 		/* restart the SSP */
1020 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1021 
1022 	} else {
1023 		if (!pxa25x_ssp_comp(drv_data))
1024 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1025 	}
1026 
1027 	cs_assert(drv_data);
1028 
1029 	/* after chip select, release the data by enabling service
1030 	 * requests and interrupts, without changing any mode bits */
1031 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1032 }
1033 
1034 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1035 					   struct spi_message *msg)
1036 {
1037 	struct driver_data *drv_data = spi_master_get_devdata(master);
1038 
1039 	drv_data->cur_msg = msg;
1040 	/* Initial message state*/
1041 	drv_data->cur_msg->state = START_STATE;
1042 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1043 						struct spi_transfer,
1044 						transfer_list);
1045 
1046 	/* prepare to setup the SSP, in pump_transfers, using the per
1047 	 * chip configuration */
1048 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1049 
1050 	/* Mark as busy and launch transfers */
1051 	tasklet_schedule(&drv_data->pump_transfers);
1052 	return 0;
1053 }
1054 
1055 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1056 {
1057 	struct driver_data *drv_data = spi_master_get_devdata(master);
1058 
1059 	/* Disable the SSP now */
1060 	pxa2xx_spi_write(drv_data, SSCR0,
1061 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1062 
1063 	return 0;
1064 }
1065 
1066 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1067 		    struct pxa2xx_spi_chip *chip_info)
1068 {
1069 	int err = 0;
1070 
1071 	if (chip == NULL || chip_info == NULL)
1072 		return 0;
1073 
1074 	/* NOTE: setup() can be called multiple times, possibly with
1075 	 * different chip_info, release previously requested GPIO
1076 	 */
1077 	if (gpio_is_valid(chip->gpio_cs))
1078 		gpio_free(chip->gpio_cs);
1079 
1080 	/* If (*cs_control) is provided, ignore GPIO chip select */
1081 	if (chip_info->cs_control) {
1082 		chip->cs_control = chip_info->cs_control;
1083 		return 0;
1084 	}
1085 
1086 	if (gpio_is_valid(chip_info->gpio_cs)) {
1087 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1088 		if (err) {
1089 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1090 				chip_info->gpio_cs);
1091 			return err;
1092 		}
1093 
1094 		chip->gpio_cs = chip_info->gpio_cs;
1095 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1096 
1097 		err = gpio_direction_output(chip->gpio_cs,
1098 					!chip->gpio_cs_inverted);
1099 	}
1100 
1101 	return err;
1102 }
1103 
1104 static int setup(struct spi_device *spi)
1105 {
1106 	struct pxa2xx_spi_chip *chip_info = NULL;
1107 	struct chip_data *chip;
1108 	const struct lpss_config *config;
1109 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1110 	unsigned int clk_div;
1111 	uint tx_thres, tx_hi_thres, rx_thres;
1112 
1113 	switch (drv_data->ssp_type) {
1114 	case QUARK_X1000_SSP:
1115 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1116 		tx_hi_thres = 0;
1117 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1118 		break;
1119 	case LPSS_LPT_SSP:
1120 	case LPSS_BYT_SSP:
1121 	case LPSS_SPT_SSP:
1122 		config = lpss_get_config(drv_data);
1123 		tx_thres = config->tx_threshold_lo;
1124 		tx_hi_thres = config->tx_threshold_hi;
1125 		rx_thres = config->rx_threshold;
1126 		break;
1127 	default:
1128 		tx_thres = TX_THRESH_DFLT;
1129 		tx_hi_thres = 0;
1130 		rx_thres = RX_THRESH_DFLT;
1131 		break;
1132 	}
1133 
1134 	/* Only alloc on first setup */
1135 	chip = spi_get_ctldata(spi);
1136 	if (!chip) {
1137 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1138 		if (!chip)
1139 			return -ENOMEM;
1140 
1141 		if (drv_data->ssp_type == CE4100_SSP) {
1142 			if (spi->chip_select > 4) {
1143 				dev_err(&spi->dev,
1144 					"failed setup: cs number must not be > 4.\n");
1145 				kfree(chip);
1146 				return -EINVAL;
1147 			}
1148 
1149 			chip->frm = spi->chip_select;
1150 		} else
1151 			chip->gpio_cs = -1;
1152 		chip->enable_dma = 0;
1153 		chip->timeout = TIMOUT_DFLT;
1154 	}
1155 
1156 	/* protocol drivers may change the chip settings, so...
