xref: /linux/drivers/spi/spi-pxa2xx.c (revision c6df6213a95fa9674cc48d77042141942dd0809b)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/atomic.h>
8 #include <linux/bitops.h>
9 #include <linux/bug.h>
10 #include <linux/clk.h>
11 #include <linux/delay.h>
12 #include <linux/device.h>
13 #include <linux/dmaengine.h>
14 #include <linux/err.h>
15 #include <linux/gpio/consumer.h>
16 #include <linux/interrupt.h>
17 #include <linux/io.h>
18 #include <linux/ioport.h>
19 #include <linux/math64.h>
20 #include <linux/minmax.h>
21 #include <linux/module.h>
22 #include <linux/pm_runtime.h>
23 #include <linux/property.h>
24 #include <linux/slab.h>
25 #include <linux/types.h>
26 
27 #include <linux/spi/spi.h>
28 
29 #include "internals.h"
30 #include "spi-pxa2xx.h"
31 
32 #define TIMOUT_DFLT		1000
33 
34 /*
35  * For testing SSCR1 changes that require SSP restart, basically
36  * everything except the service and interrupt enables, the PXA270 developer
37  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
38  * list, but the PXA255 developer manual says all bits without really meaning
39  * the service and interrupt enables.
40  */
41 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
42 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
43 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
44 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
45 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
46 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
47 
48 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
49 				| QUARK_X1000_SSCR1_EFWR	\
50 				| QUARK_X1000_SSCR1_RFT		\
51 				| QUARK_X1000_SSCR1_TFT		\
52 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
53 
54 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
55 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
56 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
57 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
58 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
59 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
60 
61 struct chip_data {
62 	u32 cr1;
63 	u32 dds_rate;
64 	u32 threshold;
65 	u16 lpss_rx_threshold;
66 	u16 lpss_tx_threshold;
67 };
68 
69 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
70 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
71 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
72 #define LPSS_CAPS_CS_EN_SHIFT			9
73 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
74 
75 #define LPSS_PRIV_CLOCK_GATE 0x38
76 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
77 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
78 
79 struct lpss_config {
80 	/* LPSS offset from drv_data->ioaddr */
81 	unsigned offset;
82 	/* Register offsets from drv_data->lpss_base or -1 */
83 	int reg_general;
84 	int reg_ssp;
85 	int reg_cs_ctrl;
86 	int reg_capabilities;
87 	/* FIFO thresholds */
88 	u32 rx_threshold;
89 	u32 tx_threshold_lo;
90 	u32 tx_threshold_hi;
91 	/* Chip select control */
92 	unsigned cs_sel_shift;
93 	unsigned cs_sel_mask;
94 	/* Quirks */
95 	unsigned cs_clk_stays_gated : 1;
96 };
97 
98 /* Keep these sorted with enum pxa_ssp_type */
99 static const struct lpss_config lpss_platforms[] = {
100 	{	/* LPSS_LPT_SSP */
101 		.offset = 0x800,
102 		.reg_general = 0x08,
103 		.reg_ssp = 0x0c,
104 		.reg_cs_ctrl = 0x18,
105 		.reg_capabilities = -1,
106 		.rx_threshold = 64,
107 		.tx_threshold_lo = 160,
108 		.tx_threshold_hi = 224,
109 	},
110 	{	/* LPSS_BYT_SSP */
111 		.offset = 0x400,
112 		.reg_general = 0x08,
113 		.reg_ssp = 0x0c,
