xref: /linux/drivers/spi/spi-pxa2xx.c (revision c717993dd76a1049093af5c262e751d901b8da10)
1  // SPDX-License-Identifier: GPL-2.0-or-later
2  /*
3   * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4   * Copyright (C) 2013, 2021 Intel Corporation
5   */
6  
7  #include <linux/acpi.h>
8  #include <linux/bitops.h>
9  #include <linux/clk.h>
10  #include <linux/delay.h>
11  #include <linux/device.h>
12  #include <linux/dmaengine.h>
13  #include <linux/err.h>
14  #include <linux/errno.h>
15  #include <linux/gpio/consumer.h>
16  #include <linux/gpio.h>
17  #include <linux/init.h>
18  #include <linux/interrupt.h>
19  #include <linux/ioport.h>
20  #include <linux/kernel.h>
21  #include <linux/module.h>
22  #include <linux/mod_devicetable.h>
23  #include <linux/of.h>
24  #include <linux/pci.h>
25  #include <linux/platform_device.h>
26  #include <linux/pm_runtime.h>
27  #include <linux/property.h>
28  #include <linux/slab.h>
29  
30  #include <linux/spi/pxa2xx_spi.h>
31  #include <linux/spi/spi.h>
32  
33  #include "spi-pxa2xx.h"
34  
35  MODULE_AUTHOR("Stephen Street");
36  MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37  MODULE_LICENSE("GPL");
38  MODULE_ALIAS("platform:pxa2xx-spi");
39  
40  #define TIMOUT_DFLT		1000
41  
42  /*
43   * For testing SSCR1 changes that require SSP restart, basically
44   * everything except the service and interrupt enables, the PXA270 developer
45   * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46   * list, but the PXA255 developer manual says all bits without really meaning
47   * the service and interrupt enables.
48   */
49  #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50  				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51  				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52  				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53  				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55  
56  #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57  				| QUARK_X1000_SSCR1_EFWR	\
58  				| QUARK_X1000_SSCR1_RFT		\
59  				| QUARK_X1000_SSCR1_TFT		\
60  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61  
62  #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63  				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64  				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65  				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66  				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67  				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68  
69  #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70  #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71  #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72  #define LPSS_CAPS_CS_EN_SHIFT			9
73  #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74  
75  #define LPSS_PRIV_CLOCK_GATE 0x38
76  #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77  #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78  
79  struct lpss_config {
80  	/* LPSS offset from drv_data->ioaddr */
81  	unsigned offset;
82  	/* Register offsets from drv_data->lpss_base or -1 */
83  	int reg_general;
84  	int reg_ssp;
85  	int reg_cs_ctrl;
86  	int reg_capabilities;
87  	/* FIFO thresholds */
88  	u32 rx_threshold;
89  	u32 tx_threshold_lo;
90  	u32 tx_threshold_hi;
91  	/* Chip select control */
92  	unsigned cs_sel_shift;
93  	unsigned cs_sel_mask;
94  	unsigned cs_num;
95  	/* Quirks */
96  	unsigned cs_clk_stays_gated : 1;
97  };
98  
99  /* Keep these sorted with enum pxa_ssp_type */
100  static const struct lpss_config lpss_platforms[] = {
101  	{	/* LPSS_LPT_SSP */
102  		.offset = 0x800,
103  		.reg_general = 0x08,
104  		.reg_ssp = 0x0c,
105  		.reg_cs_ctrl = 0x18,
106  		.reg_capabilities = -1,
107  		.rx_threshold = 64,
108  		.tx_threshold_lo = 160,
109  		.tx_threshold_hi = 224,
110  	},
111  	{	/* LPSS_BYT_SSP */
112  		.offset = 0x400,
113  		.reg_general = 0x08,
114  		.reg_ssp = 0x0c,
115  		.reg_cs_ctrl = 0x18,
116  		.reg_capabilities = -1,
117  		.rx_threshold = 64,
118  		.tx_threshold_lo = 160,
119  		.tx_threshold_hi = 224,
120  	},
121  	{	/* LPSS_BSW_SSP */
122  		.offset = 0x400,
123  		.reg_general = 0x08,
124  		.reg_ssp = 0x0c,
125  		.reg_cs_ctrl = 0x18,
126  		.reg_capabilities = -1,
127  		.rx_threshold = 64,
128  		.tx_threshold_lo = 160,
129  		.tx_threshold_hi = 224,
130  		.cs_sel_shift = 2,
131  		.cs_sel_mask = 1 << 2,
132  		.cs_num = 2,
133  	},
134  	{	/* LPSS_SPT_SSP */
135  		.offset = 0x200,
136  		.reg_general = -1,
137  		.reg_ssp = 0x20,
138  		.reg_cs_ctrl = 0x24,
139  		.reg_capabilities = -1,
140  		.rx_threshold = 1,
141  		.tx_threshold_lo = 32,
142  		.tx_threshold_hi = 56,
143  	},
144  	{	/* LPSS_BXT_SSP */
145  		.offset = 0x200,
146  		.reg_general = -1,
147  		.reg_ssp = 0x20,
148  		.reg_cs_ctrl = 0x24,
149  		.reg_capabilities = 0xfc,
150  		.rx_threshold = 1,
151  		.tx_threshold_lo = 16,
152  		.tx_threshold_hi = 48,
153  		.cs_sel_shift = 8,
154  		.cs_sel_mask = 3 << 8,
155  		.cs_clk_stays_gated = true,
156  	},
157  	{	/* LPSS_CNL_SSP */
158  		.offset = 0x200,
159  		.reg_general = -1,
160  		.reg_ssp = 0x20,
161  		.reg_cs_ctrl = 0x24,
162  		.reg_capabilities = 0xfc,
163  		.rx_threshold = 1,
164  		.tx_threshold_lo = 32,
165  		.tx_threshold_hi = 56,
166  		.cs_sel_shift = 8,
167  		.cs_sel_mask = 3 << 8,
168  		.cs_clk_stays_gated = true,
169  	},
170  };
171  
172  static inline const struct lpss_config
173  *lpss_get_config(const struct driver_data *drv_data)
174  {
175  	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
176  }
177  
178  static bool is_lpss_ssp(const struct driver_data *drv_data)
179  {
180  	switch (drv_data->ssp_type) {
181  	case LPSS_LPT_SSP:
182  	case LPSS_BYT_SSP:
183  	case LPSS_BSW_SSP:
184  	case LPSS_SPT_SSP:
185  	case LPSS_BXT_SSP:
186  	case LPSS_CNL_SSP:
187  		return true;
188  	default:
189  		return false;
190  	}
191  }
192  
193  static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
194  {
195  	return drv_data->ssp_type == QUARK_X1000_SSP;
196  }
197  
198  static bool is_mmp2_ssp(const struct driver_data *drv_data)
199  {
200  	return drv_data->ssp_type == MMP2_SSP;
201  }
202  
203  static bool is_mrfld_ssp(const struct driver_data *drv_data)
204  {
205  	return drv_data->ssp_type == MRFLD_SSP;
206  }
207  
208  static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
209  {
210  	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
211  		pxa2xx_spi_write(drv_data, reg, value & mask);
212  }
213  
214  static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
215  {
216  	switch (drv_data->ssp_type) {
217  	case QUARK_X1000_SSP:
218  		return QUARK_X1000_SSCR1_CHANGE_MASK;
219  	case CE4100_SSP:
220  		return CE4100_SSCR1_CHANGE_MASK;
221  	default:
222  		return SSCR1_CHANGE_MASK;
223  	}
224  }
225  
226  static u32
227  pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
228  {
229  	switch (drv_data->ssp_type) {
230  	case QUARK_X1000_SSP:
231  		return RX_THRESH_QUARK_X1000_DFLT;
232  	case CE4100_SSP:
233  		return RX_THRESH_CE4100_DFLT;
234  	default:
235  		return RX_THRESH_DFLT;
236  	}
237  }
238  
239  static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
240  {
241  	u32 mask;
242  
243  	switch (drv_data->ssp_type) {
244  	case QUARK_X1000_SSP:
245  		mask = QUARK_X1000_SSSR_TFL_MASK;
246  		break;
247  	case CE4100_SSP:
248  		mask = CE4100_SSSR_TFL_MASK;
249  		break;
250  	default:
251  		mask = SSSR_TFL_MASK;
252  		break;
253  	}
254  
255  	return read_SSSR_bits(drv_data, mask) == mask;
256  }
257  
258  static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
259  				     u32 *sccr1_reg)
260  {
261  	u32 mask;
262  
263  	switch (drv_data->ssp_type) {
264  	case QUARK_X1000_SSP:
265  		mask = QUARK_X1000_SSCR1_RFT;
266  		break;
267  	case CE4100_SSP:
268  		mask = CE4100_SSCR1_RFT;
269  		break;
270  	default:
271  		mask = SSCR1_RFT;
272  		break;
273  	}
274  	*sccr1_reg &= ~mask;
275  }
276  
277  static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
278  				   u32 *sccr1_reg, u32 threshold)
279  {
280  	switch (drv_data->ssp_type) {
281  	case QUARK_X1000_SSP:
282  		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
283  		break;
284  	case CE4100_SSP:
285  		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
286  		break;
287  	default:
288  		*sccr1_reg |= SSCR1_RxTresh(threshold);
289  		break;
290  	}
291  }
292  
293  static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
294  				  u32 clk_div, u8 bits)
295  {
296  	switch (drv_data->ssp_type) {
297  	case QUARK_X1000_SSP:
298  		return clk_div
299  			| QUARK_X1000_SSCR0_Motorola
300  			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
301  	default:
302  		return clk_div
303  			| SSCR0_Motorola
304  			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
305  			| (bits > 16 ? SSCR0_EDSS : 0);
306  	}
307  }
308  
309  /*
310   * Read and write LPSS SSP private registers. Caller must first check that
311   * is_lpss_ssp() returns true before these can be called.