1157 	 * if chip_info exists, use it */
1158 	chip_info = spi->controller_data;
1159 
1160 	/* chip_info isn't always needed */
1161 	chip->cr1 = 0;
1162 	if (chip_info) {
1163 		if (chip_info->timeout)
1164 			chip->timeout = chip_info->timeout;
1165 		if (chip_info->tx_threshold)
1166 			tx_thres = chip_info->tx_threshold;
1167 		if (chip_info->tx_hi_threshold)
1168 			tx_hi_thres = chip_info->tx_hi_threshold;
1169 		if (chip_info->rx_threshold)
1170 			rx_thres = chip_info->rx_threshold;
1171 		chip->enable_dma = drv_data->master_info->enable_dma;
1172 		chip->dma_threshold = 0;
1173 		if (chip_info->enable_loopback)
1174 			chip->cr1 = SSCR1_LBM;
1175 	} else if (ACPI_HANDLE(&spi->dev)) {
1176 		/*
1177 		 * Slave devices enumerated from ACPI namespace don't
1178 		 * usually have chip_info but we still might want to use
1179 		 * DMA with them.
1180 		 */
1181 		chip->enable_dma = drv_data->master_info->enable_dma;
1182 	}
1183 
1184 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1185 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1186 				| SSITF_TxHiThresh(tx_hi_thres);
1187 
1188 	/* set dma burst and threshold outside of chip_info path so that if
1189 	 * chip_info goes away after setting chip->enable_dma, the
1190 	 * burst and threshold can still respond to changes in bits_per_word */
1191 	if (chip->enable_dma) {
1192 		/* set up legal burst and threshold for dma */
1193 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1194 						spi->bits_per_word,
1195 						&chip->dma_burst_size,
1196 						&chip->dma_threshold)) {
1197 			dev_warn(&spi->dev,
1198 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1199 		}
1200 	}
1201 
1202 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, chip, spi->max_speed_hz);
1203 	chip->speed_hz = spi->max_speed_hz;
1204 
1205 	chip->cr0 = pxa2xx_configure_sscr0(drv_data, clk_div,
1206 					   spi->bits_per_word);
1207 	switch (drv_data->ssp_type) {
1208 	case QUARK_X1000_SSP:
1209 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1210 				   & QUARK_X1000_SSCR1_RFT)
1211 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1212 				   & QUARK_X1000_SSCR1_TFT);
1213 		break;
1214 	default:
1215 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1216 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1217 		break;
1218 	}
1219 
1220 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1221 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1222 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1223 
1224 	if (spi->mode & SPI_LOOP)
1225 		chip->cr1 |= SSCR1_LBM;
1226 
1227 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1228 	if (!pxa25x_ssp_comp(drv_data))
1229 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1230 			drv_data->max_clk_rate
1231 				/ (1 + ((chip->cr0 & SSCR0_SCR(0xfff)) >> 8)),
1232 			chip->enable_dma ? "DMA" : "PIO");
1233 	else
1234 		dev_dbg(&spi->dev, "%ld Hz actual, %s\n",
1235 			drv_data->max_clk_rate / 2
1236 				/ (1 + ((chip->cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1237 			chip->enable_dma ? "DMA" : "PIO");
1238 
1239 	if (spi->bits_per_word <= 8) {
1240 		chip->n_bytes = 1;
1241 		chip->read = u8_reader;
1242 		chip->write = u8_writer;
1243 	} else if (spi->bits_per_word <= 16) {
1244 		chip->n_bytes = 2;
1245 		chip->read = u16_reader;
1246 		chip->write = u16_writer;
1247 	} else if (spi->bits_per_word <= 32) {
1248 		if (!is_quark_x1000_ssp(drv_data))
1249 			chip->cr0 |= SSCR0_EDSS;
1250 		chip->n_bytes = 4;
1251 		chip->read = u32_reader;
1252 		chip->write = u32_writer;
1253 	}
1254 	chip->bits_per_word = spi->bits_per_word;
1255 
1256 	spi_set_ctldata(spi, chip);
1257 
1258 	if (drv_data->ssp_type == CE4100_SSP)
1259 		return 0;
1260 
1261 	return setup_cs(spi, chip, chip_info);
1262 }
1263 
1264 static void cleanup(struct spi_device *spi)
1265 {
1266 	struct chip_data *chip = spi_get_ctldata(spi);
1267 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1268 
1269 	if (!chip)
1270 		return;
1271 
1272 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1273 		gpio_free(chip->gpio_cs);
1274 
1275 	kfree(chip);
1276 }
1277 
1278 #ifdef CONFIG_ACPI
1279 
1280 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1281 	{ "INT33C0", LPSS_LPT_SSP },
1282 	{ "INT33C1", LPSS_LPT_SSP },
1283 	{ "INT3430", LPSS_LPT_SSP },
1284 	{ "INT3431", LPSS_LPT_SSP },
1285 	{ "80860F0E", LPSS_BYT_SSP },
1286 	{ "8086228E", LPSS_BYT_SSP },
1287 	{ },
1288 };
1289 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1290 
1291 /*
1292  * PCI IDs of compound devices that integrate both host controller and private
1293  * integrated DMA engine. Please note these are not used in module
1294  * autoloading and probing in this module but matching the LPSS SSP type.