114 		.reg_cs_ctrl = 0x18,
115 		.reg_capabilities = -1,
116 		.rx_threshold = 64,
117 		.tx_threshold_lo = 160,
118 		.tx_threshold_hi = 224,
119 	},
120 	{	/* LPSS_BSW_SSP */
121 		.offset = 0x400,
122 		.reg_general = 0x08,
123 		.reg_ssp = 0x0c,
124 		.reg_cs_ctrl = 0x18,
125 		.reg_capabilities = -1,
126 		.rx_threshold = 64,
127 		.tx_threshold_lo = 160,
128 		.tx_threshold_hi = 224,
129 		.cs_sel_shift = 2,
130 		.cs_sel_mask = 1 << 2,
131 	},
132 	{	/* LPSS_SPT_SSP */
133 		.offset = 0x200,
134 		.reg_general = -1,
135 		.reg_ssp = 0x20,
136 		.reg_cs_ctrl = 0x24,
137 		.reg_capabilities = -1,
138 		.rx_threshold = 1,
139 		.tx_threshold_lo = 32,
140 		.tx_threshold_hi = 56,
141 	},
142 	{	/* LPSS_BXT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = 0xfc,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 16,
150 		.tx_threshold_hi = 48,
151 		.cs_sel_shift = 8,
152 		.cs_sel_mask = 3 << 8,
153 		.cs_clk_stays_gated = true,
154 	},
155 	{	/* LPSS_CNL_SSP */
156 		.offset = 0x200,
157 		.reg_general = -1,
158 		.reg_ssp = 0x20,
159 		.reg_cs_ctrl = 0x24,
160 		.reg_capabilities = 0xfc,
161 		.rx_threshold = 1,
162 		.tx_threshold_lo = 32,
163 		.tx_threshold_hi = 56,
164 		.cs_sel_shift = 8,
165 		.cs_sel_mask = 3 << 8,
166 		.cs_clk_stays_gated = true,
167 	},
168 };
169 
170 static inline const struct lpss_config
171 *lpss_get_config(const struct driver_data *drv_data)
172 {
173 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
174 }
175 
176 static bool is_lpss_ssp(const struct driver_data *drv_data)
177 {
178 	switch (drv_data->ssp_type) {
179 	case LPSS_LPT_SSP:
180 	case LPSS_BYT_SSP:
181 	case LPSS_BSW_SSP:
182 	case LPSS_SPT_SSP:
183 	case LPSS_BXT_SSP:
184 	case LPSS_CNL_SSP:
185 		return true;
186 	default:
187 		return false;
188 	}
189 }
190 
191 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
192 {
193 	return drv_data->ssp_type == QUARK_X1000_SSP;
194 }
195 
196 static bool is_mmp2_ssp(const struct driver_data *drv_data)
197 {
198 	return drv_data->ssp_type == MMP2_SSP;
199 }
200 
201 static bool is_mrfld_ssp(const struct driver_data *drv_data)
202 {
203 	return drv_data->ssp_type == MRFLD_SSP;
204 }
205 
206 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
207 {
208 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
209 		pxa2xx_spi_write(drv_data, reg, value & mask);
210 }
211 
212 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
213 {
214 	switch (drv_data->ssp_type) {
215 	case QUARK_X1000_SSP:
216 		return QUARK_X1000_SSCR1_CHANGE_MASK;
217 	case CE4100_SSP:
218 		return CE4100_SSCR1_CHANGE_MASK;
219 	default:
220 		return SSCR1_CHANGE_MASK;
221 	}
222 }
223 
224 static u32
225 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
226 {
227 	switch (drv_data->ssp_type) {
228 	case QUARK_X1000_SSP:
229 		return RX_THRESH_QUARK_X1000_DFLT;
230 	case CE4100_SSP:
231 		return RX_THRESH_CE4100_DFLT;
232 	default:
233 		return RX_THRESH_DFLT;
234 	}
235 }
236 
237 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
238 {
239 	u32 mask;
240 
241 	switch (drv_data->ssp_type) {
242 	case QUARK_X1000_SSP:
243 		mask = QUARK_X1000_SSSR_TFL_MASK;
244 		break;
245 	case CE4100_SSP:
246 		mask = CE4100_SSSR_TFL_MASK;
247 		break;
248 	default:
249 		mask = SSSR_TFL_MASK;
250 		break;
251 	}
252 
253 	return read_SSSR_bits(drv_data, mask) == mask;
254 }
255 
256 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
257 				     u32 *sccr1_reg)
258 {
259 	u32 mask;
260 
261 	switch (drv_data->ssp_type) {
262 	case QUARK_X1000_SSP:
263 		mask = QUARK_X1000_SSCR1_RFT;