312   */
313  static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
314  {
315  	WARN_ON(!drv_data->lpss_base);
316  	return readl(drv_data->lpss_base + offset);
317  }
318  
319  static void __lpss_ssp_write_priv(struct driver_data *drv_data,
320  				  unsigned offset, u32 value)
321  {
322  	WARN_ON(!drv_data->lpss_base);
323  	writel(value, drv_data->lpss_base + offset);
324  }
325  
326  /*
327   * lpss_ssp_setup - perform LPSS SSP specific setup
328   * @drv_data: pointer to the driver private data
329   *
330   * Perform LPSS SSP specific setup. This function must be called first if
331   * one is going to use LPSS SSP private registers.
332   */
333  static void lpss_ssp_setup(struct driver_data *drv_data)
334  {
335  	const struct lpss_config *config;
336  	u32 value;
337  
338  	config = lpss_get_config(drv_data);
339  	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
340  
341  	/* Enable software chip select control */
342  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
343  	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
344  	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
345  	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
346  
347  	/* Enable multiblock DMA transfers */
348  	if (drv_data->controller_info->enable_dma) {
349  		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
350  
351  		if (config->reg_general >= 0) {
352  			value = __lpss_ssp_read_priv(drv_data,
353  						     config->reg_general);
354  			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
355  			__lpss_ssp_write_priv(drv_data,
356  					      config->reg_general, value);
357  		}
358  	}
359  }
360  
361  static void lpss_ssp_select_cs(struct spi_device *spi,
362  			       const struct lpss_config *config)
363  {
364  	struct driver_data *drv_data =
365  		spi_controller_get_devdata(spi->controller);
366  	u32 value, cs;
367  
368  	if (!config->cs_sel_mask)
369  		return;
370  
371  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
372  
373  	cs = spi->chip_select;
374  	cs <<= config->cs_sel_shift;
375  	if (cs != (value & config->cs_sel_mask)) {
376  		/*
377  		 * When switching another chip select output active the
378  		 * output must be selected first and wait 2 ssp_clk cycles
379  		 * before changing state to active. Otherwise a short
380  		 * glitch will occur on the previous chip select since
381  		 * output select is latched but state control is not.
382  		 */
383  		value &= ~config->cs_sel_mask;
384  		value |= cs;
385  		__lpss_ssp_write_priv(drv_data,
386  				      config->reg_cs_ctrl, value);
387  		ndelay(1000000000 /
388  		       (drv_data->controller->max_speed_hz / 2));
389  	}
390  }
391  
392  static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
393  {
394  	struct driver_data *drv_data =
395  		spi_controller_get_devdata(spi->controller);
396  	const struct lpss_config *config;
397  	u32 value;
398  
399  	config = lpss_get_config(drv_data);
400  
401  	if (enable)
402  		lpss_ssp_select_cs(spi, config);
403  
404  	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
405  	if (enable)
406  		value &= ~LPSS_CS_CONTROL_CS_HIGH;
407  	else
408  		value |= LPSS_CS_CONTROL_CS_HIGH;
409  	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
410  	if (config->cs_clk_stays_gated) {
411  		u32 clkgate;
412  
413  		/*
414  		 * Changing CS alone when dynamic clock gating is on won't
415  		 * actually flip CS at that time. This ruins SPI transfers
416  		 * that specify delays, or have no data. Toggle the clock mode
417  		 * to force on briefly to poke the CS pin to move.
418  		 */
419  		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
420  		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
421  			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
422  
423  		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
424  		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
425  	}
426  }
427  
428  static void cs_assert(struct spi_device *spi)
429  {
430  	struct driver_data *drv_data =
431  		spi_controller_get_devdata(spi->controller);
432  
433  	if (drv_data->ssp_type == CE4100_SSP) {
434  		pxa2xx_spi_write(drv_data, SSSR, spi->chip_select);
435  		return;
436  	}
437  
438  	if (is_lpss_ssp(drv_data))
439  		lpss_ssp_cs_control(spi, true);
440  }
441  
442  static void cs_deassert(struct spi_device *spi)
443  {
444  	struct driver_data *drv_data =
445  		spi_controller_get_devdata(spi->controller);
446  	unsigned long timeout;
447  
448  	if (drv_data->ssp_type == CE4100_SSP)
449  		return;
450  
451  	/* Wait until SSP becomes idle before deasserting the CS */
452  	timeout = jiffies + msecs_to_jiffies(10);
453  	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
454  	       !time_after(jiffies, timeout))
455  		cpu_relax();
456  
457  	if (is_lpss_ssp(drv_data))
458  		lpss_ssp_cs_control(spi, false);
459  }
460  
461  static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
462  {
463  	if (level)
464  		cs_deassert(spi);
465  	else
466  		cs_assert(spi);
467  }
468  
469  int pxa2xx_spi_flush(struct driver_data *drv_data)
470  {
471  	unsigned long limit = loops_per_jiffy << 1;
472  
473  	do {
474  		while (read_SSSR_bits(drv_data, SSSR_RNE))
475  			pxa2xx_spi_read(drv_data, SSDR);
476  	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
477  	write_SSSR_CS(drv_data, SSSR_ROR);
478  
479  	return limit;
480  }
481  
482  static void pxa2xx_spi_off(struct driver_data *drv_data)
483  {
484  	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
485  	if (is_mmp2_ssp(drv_data))
486  		return;
487  
488  	pxa_ssp_disable(drv_data->ssp);
489  }
490  
491  static int null_writer(struct driver_data *drv_data)
492  {
493  	u8 n_bytes = drv_data->n_bytes;
494  
495  	if (pxa2xx_spi_txfifo_full(drv_data)
496  		|| (drv_data->tx == drv_data->tx_end))
497  		return 0;
498  
499  	pxa2xx_spi_write(drv_data, SSDR, 0);
500  	drv_data->tx += n_bytes;
501  
502  	return 1;
503  }
504  
505  static int null_reader(struct driver_data *drv_data)
506  {
507  	u8 n_bytes = drv_data->n_bytes;
508  
509  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
510  		pxa2xx_spi_read(drv_data, SSDR);
511  		drv_data->rx += n_bytes;
512  	}
513  
514  	return drv_data->rx == drv_data->rx_end;
515  }
516  
517  static int u8_writer(struct driver_data *drv_data)
518  {
519  	if (pxa2xx_spi_txfifo_full(drv_data)
520  		|| (drv_data->tx == drv_data->tx_end))
521  		return 0;
522  
523  	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
524  	++drv_data->tx;
525  
526  	return 1;
527  }
528  
529  static int u8_reader(struct driver_data *drv_data)
530  {
531  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
532  		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
533  		++drv_data->rx;
534  	}
535  
536  	return drv_data->rx == drv_data->rx_end;
537  }
538  
539  static int u16_writer(struct driver_data *drv_data)
540  {
541  	if (pxa2xx_spi_txfifo_full(drv_data)
542  		|| (drv_data->tx == drv_data->tx_end))
543  		return 0;
544  
545  	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
546  	drv_data->tx += 2;
547  
548  	return 1;
549  }
550  
551  static int u16_reader(struct driver_data *drv_data)
552  {
553  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
554  		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