1295  */
1296 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1297 	/* SPT-LP */
1298 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1299 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1300 	/* SPT-H */
1301 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1302 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1303 	{ },
1304 };
1305 
1306 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1307 {
1308 	struct device *dev = param;
1309 
1310 	if (dev != chan->device->dev->parent)
1311 		return false;
1312 
1313 	return true;
1314 }
1315 
1316 static struct pxa2xx_spi_master *
1317 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1318 {
1319 	struct pxa2xx_spi_master *pdata;
1320 	struct acpi_device *adev;
1321 	struct ssp_device *ssp;
1322 	struct resource *res;
1323 	const struct acpi_device_id *adev_id = NULL;
1324 	const struct pci_device_id *pcidev_id = NULL;
1325 	int devid, type;
1326 
1327 	if (!ACPI_HANDLE(&pdev->dev) ||
1328 	    acpi_bus_get_device(ACPI_HANDLE(&pdev->dev), &adev))
1329 		return NULL;
1330 
1331 	if (dev_is_pci(pdev->dev.parent))
1332 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1333 					 to_pci_dev(pdev->dev.parent));
1334 	else
1335 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1336 					    &pdev->dev);
1337 
1338 	if (adev_id)
1339 		type = (int)adev_id->driver_data;
1340 	else if (pcidev_id)
1341 		type = (int)pcidev_id->driver_data;
1342 	else
1343 		return NULL;
1344 
1345 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1346 	if (!pdata)
1347 		return NULL;
1348 
1349 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1350 	if (!res)
1351 		return NULL;
1352 
1353 	ssp = &pdata->ssp;
1354 
1355 	ssp->phys_base = res->start;
1356 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1357 	if (IS_ERR(ssp->mmio_base))
1358 		return NULL;
1359 
1360 	if (pcidev_id) {
1361 		pdata->tx_param = pdev->dev.parent;
1362 		pdata->rx_param = pdev->dev.parent;
1363 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1364 	}
1365 
1366 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1367 	ssp->irq = platform_get_irq(pdev, 0);
1368 	ssp->type = type;
1369 	ssp->pdev = pdev;
1370 
1371 	ssp->port_id = -1;
1372 	if (adev->pnp.unique_id && !kstrtoint(adev->pnp.unique_id, 0, &devid))
1373 		ssp->port_id = devid;
1374 
1375 	pdata->num_chipselect = 1;
1376 	pdata->enable_dma = true;
1377 
1378 	return pdata;
1379 }
1380 
1381 #else
1382 static inline struct pxa2xx_spi_master *
1383 pxa2xx_spi_acpi_get_pdata(struct platform_device *pdev)
1384 {
1385 	return NULL;
1386 }
1387 #endif
1388 
1389 static int pxa2xx_spi_probe(struct platform_device *pdev)
1390 {
1391 	struct device *dev = &pdev->dev;
1392 	struct pxa2xx_spi_master *platform_info;
1393 	struct spi_master *master;
1394 	struct driver_data *drv_data;
1395 	struct ssp_device *ssp;
1396 	int status;
1397 	u32 tmp;
1398 
1399 	platform_info = dev_get_platdata(dev);
1400 	if (!platform_info) {
1401 		platform_info = pxa2xx_spi_acpi_get_pdata(pdev);
1402 		if (!platform_info) {
1403 			dev_err(&pdev->dev, "missing platform data\n");
1404 			return -ENODEV;
1405 		}
1406 	}
1407 
1408 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1409 	if (!ssp)
1410 		ssp = &platform_info->ssp;
1411 
1412 	if (!ssp->mmio_base) {
1413 		dev_err(&pdev->dev, "failed to get ssp\n");
1414 		return -ENODEV;
1415 	}
1416 
1417 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1418 	if (!master) {
1419 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1420 		pxa_ssp_free(ssp);
1421 		return -ENOMEM;
1422 	}
1423 	drv_data = spi_master_get_devdata(master);
1424 	drv_data->master = master;
1425 	drv_data->master_info = platform_info;
1426 	drv_data->pdev = pdev;
1427 	drv_data->ssp = ssp;
1428 
1429 	master->dev.parent = &pdev->dev;