264 		break;
265 	case CE4100_SSP:
266 		mask = CE4100_SSCR1_RFT;
267 		break;
268 	default:
269 		mask = SSCR1_RFT;
270 		break;
271 	}
272 	*sccr1_reg &= ~mask;
273 }
274 
275 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
276 				   u32 *sccr1_reg, u32 threshold)
277 {
278 	switch (drv_data->ssp_type) {
279 	case QUARK_X1000_SSP:
280 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
281 		break;
282 	case CE4100_SSP:
283 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
284 		break;
285 	default:
286 		*sccr1_reg |= SSCR1_RxTresh(threshold);
287 		break;
288 	}
289 }
290 
291 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
292 				  u32 clk_div, u8 bits)
293 {
294 	switch (drv_data->ssp_type) {
295 	case QUARK_X1000_SSP:
296 		return clk_div
297 			| QUARK_X1000_SSCR0_Motorola
298 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
299 	default:
300 		return clk_div
301 			| SSCR0_Motorola
302 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
303 			| (bits > 16 ? SSCR0_EDSS : 0);
304 	}
305 }
306 
307 /*
308  * Read and write LPSS SSP private registers. Caller must first check that
309  * is_lpss_ssp() returns true before these can be called.
310  */
311 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
312 {
313 	WARN_ON(!drv_data->lpss_base);
314 	return readl(drv_data->lpss_base + offset);
315 }
316 
317 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
318 				  unsigned offset, u32 value)
319 {
320 	WARN_ON(!drv_data->lpss_base);
321 	writel(value, drv_data->lpss_base + offset);
322 }
323 
324 /*
325  * lpss_ssp_setup - perform LPSS SSP specific setup
326  * @drv_data: pointer to the driver private data
327  *
328  * Perform LPSS SSP specific setup. This function must be called first if
329  * one is going to use LPSS SSP private registers.
330  */
331 static void lpss_ssp_setup(struct driver_data *drv_data)
332 {
333 	const struct lpss_config *config;
334 	u32 value;
335 
336 	config = lpss_get_config(drv_data);
337 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
338 
339 	/* Enable software chip select control */
340 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
341 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
342 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
343 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
344 
345 	/* Enable multiblock DMA transfers */
346 	if (drv_data->controller_info->enable_dma) {
347 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
348 
349 		if (config->reg_general >= 0) {
350 			value = __lpss_ssp_read_priv(drv_data,
351 						     config->reg_general);
352 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
353 			__lpss_ssp_write_priv(drv_data,
354 					      config->reg_general, value);
355 		}
356 	}
357 }
358 
359 static void lpss_ssp_select_cs(struct spi_device *spi,
360 			       const struct lpss_config *config)
361 {
362 	struct driver_data *drv_data =
363 		spi_controller_get_devdata(spi->controller);
364 	u32 value, cs;
365 
366 	if (!config->cs_sel_mask)
367 		return;
368 
369 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
370 
371 	cs = spi_get_chipselect(spi, 0);
372 	cs <<= config->cs_sel_shift;
373 	if (cs != (value & config->cs_sel_mask)) {
374 		/*
375 		 * When switching another chip select output active the
376 		 * output must be selected first and wait 2 ssp_clk cycles
377 		 * before changing state to active. Otherwise a short
378 		 * glitch will occur on the previous chip select since
379 		 * output select is latched but state control is not.