555  		drv_data->rx += 2;
556  	}
557  
558  	return drv_data->rx == drv_data->rx_end;
559  }
560  
561  static int u32_writer(struct driver_data *drv_data)
562  {
563  	if (pxa2xx_spi_txfifo_full(drv_data)
564  		|| (drv_data->tx == drv_data->tx_end))
565  		return 0;
566  
567  	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
568  	drv_data->tx += 4;
569  
570  	return 1;
571  }
572  
573  static int u32_reader(struct driver_data *drv_data)
574  {
575  	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
576  		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
577  		drv_data->rx += 4;
578  	}
579  
580  	return drv_data->rx == drv_data->rx_end;
581  }
582  
583  static void reset_sccr1(struct driver_data *drv_data)
584  {
585  	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
586  	struct chip_data *chip;
587  
588  	if (drv_data->controller->cur_msg) {
589  		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
590  		threshold = chip->threshold;
591  	} else {
592  		threshold = 0;
593  	}
594  
595  	switch (drv_data->ssp_type) {
596  	case QUARK_X1000_SSP:
597  		mask |= QUARK_X1000_SSCR1_RFT;
598  		break;
599  	case CE4100_SSP:
600  		mask |= CE4100_SSCR1_RFT;
601  		break;
602  	default:
603  		mask |= SSCR1_RFT;
604  		break;
605  	}
606  
607  	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
608  }
609  
610  static void int_stop_and_reset(struct driver_data *drv_data)
611  {
612  	/* Clear and disable interrupts */
613  	write_SSSR_CS(drv_data, drv_data->clear_sr);
614  	reset_sccr1(drv_data);
615  	if (pxa25x_ssp_comp(drv_data))
616  		return;
617  
618  	pxa2xx_spi_write(drv_data, SSTO, 0);
619  }
620  
621  static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
622  {
623  	int_stop_and_reset(drv_data);
624  	pxa2xx_spi_flush(drv_data);
625  	pxa2xx_spi_off(drv_data);
626  
627  	dev_err(drv_data->ssp->dev, "%s\n", msg);
628  
629  	drv_data->controller->cur_msg->status = err;
630  	spi_finalize_current_transfer(drv_data->controller);
631  }
632  
633  static void int_transfer_complete(struct driver_data *drv_data)
634  {
635  	int_stop_and_reset(drv_data);
636  
637  	spi_finalize_current_transfer(drv_data->controller);
638  }
639  
640  static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
641  {
642  	u32 irq_status;
643  
644  	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
645  	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
646  		irq_status &= ~SSSR_TFS;
647  
648  	if (irq_status & SSSR_ROR) {
649  		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
650  		return IRQ_HANDLED;
651  	}
652  
653  	if (irq_status & SSSR_TUR) {
654  		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
655  		return IRQ_HANDLED;
656  	}
657  
658  	if (irq_status & SSSR_TINT) {
659  		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
660  		if (drv_data->read(drv_data)) {
661  			int_transfer_complete(drv_data);
662  			return IRQ_HANDLED;
663  		}
664  	}
665  
666  	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
667  	do {
668  		if (drv_data->read(drv_data)) {
669  			int_transfer_complete(drv_data);
670  			return IRQ_HANDLED;
671  		}
672  	} while (drv_data->write(drv_data));
673  
674  	if (drv_data->read(drv_data)) {
675  		int_transfer_complete(drv_data);
676  		return IRQ_HANDLED;
677  	}
678  
679  	if (drv_data->tx == drv_data->tx_end) {
680  		u32 bytes_left;
681  		u32 sccr1_reg;
682  
683  		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
684  		sccr1_reg &= ~SSCR1_TIE;
685  
686  		/*
687  		 * PXA25x_SSP has no timeout, set up Rx threshold for
688  		 * the remaining Rx bytes.
689  		 */
690  		if (pxa25x_ssp_comp(drv_data)) {
691  			u32 rx_thre;
692  
693  			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
694  
695  			bytes_left = drv_data->rx_end - drv_data->rx;
696  			switch (drv_data->n_bytes) {
697  			case 4:
698  				bytes_left >>= 2;
699  				break;
700  			case 2:
701  				bytes_left >>= 1;
702  				break;
703  			}
704  
705  			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
706  			if (rx_thre > bytes_left)
707  				rx_thre = bytes_left;
708  
709  			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
710  		}
711  		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
712  	}
713  
714  	/* We did something */
715  	return IRQ_HANDLED;
716  }
717  
718  static void handle_bad_msg(struct driver_data *drv_data)
719  {
720  	int_stop_and_reset(drv_data);
721  	pxa2xx_spi_off(drv_data);
722  
723  	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
724  }
725  
726  static irqreturn_t ssp_int(int irq, void *dev_id)
727  {
728  	struct driver_data *drv_data = dev_id;
729  	u32 sccr1_reg;
730  	u32 mask = drv_data->mask_sr;
731  	u32 status;
732  
733  	/*
734  	 * The IRQ might be shared with other peripherals so we must first
735  	 * check that are we RPM suspended or not. If we are we assume that
736  	 * the IRQ was not for us (we shouldn't be RPM suspended when the
737  	 * interrupt is enabled).
738  	 */
739  	if (pm_runtime_suspended(drv_data->ssp->dev))
740  		return IRQ_NONE;
741  
742  	/*
743  	 * If the device is not yet in RPM suspended state and we get an
744  	 * interrupt that is meant for another device, check if status bits
745  	 * are all set to one. That means that the device is already
746  	 * powered off.
747  	 */
748  	status = pxa2xx_spi_read(drv_data, SSSR);
749  	if (status == ~0)
750  		return IRQ_NONE;
751  
752  	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
753  
754  	/* Ignore possible writes if we don't need to write */
755  	if (!(sccr1_reg & SSCR1_TIE))
756  		mask &= ~SSSR_TFS;
757  
758  	/* Ignore RX timeout interrupt if it is disabled */
759  	if (!(sccr1_reg & SSCR1_TINTE))
760  		mask &= ~SSSR_TINT;
761  
762  	if (!(status & mask))
763  		return IRQ_NONE;
764  
765  	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
766  	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
767  
768  	if (!drv_data->controller->cur_msg) {
769  		handle_bad_msg(drv_data);
770  		/* Never fail */
771  		return IRQ_HANDLED;
772  	}
773  
774  	return drv_data->transfer_handler(drv_data);
775  }
776  
777  /*
778   * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
779   * input frequency by fractions of 2^24. It also has a divider by 5.
780   *
781   * There are formulas to get baud rate value for given input frequency and
782   * divider parameters, such as DDS_CLK_RATE and SCR:
783   *
784   * Fsys = 200MHz
785   *
786   * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
787   * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
788   *
789   * DDS_CLK_RATE either 2^n or 2^n / 5.
790   * SCR is in range 0 .. 255
791   *
792   * Divisor = 5^i * 2^j * 2 * k
793   *       i = [0, 1]      i = 1 iff j = 0 or j > 3
794   *       j = [0, 23]     j = 0 iff i = 1
795   *       k = [1, 256]
796   * Special case: j = 0, i = 1: Divisor = 2 / 5
797   *
798   * Accordingly to the specification the recommended values for DDS_CLK_RATE
799   * are:
800   *	Case 1:		2^n, n = [0, 23]
801   *	Case 2:		2^24 * 2 / 5 (0x666666)
802   *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
803   *
804   * In all cases the lowest possible value is better.
805   *
806   * The function calculates parameters for all cases and chooses the one closest
807   * to the asked baud rate.