1430 	master->dev.of_node = pdev->dev.of_node;
1431 	/* the spi->mode bits understood by this driver: */
1432 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1433 
1434 	master->bus_num = ssp->port_id;
1435 	master->num_chipselect = platform_info->num_chipselect;
1436 	master->dma_alignment = DMA_ALIGNMENT;
1437 	master->cleanup = cleanup;
1438 	master->setup = setup;
1439 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1440 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1441 	master->auto_runtime_pm = true;
1442 
1443 	drv_data->ssp_type = ssp->type;
1444 
1445 	drv_data->ioaddr = ssp->mmio_base;
1446 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1447 	if (pxa25x_ssp_comp(drv_data)) {
1448 		switch (drv_data->ssp_type) {
1449 		case QUARK_X1000_SSP:
1450 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1451 			break;
1452 		default:
1453 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1454 			break;
1455 		}
1456 
1457 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1458 		drv_data->dma_cr1 = 0;
1459 		drv_data->clear_sr = SSSR_ROR;
1460 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1461 	} else {
1462 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1463 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1464 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1465 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1466 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1467 	}
1468 
1469 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1470 			drv_data);
1471 	if (status < 0) {
1472 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1473 		goto out_error_master_alloc;
1474 	}
1475 
1476 	/* Setup DMA if requested */
1477 	if (platform_info->enable_dma) {
1478 		status = pxa2xx_spi_dma_setup(drv_data);
1479 		if (status) {
1480 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1481 			platform_info->enable_dma = false;
1482 		}
1483 	}
1484 
1485 	/* Enable SOC clock */
1486 	clk_prepare_enable(ssp->clk);
1487 
1488 	drv_data->max_clk_rate = clk_get_rate(ssp->clk);
1489 
1490 	/* Load default SSP configuration */
1491 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1492 	switch (drv_data->ssp_type) {
1493 	case QUARK_X1000_SSP:
1494 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1495 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1496 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1497 
1498 		/* using the Motorola SPI protocol and use 8 bit frame */
1499 		pxa2xx_spi_write(drv_data, SSCR0,
1500 				 QUARK_X1000_SSCR0_Motorola
1501 				 | QUARK_X1000_SSCR0_DataSize(8));
1502 		break;
1503 	default:
1504 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1505 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1506 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1507 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1508 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1509 		break;
1510 	}
1511 
1512 	if (!pxa25x_ssp_comp(drv_data))
1513 		pxa2xx_spi_write(drv_data, SSTO, 0);
1514 
1515 	if (!is_quark_x1000_ssp(drv_data))
1516 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1517 
1518 	if (is_lpss_ssp(drv_data))
1519 		lpss_ssp_setup(drv_data);
1520 
1521 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1522 		     (unsigned long)drv_data);
1523 
1524 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1525 	pm_runtime_use_autosuspend(&pdev->dev);
1526 	pm_runtime_set_active(&pdev->dev);
1527 	pm_runtime_enable(&pdev->dev);
1528 
1529 	/* Register with the SPI framework */
1530 	platform_set_drvdata(pdev, drv_data);
1531 	status = devm_spi_register_master(&pdev->dev, master);
1532 	if (status != 0) {
1533 		dev_err(&pdev->dev, "problem registering spi master\n");
1534 		goto out_error_clock_enabled;
1535 	}
1536 
1537 	return status;