380 		 */
381 		value &= ~config->cs_sel_mask;
382 		value |= cs;
383 		__lpss_ssp_write_priv(drv_data,
384 				      config->reg_cs_ctrl, value);
385 		ndelay(1000000000 /
386 		       (drv_data->controller->max_speed_hz / 2));
387 	}
388 }
389 
390 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
391 {
392 	struct driver_data *drv_data =
393 		spi_controller_get_devdata(spi->controller);
394 	const struct lpss_config *config;
395 	u32 value;
396 
397 	config = lpss_get_config(drv_data);
398 
399 	if (enable)
400 		lpss_ssp_select_cs(spi, config);
401 
402 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
403 	if (enable)
404 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
405 	else
406 		value |= LPSS_CS_CONTROL_CS_HIGH;
407 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
408 	if (config->cs_clk_stays_gated) {
409 		u32 clkgate;
410 
411 		/*
412 		 * Changing CS alone when dynamic clock gating is on won't
413 		 * actually flip CS at that time. This ruins SPI transfers
414 		 * that specify delays, or have no data. Toggle the clock mode
415 		 * to force on briefly to poke the CS pin to move.
416 		 */
417 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
418 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
419 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
420 
421 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
422 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
423 	}
424 }
425 
426 static void cs_assert(struct spi_device *spi)
427 {
428 	struct driver_data *drv_data =
429 		spi_controller_get_devdata(spi->controller);
430 
431 	if (drv_data->ssp_type == CE4100_SSP) {
432 		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
433 		return;
434 	}
435 
436 	if (is_lpss_ssp(drv_data))
437 		lpss_ssp_cs_control(spi, true);
438 }
439 
440 static void cs_deassert(struct spi_device *spi)
441 {
442 	struct driver_data *drv_data =
443 		spi_controller_get_devdata(spi->controller);
444 	unsigned long timeout;
445 
446 	if (drv_data->ssp_type == CE4100_SSP)
447 		return;
448 
449 	/* Wait until SSP becomes idle before deasserting the CS */
450 	timeout = jiffies + msecs_to_jiffies(10);
451 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
452 	       !time_after(jiffies, timeout))
453 		cpu_relax();
454 
455 	if (is_lpss_ssp(drv_data))
456 		lpss_ssp_cs_control(spi, false);
457 }
458 
459 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
460 {
461 	if (level)
462 		cs_deassert(spi);
463 	else
464 		cs_assert(spi);
465 }
466 
467 int pxa2xx_spi_flush(struct driver_data *drv_data)
468 {
469 	unsigned long limit = loops_per_jiffy << 1;
470 
471 	do {
472 		while (read_SSSR_bits(drv_data, SSSR_RNE))
473 			pxa2xx_spi_read(drv_data, SSDR);
474 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
475 	write_SSSR_CS(drv_data, SSSR_ROR);
476 
477 	return limit;
478 }
479 
480 static void pxa2xx_spi_off(struct driver_data *drv_data)
481 {
482 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
483 	if (is_mmp2_ssp(drv_data))
484 		return;
485 
486 	pxa_ssp_disable(drv_data->ssp);
487 }
488 
489 static int null_writer(struct driver_data *drv_data)
490 {
491 	u8 n_bytes = drv_data->n_bytes;
492 
493 	if (pxa2xx_spi_txfifo_full(drv_data)
494 		|| (drv_data->tx == drv_data->tx_end))
495 		return 0;
496 
497 	pxa2xx_spi_write(drv_data, SSDR, 0);
498 	drv_data->tx += n_bytes;
499 
500 	return 1;
501 }
502 
503 static int null_reader(struct driver_data *drv_data)
504 {
505 	u8 n_bytes = drv_data->n_bytes;
506 
507 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
508 		pxa2xx_spi_read(drv_data, SSDR);
509 		drv_data->rx += n_bytes;
510 	}
511 
512 	return drv_data->rx == drv_data->rx_end;
513 }
514 
515 static int u8_writer(struct driver_data *drv_data)
516 {
517 	if (pxa2xx_spi_txfifo_full(drv_data)
518 		|| (drv_data->tx == drv_data->tx_end))
519 		return 0;
520 
521 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
522 	++drv_data->tx;
523 
524 	return 1;
525 }
526 
527 static int u8_reader(struct driver_data *drv_data)
528 {
529 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