808   */
809  static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
810  {
811  	unsigned long xtal = 200000000;
812  	unsigned long fref = xtal / 2;		/* mandatory division by 2,
813  						   see (2) */
814  						/* case 3 */
815  	unsigned long fref1 = fref / 2;		/* case 1 */
816  	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
817  	unsigned long scale;
818  	unsigned long q, q1, q2;
819  	long r, r1, r2;
820  	u32 mul;
821  
822  	/* Case 1 */
823  
824  	/* Set initial value for DDS_CLK_RATE */
825  	mul = (1 << 24) >> 1;
826  
827  	/* Calculate initial quot */
828  	q1 = DIV_ROUND_UP(fref1, rate);
829  
830  	/* Scale q1 if it's too big */
831  	if (q1 > 256) {
832  		/* Scale q1 to range [1, 512] */
833  		scale = fls_long(q1 - 1);
834  		if (scale > 9) {
835  			q1 >>= scale - 9;
836  			mul >>= scale - 9;
837  		}
838  
839  		/* Round the result if we have a remainder */
840  		q1 += q1 & 1;
841  	}
842  
843  	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
844  	scale = __ffs(q1);
845  	q1 >>= scale;
846  	mul >>= scale;
847  
848  	/* Get the remainder */
849  	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
850  
851  	/* Case 2 */
852  
853  	q2 = DIV_ROUND_UP(fref2, rate);
854  	r2 = abs(fref2 / q2 - rate);
855  
856  	/*
857  	 * Choose the best between two: less remainder we have the better. We
858  	 * can't go case 2 if q2 is greater than 256 since SCR register can
859  	 * hold only values 0 .. 255.
860  	 */
861  	if (r2 >= r1 || q2 > 256) {
862  		/* case 1 is better */
863  		r = r1;
864  		q = q1;
865  	} else {
866  		/* case 2 is better */
867  		r = r2;
868  		q = q2;
869  		mul = (1 << 24) * 2 / 5;
870  	}
871  
872  	/* Check case 3 only if the divisor is big enough */
873  	if (fref / rate >= 80) {
874  		u64 fssp;
875  		u32 m;
876  
877  		/* Calculate initial quot */
878  		q1 = DIV_ROUND_UP(fref, rate);
879  		m = (1 << 24) / q1;
880  
881  		/* Get the remainder */
882  		fssp = (u64)fref * m;
883  		do_div(fssp, 1 << 24);
884  		r1 = abs(fssp - rate);
885  
886  		/* Choose this one if it suits better */
887  		if (r1 < r) {
888  			/* case 3 is better */
889  			q = 1;
890  			mul = m;
891  		}
892  	}
893  
894  	*dds = mul;
895  	return q - 1;
896  }
897  
898  static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
899  {
900  	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
901  	const struct ssp_device *ssp = drv_data->ssp;
902  
903  	rate = min_t(int, ssp_clk, rate);
904  
905  	/*
906  	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
907  	 * that the SSP transmission rate can be greater than the device rate.
908  	 */
909  	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
910  		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
911  	else
912  		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
913  }
914  
915  static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
916  					   int rate)
917  {
918  	struct chip_data *chip =
919  		spi_get_ctldata(drv_data->controller->cur_msg->spi);
920  	unsigned int clk_div;
921  
922  	switch (drv_data->ssp_type) {
923  	case QUARK_X1000_SSP:
924  		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
925  		break;
926  	default:
927  		clk_div = ssp_get_clk_div(drv_data, rate);
928  		break;
929  	}
930  	return clk_div << 8;
931  }
932  
933  static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
934  			       struct spi_device *spi,
935  			       struct spi_transfer *xfer)
936  {
937  	struct chip_data *chip = spi_get_ctldata(spi);
938  
939  	return chip->enable_dma &&
940  	       xfer->len <= MAX_DMA_LEN &&
941  	       xfer->len >= chip->dma_burst_size;
942  }
943  
944  static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
945  				   struct spi_device *spi,
946  				   struct spi_transfer *transfer)
947  {
948  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
949  	struct spi_message *message = controller->cur_msg;
950  	struct chip_data *chip = spi_get_ctldata(spi);
951  	u32 dma_thresh = chip->dma_threshold;
952  	u32 dma_burst = chip->dma_burst_size;
953  	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
954  	u32 clk_div;
955  	u8 bits;
956  	u32 speed;
957  	u32 cr0;
958  	u32 cr1;
959  	int err;
960  	int dma_mapped;
961  
962  	/* Check if we can DMA this transfer */
963  	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
964  
965  		/* Reject already-mapped transfers; PIO won't always work */
966  		if (message->is_dma_mapped
967  				|| transfer->rx_dma || transfer->tx_dma) {
968  			dev_err(&spi->dev,
969  				"Mapped transfer length of %u is greater than %d\n",
970  				transfer->len, MAX_DMA_LEN);
971  			return -EINVAL;
972  		}
973  
974  		/* Warn ... we force this to PIO mode */
975  		dev_warn_ratelimited(&spi->dev,
976  				     "DMA disabled for transfer length %u greater than %d\n",
977  				     transfer->len, MAX_DMA_LEN);
978  	}
979  
980  	/* Setup the transfer state based on the type of transfer */
981  	if (pxa2xx_spi_flush(drv_data) == 0) {
982  		dev_err(&spi->dev, "Flush failed\n");
983  		return -EIO;
984  	}
985  	drv_data->tx = (void *)transfer->tx_buf;
986  	drv_data->tx_end = drv_data->tx + transfer->len;
987  	drv_data->rx = transfer->rx_buf;
988  	drv_data->rx_end = drv_data->rx + transfer->len;
989  
990  	/* Change speed and bit per word on a per transfer */
991  	bits = transfer->bits_per_word;
992  	speed = transfer->speed_hz;
993  
994  	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
995  
996  	if (bits <= 8) {
997  		drv_data->n_bytes = 1;
998  		drv_data->read = drv_data->rx ? u8_reader : null_reader;
999  		drv_data->write = drv_data->tx ? u8_writer : null_writer;
1000  	} else if (bits <= 16) {
1001  		drv_data->n_bytes = 2;
1002  		drv_data->read = drv_data->rx ? u16_reader : null_reader;
1003  		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1004  	} else if (bits <= 32) {
1005  		drv_data->n_bytes = 4;
1006  		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1007  		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1008  	}
1009  	/*
1010  	 * If bits per word is changed in DMA mode, then must check
1011  	 * the thresholds and burst also.
1012  	 */
1013  	if (chip->enable_dma) {
1014  		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1015  						spi,
1016  						bits, &dma_burst,
1017  						&dma_thresh))
1018  			dev_warn_ratelimited(&spi->dev,
1019  					     "DMA burst size reduced to match bits_per_word\n");
1020  	}
1021  
1022  	dma_mapped = controller->can_dma &&
1023  		     controller->can_dma(controller, spi, transfer) &&
1024  		     controller->cur_msg_mapped;
1025  	if (dma_mapped) {
1026  
1027  		/* Ensure we have the correct interrupt handler */
1028  		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1029  
1030  		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1031  		if (err)
1032  			return err;
1033  
1034  		/* Clear status and start DMA engine */
1035  		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1036  		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1037  
1038  		pxa2xx_spi_dma_start(drv_data);
1039  	} else {
1040  		/* Ensure we have the correct interrupt handler	*/
1041  		drv_data->transfer_handler = interrupt_transfer;
1042  
1043  		/* Clear status  */
1044  		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1045  		write_SSSR_CS(drv_data, drv_data->clear_sr);
1046  	}
1047  
1048  	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1049  	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1050  	if (!pxa25x_ssp_comp(drv_data))
1051  		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1052  			controller->max_speed_hz
1053  				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1054  			dma_mapped ? "DMA" : "PIO");
1055  	else
1056  		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1057  			controller->max_speed_hz / 2
1058  				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1059  			dma_mapped ? "DMA" : "PIO");
1060  
1061  	if (is_lpss_ssp(drv_data)) {
1062  		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1063  		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1064  	}
1065  
1066  	if (is_mrfld_ssp(drv_data)) {
1067  		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1068  		u32 thresh = 0;
1069  
1070  		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1071  		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1072  
1073  		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1074  	}
1075  
1076  	if (is_quark_x1000_ssp(drv_data))
1077  		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1078  
1079  	/* Stop the SSP */
1080  	if (!is_mmp2_ssp(drv_data))
1081  		pxa_ssp_disable(drv_data->ssp);
1082  
1083  	if (!pxa25x_ssp_comp(drv_data))
1084  		pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1085  
1086  	/* First set CR1 without interrupt and service enables */
1087  	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1088  
1089  	/* See if we need to reload the configuration registers */
1090  	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1091  
1092  	/* Restart the SSP */
1093  	pxa_ssp_enable(drv_data->ssp);
1094  
1095  	if (is_mmp2_ssp(drv_data)) {
1096  		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1097  
1098  		if (tx_level) {
1099  			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1100  			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1101  			if (tx_level > transfer->len)
1102  				tx_level = transfer->len;
1103  			drv_data->tx += tx_level;
1104  		}
1105  	}
1106  
1107  	if (spi_controller_is_slave(controller)) {
1108  		while (drv_data->write(drv_data))
1109  			;
1110  		if (drv_data->gpiod_ready) {
1111  			gpiod_set_value(drv_data->gpiod_ready, 1);
1112  			udelay(1);
1113  			gpiod_set_value(drv_data->gpiod_ready, 0);
1114  		}
1115  	}
1116  
1117  	/*
1118  	 * Release the data by enabling service requests and interrupts,
1119  	 * without changing any mode bits.