1538 
1539 out_error_clock_enabled:
1540 	clk_disable_unprepare(ssp->clk);
1541 	pxa2xx_spi_dma_release(drv_data);
1542 	free_irq(ssp->irq, drv_data);
1543 
1544 out_error_master_alloc:
1545 	spi_master_put(master);
1546 	pxa_ssp_free(ssp);
1547 	return status;
1548 }
1549 
1550 static int pxa2xx_spi_remove(struct platform_device *pdev)
1551 {
1552 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1553 	struct ssp_device *ssp;
1554 
1555 	if (!drv_data)
1556 		return 0;
1557 	ssp = drv_data->ssp;
1558 
1559 	pm_runtime_get_sync(&pdev->dev);
1560 
1561 	/* Disable the SSP at the peripheral and SOC level */
1562 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1563 	clk_disable_unprepare(ssp->clk);
1564 
1565 	/* Release DMA */
1566 	if (drv_data->master_info->enable_dma)
1567 		pxa2xx_spi_dma_release(drv_data);
1568 
1569 	pm_runtime_put_noidle(&pdev->dev);
1570 	pm_runtime_disable(&pdev->dev);
1571 
1572 	/* Release IRQ */
1573 	free_irq(ssp->irq, drv_data);
1574 
1575 	/* Release SSP */
1576 	pxa_ssp_free(ssp);
1577 
1578 	return 0;
1579 }
1580 
1581 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1582 {
1583 	int status = 0;
1584 
1585 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1586 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1587 }
1588 
1589 #ifdef CONFIG_PM_SLEEP
1590 static int pxa2xx_spi_suspend(struct device *dev)
1591 {
1592 	struct driver_data *drv_data = dev_get_drvdata(dev);
1593 	struct ssp_device *ssp = drv_data->ssp;
1594 	int status = 0;
1595 
1596 	status = spi_master_suspend(drv_data->master);
1597 	if (status != 0)
1598 		return status;
1599 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1600 
1601 	if (!pm_runtime_suspended(dev))
1602 		clk_disable_unprepare(ssp->clk);
1603 
1604 	return 0;
1605 }
1606 
1607 static int pxa2xx_spi_resume(struct device *dev)
1608 {
1609 	struct driver_data *drv_data = dev_get_drvdata(dev);
1610 	struct ssp_device *ssp = drv_data->ssp;
1611 	int status = 0;
1612 
1613 	pxa2xx_spi_dma_resume(drv_data);
1614 
1615 	/* Enable the SSP clock */
1616 	if (!pm_runtime_suspended(dev))
1617 		clk_prepare_enable(ssp->clk);
1618 
1619 	/* Restore LPSS private register bits */
1620 	if (is_lpss_ssp(drv_data))
1621 		lpss_ssp_setup(drv_data);
1622 
1623 	/* Start the queue running */
1624 	status = spi_master_resume(drv_data->master);
1625 	if (status != 0) {
1626 		dev_err(dev, "problem starting queue (%d)\n", status);
1627 		return status;
1628 	}
1629 
1630 	return 0;
1631 }
1632 #endif
1633 
1634 #ifdef CONFIG_PM
1635 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1636 {
1637 	struct driver_data *drv_data = dev_get_drvdata(dev);
1638 
1639 	clk_disable_unprepare(drv_data->ssp->clk);
1640 	return 0;
1641 }
1642 
1643 static int pxa2xx_spi_runtime_resume(struct device *dev)
1644 {
1645 	struct driver_data *drv_data = dev_get_drvdata(dev);
1646 
1647 	clk_prepare_enable(drv_data->ssp->clk);
1648 	return 0;
1649 }
1650 #endif
1651 
1652 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1653 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1654 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1655 			   pxa2xx_spi_runtime_resume, NULL)
1656 };
1657 
1658 static struct platform_driver driver = {
1659 	.driver = {
1660 		.name	= "pxa2xx-spi",
1661 		.pm	= &pxa2xx_spi_pm_ops,
1662 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1663 	},
1664 	.probe = pxa2xx_spi_probe,
1665 	.remove = pxa2xx_spi_remove,
1666 	.shutdown = pxa2xx_spi_shutdown,
1667 };
1668 
1669 static int __init pxa2xx_spi_init(void)
1670 {
1671 	return platform_driver_register(&driver);
1672 }
1673 subsys_initcall(pxa2xx_spi_init);
1674 
1675 static void __exit pxa2xx_spi_exit(void)
1676 {
1677 	platform_driver_unregister(&driver);
1678 }
1679 module_exit(pxa2xx_spi_exit);
1680