530 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
531 		++drv_data->rx;
532 	}
533 
534 	return drv_data->rx == drv_data->rx_end;
535 }
536 
537 static int u16_writer(struct driver_data *drv_data)
538 {
539 	if (pxa2xx_spi_txfifo_full(drv_data)
540 		|| (drv_data->tx == drv_data->tx_end))
541 		return 0;
542 
543 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
544 	drv_data->tx += 2;
545 
546 	return 1;
547 }
548 
549 static int u16_reader(struct driver_data *drv_data)
550 {
551 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
552 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
553 		drv_data->rx += 2;
554 	}
555 
556 	return drv_data->rx == drv_data->rx_end;
557 }
558 
559 static int u32_writer(struct driver_data *drv_data)
560 {
561 	if (pxa2xx_spi_txfifo_full(drv_data)
562 		|| (drv_data->tx == drv_data->tx_end))
563 		return 0;
564 
565 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
566 	drv_data->tx += 4;
567 
568 	return 1;
569 }
570 
571 static int u32_reader(struct driver_data *drv_data)
572 {
573 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
574 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
575 		drv_data->rx += 4;
576 	}
577 
578 	return drv_data->rx == drv_data->rx_end;
579 }
580 
581 static void reset_sccr1(struct driver_data *drv_data)
582 {
583 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
584 	struct chip_data *chip;
585 
586 	if (drv_data->controller->cur_msg) {
587 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
588 		threshold = chip->threshold;
589 	} else {
590 		threshold = 0;
591 	}
592 
593 	switch (drv_data->ssp_type) {
594 	case QUARK_X1000_SSP:
595 		mask |= QUARK_X1000_SSCR1_RFT;
596 		break;
597 	case CE4100_SSP:
598 		mask |= CE4100_SSCR1_RFT;
599 		break;
600 	default:
601 		mask |= SSCR1_RFT;
602 		break;
603 	}
604 
605 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
606 }
607 
608 static void int_stop_and_reset(struct driver_data *drv_data)
609 {
610 	/* Clear and disable interrupts */
611 	write_SSSR_CS(drv_data, drv_data->clear_sr);
612 	reset_sccr1(drv_data);
613 	if (pxa25x_ssp_comp(drv_data))
614 		return;
615 
616 	pxa2xx_spi_write(drv_data, SSTO, 0);
617 }
618 
619 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
620 {
621 	int_stop_and_reset(drv_data);
622 	pxa2xx_spi_flush(drv_data);
623 	pxa2xx_spi_off(drv_data);
624 
625 	dev_err(drv_data->ssp->dev, "%s\n", msg);
626 
627 	drv_data->controller->cur_msg->status = err;
628 	spi_finalize_current_transfer(drv_data->controller);
629 }
630 
631 static void int_transfer_complete(struct driver_data *drv_data)
632 {
633 	int_stop_and_reset(drv_data);
634 
635 	spi_finalize_current_transfer(drv_data->controller);
636 }
637 
638 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
639 {
640 	u32 irq_status;
641 
642 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
643 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
644 		irq_status &= ~SSSR_TFS;
645 
646 	if (irq_status & SSSR_ROR) {
647 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
648 		return IRQ_HANDLED;
649 	}
650 
651 	if (irq_status & SSSR_TUR) {
652 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
653 		return IRQ_HANDLED;
654 	}
655 
656 	if (irq_status & SSSR_TINT) {
657 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
658 		if (drv_data->read(drv_data)) {
659 			int_transfer_complete(drv_data);
660 			return IRQ_HANDLED;
661 		}
662 	}
663 
664 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
665 	do {
666 		if (drv_data->read(drv_data)) {
667 			int_transfer_complete(drv_data);
668 			return IRQ_HANDLED;
669 		}
670 	} while (drv_data->write(drv_data));
671 
672 	if (drv_data->read(drv_data)) {
673 		int_transfer_complete(drv_data);
674 		return IRQ_HANDLED;
675 	}
676 
677 	if (drv_data->tx == drv_data->tx_end) {
678 		u32 bytes_left;
679 		u32 sccr1_reg;
680 
681 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
682 		sccr1_reg &= ~SSCR1_TIE;
683 
684 		/*
685 		 * PXA25x_SSP has no timeout, set up Rx threshold for
686 		 * the remaining Rx bytes.