1120  	 */
1121  	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1122  
1123  	return 1;
1124  }
1125  
1126  static int pxa2xx_spi_slave_abort(struct spi_controller *controller)
1127  {
1128  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1129  
1130  	int_error_stop(drv_data, "transfer aborted", -EINTR);
1131  
1132  	return 0;
1133  }
1134  
1135  static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1136  				 struct spi_message *msg)
1137  {
1138  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1139  
1140  	int_stop_and_reset(drv_data);
1141  
1142  	/* Disable the SSP */
1143  	pxa2xx_spi_off(drv_data);
1144  
1145  	/*
1146  	 * Stop the DMA if running. Note DMA callback handler may have unset
1147  	 * the dma_running already, which is fine as stopping is not needed
1148  	 * then but we shouldn't rely this flag for anything else than
1149  	 * stopping. For instance to differentiate between PIO and DMA
1150  	 * transfers.
1151  	 */
1152  	if (atomic_read(&drv_data->dma_running))
1153  		pxa2xx_spi_dma_stop(drv_data);
1154  }
1155  
1156  static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1157  {
1158  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1159  
1160  	/* Disable the SSP now */
1161  	pxa2xx_spi_off(drv_data);
1162  
1163  	return 0;
1164  }
1165  
1166  static void cleanup_cs(struct spi_device *spi)
1167  {
1168  	if (!gpio_is_valid(spi->cs_gpio))
1169  		return;
1170  
1171  	gpio_free(spi->cs_gpio);
1172  	spi->cs_gpio = -ENOENT;
1173  }
1174  
1175  static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1176  		    struct pxa2xx_spi_chip *chip_info)
1177  {
1178  	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
1179  
1180  	if (chip == NULL)
1181  		return 0;
1182  
1183  	if (chip_info == NULL)
1184  		return 0;
1185  
1186  	if (drv_data->ssp_type == CE4100_SSP)
1187  		return 0;
1188  
1189  	/*
1190  	 * NOTE: setup() can be called multiple times, possibly with
1191  	 * different chip_info, release previously requested GPIO.
1192  	 */
1193  	cleanup_cs(spi);
1194  
1195  	if (gpio_is_valid(chip_info->gpio_cs)) {
1196  		int gpio = chip_info->gpio_cs;
1197  		int err;
1198  
1199  		err = gpio_request(gpio, "SPI_CS");
1200  		if (err) {
1201  			dev_err(&spi->dev, "failed to request chip select GPIO%d\n", gpio);
1202  			return err;
1203  		}
1204  
1205  		err = gpio_direction_output(gpio, !(spi->mode & SPI_CS_HIGH));
1206  		if (err) {
1207  			gpio_free(gpio);
1208  			return err;
1209  		}
1210  
1211  		spi->cs_gpio = gpio;
1212  	}
1213  
1214  	return 0;
1215  }
1216  
1217  static int setup(struct spi_device *spi)
1218  {
1219  	struct pxa2xx_spi_chip *chip_info;
1220  	struct chip_data *chip;
1221  	const struct lpss_config *config;
1222  	struct driver_data *drv_data =
1223  		spi_controller_get_devdata(spi->controller);
1224  	uint tx_thres, tx_hi_thres, rx_thres;
1225  	int err;
1226  
1227  	switch (drv_data->ssp_type) {
1228  	case QUARK_X1000_SSP:
1229  		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1230  		tx_hi_thres = 0;
1231  		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1232  		break;
1233  	case MRFLD_SSP:
1234  		tx_thres = TX_THRESH_MRFLD_DFLT;
1235  		tx_hi_thres = 0;
1236  		rx_thres = RX_THRESH_MRFLD_DFLT;
1237  		break;
1238  	case CE4100_SSP:
1239  		tx_thres = TX_THRESH_CE4100_DFLT;
1240  		tx_hi_thres = 0;
1241  		rx_thres = RX_THRESH_CE4100_DFLT;
1242  		break;
1243  	case LPSS_LPT_SSP:
1244  	case LPSS_BYT_SSP:
1245  	case LPSS_BSW_SSP:
1246  	case LPSS_SPT_SSP:
1247  	case LPSS_BXT_SSP:
1248  	case LPSS_CNL_SSP:
1249  		config = lpss_get_config(drv_data);
1250  		tx_thres = config->tx_threshold_lo;
1251  		tx_hi_thres = config->tx_threshold_hi;
1252  		rx_thres = config->rx_threshold;
1253  		break;
1254  	default:
1255  		tx_hi_thres = 0;
1256  		if (spi_controller_is_slave(drv_data->controller)) {
1257  			tx_thres = 1;
1258  			rx_thres = 2;
1259  		} else {
1260  			tx_thres = TX_THRESH_DFLT;
1261  			rx_thres = RX_THRESH_DFLT;
1262  		}
1263  		break;
1264  	}
1265  
1266  	/* Only allocate on the first setup */
1267  	chip = spi_get_ctldata(spi);
1268  	if (!chip) {
1269  		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1270  		if (!chip)
1271  			return -ENOMEM;
1272  
1273  		if (drv_data->ssp_type == CE4100_SSP) {
1274  			if (spi->chip_select > 4) {
1275  				dev_err(&spi->dev,
1276  					"failed setup: cs number must not be > 4.\n");
1277  				kfree(chip);
1278  				return -EINVAL;
1279  			}
1280  		}
1281  		chip->enable_dma = drv_data->controller_info->enable_dma;
1282  		chip->timeout = TIMOUT_DFLT;
1283  	}
1284  
1285  	/*
1286  	 * Protocol drivers may change the chip settings, so...
1287  	 * if chip_info exists, use it.
1288  	 */
1289  	chip_info = spi->controller_data;
1290  
1291  	/* chip_info isn't always needed */
1292  	if (chip_info) {
1293  		if (chip_info->timeout)
1294  			chip->timeout = chip_info->timeout;
1295  		if (chip_info->tx_threshold)
1296  			tx_thres = chip_info->tx_threshold;
1297  		if (chip_info->tx_hi_threshold)
1298  			tx_hi_thres = chip_info->tx_hi_threshold;
1299  		if (chip_info->rx_threshold)
1300  			rx_thres = chip_info->rx_threshold;
1301  		chip->dma_threshold = 0;
1302  	}
1303  
1304  	chip->cr1 = 0;
1305  	if (spi_controller_is_slave(drv_data->controller)) {
1306  		chip->cr1 |= SSCR1_SCFR;
1307  		chip->cr1 |= SSCR1_SCLKDIR;
1308  		chip->cr1 |= SSCR1_SFRMDIR;
1309  		chip->cr1 |= SSCR1_SPH;
1310  	}
1311  
1312  	if (is_lpss_ssp(drv_data)) {
1313  		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1314  		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1315  					  SSITF_TxHiThresh(tx_hi_thres);
1316  	}
1317  
1318  	if (is_mrfld_ssp(drv_data)) {
1319  		chip->lpss_rx_threshold = rx_thres;
1320  		chip->lpss_tx_threshold = tx_thres;
1321  	}
1322  
1323  	/*
1324  	 * Set DMA burst and threshold outside of chip_info path so that if
1325  	 * chip_info goes away after setting chip->enable_dma, the burst and
1326  	 * threshold can still respond to changes in bits_per_word.
1327  	 */
1328  	if (chip->enable_dma) {
1329  		/* Set up legal burst and threshold for DMA */
1330  		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1331  						spi->bits_per_word,
1332  						&chip->dma_burst_size,
1333  						&chip->dma_threshold)) {
1334  			dev_warn(&spi->dev,
1335  				 "in setup: DMA burst size reduced to match bits_per_word\n");
1336  		}
1337  		dev_dbg(&spi->dev,
1338  			"in setup: DMA burst size set to %u\n",
1339  			chip->dma_burst_size);
1340  	}
1341  
1342  	switch (drv_data->ssp_type) {
1343  	case QUARK_X1000_SSP:
1344  		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1345  				   & QUARK_X1000_SSCR1_RFT)
1346  				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1347  				   & QUARK_X1000_SSCR1_TFT);
1348  		break;
1349  	case CE4100_SSP:
1350  		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1351  			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1352  		break;
1353  	default:
1354  		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1355  			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1356  		break;
1357  	}
1358  
1359  	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1360  	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1361  		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1362  
1363  	if (spi->mode & SPI_LOOP)
1364  		chip->cr1 |= SSCR1_LBM;
1365  
1366  	spi_set_ctldata(spi, chip);
1367  
1368  	if (drv_data->ssp_type == CE4100_SSP)
1369  		return 0;
1370  
1371  	err = setup_cs(spi, chip, chip_info);
1372  	if (err)
1373  		kfree(chip);
1374  
1375  	return err;
1376  }
1377  
1378  static void cleanup(struct spi_device *spi)
1379  {
1380  	struct chip_data *chip = spi_get_ctldata(spi);
1381  
1382  	cleanup_cs(spi);
1383  	kfree(chip);
1384  }
1385  
1386  #ifdef CONFIG_ACPI
1387  static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1388  	{ "INT33C0", LPSS_LPT_SSP },
1389  	{ "INT33C1", LPSS_LPT_SSP },
1390  	{ "INT3430", LPSS_LPT_SSP },
1391  	{ "INT3431", LPSS_LPT_SSP },
1392  	{ "80860F0E", LPSS_BYT_SSP },
1393  	{ "8086228E", LPSS_BSW_SSP },
1394  	{ },
1395  };
1396  MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1397  #endif
1398  
1399  /*
1400   * PCI IDs of compound devices that integrate both host controller and private
1401   * integrated DMA engine. Please note these are not used in module
1402   * autoloading and probing in this module but matching the LPSS SSP type.
1403   */
1404  static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1405  	/* SPT-LP */
1406  	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1407  	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1408  	/* SPT-H */
1409  	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1410  	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1411  	/* KBL-H */
1412  	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1413  	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1414  	/* CML-V */
1415  	{ PCI_VDEVICE(INTEL, 0xa3a9), LPSS_SPT_SSP },
1416  	{ PCI_VDEVICE(INTEL, 0xa3aa), LPSS_SPT_SSP },
1417  	/* BXT A-Step */
1418  	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1419  	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1420  	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1421  	/* BXT B-Step */
1422  	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1423  	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1424  	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1425  	/* GLK */
1426  	{ PCI_VDEVICE(INTEL, 0x31c2), LPSS_BXT_SSP },
1427  	{ PCI_VDEVICE(INTEL, 0x31c4), LPSS_BXT_SSP },
1428  	{ PCI_VDEVICE(INTEL, 0x31c6), LPSS_BXT_SSP },
1429  	/* ICL-LP */
1430  	{ PCI_VDEVICE(INTEL, 0x34aa), LPSS_CNL_SSP },
1431  	{ PCI_VDEVICE(INTEL, 0x34ab), LPSS_CNL_SSP },
1432  	{ PCI_VDEVICE(INTEL, 0x34fb), LPSS_CNL_SSP },
1433  	/* EHL */
1434  	{ PCI_VDEVICE(INTEL, 0x4b2a), LPSS_BXT_SSP },
1435  	{ PCI_VDEVICE(INTEL, 0x4b2b), LPSS_BXT_SSP },
1436  	{ PCI_VDEVICE(INTEL, 0x4b37), LPSS_BXT_SSP },
1437  	/* JSL */
1438  	{ PCI_VDEVICE(INTEL, 0x4daa), LPSS_CNL_SSP },
1439  	{ PCI_VDEVICE(INTEL, 0x4dab), LPSS_CNL_SSP },
1440  	{ PCI_VDEVICE(INTEL, 0x4dfb), LPSS_CNL_SSP },
1441  	/* TGL-H */
1442  	{ PCI_VDEVICE(INTEL, 0x43aa), LPSS_CNL_SSP },
1443  	{ PCI_VDEVICE(INTEL, 0x43ab), LPSS_CNL_SSP },
1444  	{ PCI_VDEVICE(INTEL, 0x43fb), LPSS_CNL_SSP },
1445  	{ PCI_VDEVICE(INTEL, 0x43fd), LPSS_CNL_SSP },
1446  	/* ADL-P */
1447  	{ PCI_VDEVICE(INTEL, 0x51aa), LPSS_CNL_SSP },
1448  	{ PCI_VDEVICE(INTEL, 0x51ab), LPSS_CNL_SSP },
1449  	{ PCI_VDEVICE(INTEL, 0x51fb), LPSS_CNL_SSP },
1450  	/* ADL-M */
1451  	{ PCI_VDEVICE(INTEL, 0x54aa), LPSS_CNL_SSP },
1452  	{ PCI_VDEVICE(INTEL, 0x54ab), LPSS_CNL_SSP },
1453  	{ PCI_VDEVICE(INTEL, 0x54fb), LPSS_CNL_SSP },
1454  	/* APL */
1455  	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1456  	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1457  	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1458  	/* ADL-S */
1459  	{ PCI_VDEVICE(INTEL, 0x7aaa), LPSS_CNL_SSP },
1460  	{ PCI_VDEVICE(INTEL, 0x7aab), LPSS_CNL_SSP },
1461  	{ PCI_VDEVICE(INTEL, 0x7af9), LPSS_CNL_SSP },
1462  	{ PCI_VDEVICE(INTEL, 0x7afb), LPSS_CNL_SSP },
1463  	/* CNL-LP */
1464  	{ PCI_VDEVICE(INTEL, 0x9daa), LPSS_CNL_SSP },
1465  	{ PCI_VDEVICE(INTEL, 0x9dab), LPSS_CNL_SSP },
1466  	{ PCI_VDEVICE(INTEL, 0x9dfb), LPSS_CNL_SSP },
1467  	/* CNL-H */
1468  	{ PCI_VDEVICE(INTEL, 0xa32a), LPSS_CNL_SSP },
1469  	{ PCI_VDEVICE(INTEL, 0xa32b), LPSS_CNL_SSP },
1470  	{ PCI_VDEVICE(INTEL, 0xa37b), LPSS_CNL_SSP },
1471  	/* CML-LP */
1472  	{ PCI_VDEVICE(INTEL, 0x02aa), LPSS_CNL_SSP },
1473  	{ PCI_VDEVICE(INTEL, 0x02ab), LPSS_CNL_SSP },
1474  	{ PCI_VDEVICE(INTEL, 0x02fb), LPSS_CNL_SSP },
1475  	/* CML-H */
1476  	{ PCI_VDEVICE(INTEL, 0x06aa), LPSS_CNL_SSP },
1477  	{ PCI_VDEVICE(INTEL, 0x06ab), LPSS_CNL_SSP },
1478  	{ PCI_VDEVICE(INTEL, 0x06fb), LPSS_CNL_SSP },
1479  	/* TGL-LP */
1480  	{ PCI_VDEVICE(INTEL, 0xa0aa), LPSS_CNL_SSP },
1481  	{ PCI_VDEVICE(INTEL, 0xa0ab), LPSS_CNL_SSP },
1482  	{ PCI_VDEVICE(INTEL, 0xa0de), LPSS_CNL_SSP },
1483  	{ PCI_VDEVICE(INTEL, 0xa0df), LPSS_CNL_SSP },
1484  	{ PCI_VDEVICE(INTEL, 0xa0fb), LPSS_CNL_SSP },
1485  	{ PCI_VDEVICE(INTEL, 0xa0fd), LPSS_CNL_SSP },
1486  	{ PCI_VDEVICE(INTEL, 0xa0fe), LPSS_CNL_SSP },
1487  	{ },
1488  };
1489  
1490  static const struct of_device_id pxa2xx_spi_of_match[] = {
1491  	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1492  	{},
1493  };
1494  MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1495  
1496  #ifdef CONFIG_ACPI
1497  
1498  static int pxa2xx_spi_get_port_id(struct device *dev)
1499  {
1500  	struct acpi_device *adev;
1501  	unsigned int devid;
1502  	int port_id = -1;
1503  
1504  	adev = ACPI_COMPANION(dev);
1505  	if (adev && adev->pnp.unique_id &&
1506  	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1507  		port_id = devid;
1508  	return port_id;
1509  }
1510  
1511  #else /* !CONFIG_ACPI */
1512  
1513  static int pxa2xx_spi_get_port_id(struct device *dev)
1514  {
1515  	return -1;
1516  }
1517  
1518  #endif /* CONFIG_ACPI */
1519  
1520  
1521  #ifdef CONFIG_PCI
1522  
1523  static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1524  {
1525  	return param == chan->device->dev;
1526  }
1527  
1528  #endif /* CONFIG_PCI */
1529  
1530  static struct pxa2xx_spi_controller *
1531  pxa2xx_spi_init_pdata(struct platform_device *pdev)
1532  {
1533  	struct pxa2xx_spi_controller *pdata;
1534  	struct ssp_device *ssp;
1535  	struct resource *res;
1536  	struct device *parent = pdev->dev.parent;
1537  	struct pci_dev *pcidev = dev_is_pci(parent) ? to_pci_dev(parent) : NULL;
1538  	const struct pci_device_id *pcidev_id = NULL;
1539  	enum pxa_ssp_type type;
1540  	const void *match;
1541  
1542  	if (pcidev)
1543  		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, pcidev);
1544  
1545  	match = device_get_match_data(&pdev->dev);
1546  	if (match)
1547  		type = (enum pxa_ssp_type)match;
1548  	else if (pcidev_id)
1549  		type = (enum pxa_ssp_type)pcidev_id->driver_data;
1550  	else
1551  		return ERR_PTR(-EINVAL);
1552  
1553  	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1554  	if (!pdata)
1555  		return ERR_PTR(-ENOMEM);
1556  
1557  	ssp = &pdata->ssp;
1558  
1559  	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1560  	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1561  	if (IS_ERR(ssp->mmio_base))
1562  		return ERR_CAST(ssp->mmio_base);
1563  
1564  	ssp->phys_base = res->start;
1565  
1566  #ifdef CONFIG_PCI
1567  	if (pcidev_id) {
1568  		pdata->tx_param = parent;
1569  		pdata->rx_param = parent;
1570  		pdata->dma_filter = pxa2xx_spi_idma_filter;
1571  	}
1572  #endif
1573  
1574  	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1575  	if (IS_ERR(ssp->clk))
1576  		return ERR_CAST(ssp->clk);
1577  
1578  	ssp->irq = platform_get_irq(pdev, 0);
1579  	if (ssp->irq < 0)
1580  		return ERR_PTR(ssp->irq);
1581  
1582  	ssp->type = type;
1583  	ssp->dev = &pdev->dev;
1584  	ssp->port_id = pxa2xx_spi_get_port_id(&pdev->dev);
1585  
1586  	pdata->is_slave = device_property_read_bool(&pdev->dev, "spi-slave");
1587  	pdata->num_chipselect = 1;
1588  	pdata->enable_dma = true;
1589  	pdata->dma_burst_size = 1;
1590  
1591  	return pdata;
1592  }
1593  
1594  static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1595  				      unsigned int cs)
1596  {
1597  	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1598  
1599  	if (has_acpi_companion(drv_data->ssp->dev)) {
1600  		switch (drv_data->ssp_type) {
1601  		/*
1602  		 * For Atoms the ACPI DeviceSelection used by the Windows
1603  		 * driver starts from 1 instead of 0 so translate it here
1604  		 * to match what Linux expects.
1605  		 */
1606  		case LPSS_BYT_SSP:
1607  		case LPSS_BSW_SSP:
1608  			return cs - 1;
1609  
1610  		default:
1611  			break;
1612  		}
1613  	}
1614  
1615  	return cs;
1616  }
1617  
1618  static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1619  {
1620  	return MAX_DMA_LEN;
1621  }
1622  
1623  static int pxa2xx_spi_probe(struct platform_device *pdev)
1624  {
1625  	struct device *dev = &pdev->dev;
1626  	struct pxa2xx_spi_controller *platform_info;
1627  	struct spi_controller *controller;
1628  	struct driver_data *drv_data;
1629  	struct ssp_device *ssp;
1630  	const struct lpss_config *config;
1631  	int status;
1632  	u32 tmp;
1633  
1634  	platform_info = dev_get_platdata(dev);
1635  	if (!platform_info) {
1636  		platform_info = pxa2xx_spi_init_pdata(pdev);
1637  		if (IS_ERR(platform_info)) {
1638  			dev_err(&pdev->dev, "missing platform data\n");
1639  			return PTR_ERR(platform_info);
1640  		}
1641  	}
1642  
1643  	ssp = pxa_ssp_request(pdev->id, pdev->name);
1644  	if (!ssp)
1645  		ssp = &platform_info->ssp;
1646  
1647  	if (!ssp->mmio_base) {
1648  		dev_err(&pdev->dev, "failed to get SSP\n");
1649  		return -ENODEV;
1650  	}
1651  
1652  	if (platform_info->is_slave)
1653  		controller = devm_spi_alloc_slave(dev, sizeof(*drv_data));
1654  	else
1655  		controller = devm_spi_alloc_master(dev, sizeof(*drv_data));
1656  
1657  	if (!controller) {
1658  		dev_err(&pdev->dev, "cannot alloc spi_controller\n");
1659  		status = -ENOMEM;
1660  		goto out_error_controller_alloc;
1661  	}
1662  	drv_data = spi_controller_get_devdata(controller);
1663  	drv_data->controller = controller;
1664  	drv_data->controller_info = platform_info;
1665  	drv_data->ssp = ssp;
1666  
1667  	device_set_node(&controller->dev, dev_fwnode(dev));
1668  
1669  	/* The spi->mode bits understood by this driver: */
1670  	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1671  
1672  	controller->bus_num = ssp->port_id;
1673  	controller->dma_alignment = DMA_ALIGNMENT;
1674  	controller->cleanup = cleanup;
1675  	controller->setup = setup;
1676  	controller->set_cs = pxa2xx_spi_set_cs;
1677  	controller->transfer_one = pxa2xx_spi_transfer_one;
1678  	controller->slave_abort = pxa2xx_spi_slave_abort;
1679  	controller->handle_err = pxa2xx_spi_handle_err;
1680  	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1681  	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1682  	controller->auto_runtime_pm = true;
1683  	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1684  
1685  	drv_data->ssp_type = ssp->type;
1686  
1687  	if (pxa25x_ssp_comp(drv_data)) {
1688  		switch (drv_data->ssp_type) {
1689  		case QUARK_X1000_SSP:
1690  			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1691  			break;
1692  		default:
1693  			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1694  			break;
1695  		}
1696  
1697  		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1698  		drv_data->dma_cr1 = 0;
1699  		drv_data->clear_sr = SSSR_ROR;
1700  		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1701  	} else {
1702  		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1703  		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1704  		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1705  		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1706  		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1707  						| SSSR_ROR | SSSR_TUR;
1708  	}
1709  
1710  	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1711  			drv_data);
1712  	if (status < 0) {
1713  		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1714  		goto out_error_controller_alloc;
1715  	}
1716  
1717  	/* Setup DMA if requested */
1718  	if (platform_info->enable_dma) {
1719  		status = pxa2xx_spi_dma_setup(drv_data);
1720  		if (status) {
1721  			dev_warn(dev, "no DMA channels available, using PIO\n");
1722  			platform_info->enable_dma = false;
1723  		} else {
1724  			controller->can_dma = pxa2xx_spi_can_dma;
1725  			controller->max_dma_len = MAX_DMA_LEN;
1726  			controller->max_transfer_size =
1727  				pxa2xx_spi_max_dma_transfer_size;
1728  		}
1729  	}
1730  
1731  	/* Enable SOC clock */
1732  	status = clk_prepare_enable(ssp->clk);
1733  	if (status)
1734  		goto out_error_dma_irq_alloc;
1735  
1736  	controller->max_speed_hz = clk_get_rate(ssp->clk);
1737  	/*
1738  	 * Set minimum speed for all other platforms than Intel Quark which is
1739  	 * able do under 1 Hz transfers.
1740  	 */
1741  	if (!pxa25x_ssp_comp(drv_data))
1742  		controller->min_speed_hz =
1743  			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1744  	else if (!is_quark_x1000_ssp(drv_data))
1745  		controller->min_speed_hz =
1746  			DIV_ROUND_UP(controller->max_speed_hz, 512);
1747  
1748  	pxa_ssp_disable(ssp);
1749  
1750  	/* Load default SSP configuration */
1751  	switch (drv_data->ssp_type) {
1752  	case QUARK_X1000_SSP:
1753  		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1754  		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1755  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1756  
1757  		/* Using the Motorola SPI protocol and use 8 bit frame */
1758  		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1759  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1760  		break;
1761  	case CE4100_SSP:
1762  		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1763  		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1764  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1765  		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1766  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1767  		break;
1768  	default:
1769  
1770  		if (spi_controller_is_slave(controller)) {
1771  			tmp = SSCR1_SCFR |
1772  			      SSCR1_SCLKDIR |
1773  			      SSCR1_SFRMDIR |
1774  			      SSCR1_RxTresh(2) |
1775  			      SSCR1_TxTresh(1) |
1776  			      SSCR1_SPH;
1777  		} else {
1778  			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1779  			      SSCR1_TxTresh(TX_THRESH_DFLT);
1780  		}
1781  		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1782  		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1783  		if (!spi_controller_is_slave(controller))
1784  			tmp |= SSCR0_SCR(2);
1785  		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1786  		break;
1787  	}
1788  
1789  	if (!pxa25x_ssp_comp(drv_data))
1790  		pxa2xx_spi_write(drv_data, SSTO, 0);
1791  
1792  	if (!is_quark_x1000_ssp(drv_data))
1793  		pxa2xx_spi_write(drv_data, SSPSP, 0);
1794  
1795  	if (is_lpss_ssp(drv_data)) {
1796  		lpss_ssp_setup(drv_data);
1797  		config = lpss_get_config(drv_data);
1798  		if (config->reg_capabilities >= 0) {
1799  			tmp = __lpss_ssp_read_priv(drv_data,
1800  						   config->reg_capabilities);
1801  			tmp &= LPSS_CAPS_CS_EN_MASK;
1802  			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1803  			platform_info->num_chipselect = ffz(tmp);
1804  		} else if (config->cs_num) {
1805  			platform_info->num_chipselect = config->cs_num;
1806  		}
1807  	}
1808  	controller->num_chipselect = platform_info->num_chipselect;
1809  	controller->use_gpio_descriptors = true;
1810  
1811  	if (platform_info->is_slave) {
1812  		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1813  						"ready", GPIOD_OUT_LOW);
1814  		if (IS_ERR(drv_data->gpiod_ready)) {
1815  			status = PTR_ERR(drv_data->gpiod_ready);
1816  			goto out_error_clock_enabled;
1817  		}
1818  	}
1819  
1820  	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1821  	pm_runtime_use_autosuspend(&pdev->dev);
1822  	pm_runtime_set_active(&pdev->dev);
1823  	pm_runtime_enable(&pdev->dev);
1824  
1825  	/* Register with the SPI framework */
1826  	platform_set_drvdata(pdev, drv_data);
1827  	status = spi_register_controller(controller);
1828  	if (status) {
1829  		dev_err(&pdev->dev, "problem registering SPI controller\n");
1830  		goto out_error_pm_runtime_enabled;
1831  	}
1832  
1833  	return status;
1834  
1835  out_error_pm_runtime_enabled:
1836  	pm_runtime_disable(&pdev->dev);
1837  
1838  out_error_clock_enabled:
1839  	clk_disable_unprepare(ssp->clk);
1840  
1841  out_error_dma_irq_alloc:
1842  	pxa2xx_spi_dma_release(drv_data);
1843  	free_irq(ssp->irq, drv_data);
1844  
1845  out_error_controller_alloc:
1846  	pxa_ssp_free(ssp);
1847  	return status;
1848  }
1849  
1850  static int pxa2xx_spi_remove(struct platform_device *pdev)
1851  {
1852  	struct driver_data *drv_data = platform_get_drvdata(pdev);
1853  	struct ssp_device *ssp = drv_data->ssp;
1854  
1855  	pm_runtime_get_sync(&pdev->dev);
1856  
1857  	spi_unregister_controller(drv_data->controller);
1858  
1859  	/* Disable the SSP at the peripheral and SOC level */
1860  	pxa_ssp_disable(ssp);
1861  	clk_disable_unprepare(ssp->clk);
1862  
1863  	/* Release DMA */
1864  	if (drv_data->controller_info->enable_dma)
1865  		pxa2xx_spi_dma_release(drv_data);
1866  
1867  	pm_runtime_put_noidle(&pdev->dev);
1868  	pm_runtime_disable(&pdev->dev);
1869  
1870  	/* Release IRQ */
1871  	free_irq(ssp->irq, drv_data);
1872  
1873  	/* Release SSP */
1874  	pxa_ssp_free(ssp);
1875  
1876  	return 0;
1877  }
1878  
1879  #ifdef CONFIG_PM_SLEEP
1880  static int pxa2xx_spi_suspend(struct device *dev)
1881  {
1882  	struct driver_data *drv_data = dev_get_drvdata(dev);
1883  	struct ssp_device *ssp = drv_data->ssp;
1884  	int status;
1885  
1886  	status = spi_controller_suspend(drv_data->controller);
1887  	if (status)
1888  		return status;
1889  
1890  	pxa_ssp_disable(ssp);
1891  
1892  	if (!pm_runtime_suspended(dev))
1893  		clk_disable_unprepare(ssp->clk);
1894  
1895  	return 0;
1896  }
1897  
1898  static int pxa2xx_spi_resume(struct device *dev)
1899  {
1900  	struct driver_data *drv_data = dev_get_drvdata(dev);
1901  	struct ssp_device *ssp = drv_data->ssp;
1902  	int status;
1903  
1904  	/* Enable the SSP clock */
1905  	if (!pm_runtime_suspended(dev)) {
1906  		status = clk_prepare_enable(ssp->clk);
1907  		if (status)
1908  			return status;
1909  	}
1910  
1911  	/* Start the queue running */
1912  	return spi_controller_resume(drv_data->controller);
1913  }
1914  #endif
1915  
1916  #ifdef CONFIG_PM
1917  static int pxa2xx_spi_runtime_suspend(struct device *dev)
1918  {
1919  	struct driver_data *drv_data = dev_get_drvdata(dev);
1920  
1921  	clk_disable_unprepare(drv_data->ssp->clk);
1922  	return 0;
1923  }
1924  
1925  static int pxa2xx_spi_runtime_resume(struct device *dev)
1926  {
1927  	struct driver_data *drv_data = dev_get_drvdata(dev);
1928  	int status;
1929  
1930  	status = clk_prepare_enable(drv_data->ssp->clk);
1931  	return status;
1932  }
1933  #endif
1934  
1935  static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1936  	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1937  	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1938  			   pxa2xx_spi_runtime_resume, NULL)
1939  };
1940  
1941  static struct platform_driver driver = {
1942  	.driver = {
1943  		.name	= "pxa2xx-spi",
1944  		.pm	= &pxa2xx_spi_pm_ops,
1945  		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1946  		.of_match_table = of_match_ptr(pxa2xx_spi_of_match),
1947  	},
1948  	.probe = pxa2xx_spi_probe,
1949  	.remove = pxa2xx_spi_remove,
1950  };
1951  
1952  static int __init pxa2xx_spi_init(void)
1953  {
1954  	return platform_driver_register(&driver);
1955  }
1956  subsys_initcall(pxa2xx_spi_init);
1957  
1958  static void __exit pxa2xx_spi_exit(void)
1959  {
1960  	platform_driver_unregister(&driver);
1961  }
1962  module_exit(pxa2xx_spi_exit);
1963  
1964  MODULE_SOFTDEP("pre: dw_dmac");
1965