687 		 */
688 		if (pxa25x_ssp_comp(drv_data)) {
689 			u32 rx_thre;
690 
691 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
692 
693 			bytes_left = drv_data->rx_end - drv_data->rx;
694 			switch (drv_data->n_bytes) {
695 			case 4:
696 				bytes_left >>= 2;
697 				break;
698 			case 2:
699 				bytes_left >>= 1;
700 				break;
701 			}
702 
703 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
704 			if (rx_thre > bytes_left)
705 				rx_thre = bytes_left;
706 
707 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
708 		}
709 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
710 	}
711 
712 	/* We did something */
713 	return IRQ_HANDLED;
714 }
715 
716 static void handle_bad_msg(struct driver_data *drv_data)
717 {
718 	int_stop_and_reset(drv_data);
719 	pxa2xx_spi_off(drv_data);
720 
721 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
722 }
723 
724 static irqreturn_t ssp_int(int irq, void *dev_id)
725 {
726 	struct driver_data *drv_data = dev_id;
727 	u32 sccr1_reg;
728 	u32 mask = drv_data->mask_sr;
729 	u32 status;
730 
731 	/*
732 	 * The IRQ might be shared with other peripherals so we must first
733 	 * check that are we RPM suspended or not. If we are we assume that
734 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
735 	 * interrupt is enabled).
736 	 */
737 	if (pm_runtime_suspended(drv_data->ssp->dev))
738 		return IRQ_NONE;
739 
740 	/*
741 	 * If the device is not yet in RPM suspended state and we get an
742 	 * interrupt that is meant for another device, check if status bits
743 	 * are all set to one. That means that the device is already
744 	 * powered off.
745 	 */
746 	status = pxa2xx_spi_read(drv_data, SSSR);
747 	if (status == ~0)
748 		return IRQ_NONE;
749 
750 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
751 
752 	/* Ignore possible writes if we don't need to write */
753 	if (!(sccr1_reg & SSCR1_TIE))
754 		mask &= ~SSSR_TFS;
755 
756 	/* Ignore RX timeout interrupt if it is disabled */
757 	if (!(sccr1_reg & SSCR1_TINTE))
758 		mask &= ~SSSR_TINT;
759 
760 	if (!(status & mask))
761 		return IRQ_NONE;
762 
763 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
764 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
765 
766 	if (!drv_data->controller->cur_msg) {
767 		handle_bad_msg(drv_data);
768 		/* Never fail */
769 		return IRQ_HANDLED;
770 	}
771 
772 	return drv_data->transfer_handler(drv_data);
773 }
774 
775 /*
776  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
777  * input frequency by fractions of 2^24. It also has a divider by 5.
778  *
779  * There are formulas to get baud rate value for given input frequency and
780  * divider parameters, such as DDS_CLK_RATE and SCR:
781  *
782  * Fsys = 200MHz
783  *
784  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
785  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
786  *
787  * DDS_CLK_RATE either 2^n or 2^n / 5.
788  * SCR is in range 0 .. 255
789  *
790  * Divisor = 5^i * 2^j * 2 * k
791  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
792  *       j = [0, 23]     j = 0 iff i = 1
793  *       k = [1, 256]
794  * Special case: j = 0, i = 1: Divisor = 2 / 5
795  *
796  * Accordingly to the specification the recommended values for DDS_CLK_RATE
797  * are:
798  *	Case 1:		2^n, n = [0, 23]
799  *	Case 2:		2^24 * 2 / 5 (0x666666)
800  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
801  *
802  * In all cases the lowest possible value is better.
803  *
804  * The function calculates parameters for all cases and chooses the one closest
805  * to the asked baud rate.
806  */
807 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
808 {
809 	unsigned long xtal = 200000000;
810 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
811 						   see (2) */
812 						/* case 3 */
813 	unsigned long fref1 = fref / 2;		/* case 1 */
814 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
815 	unsigned long scale;
816 	unsigned long q, q1, q2;
817 	long r, r1, r2;
818 	u32 mul;
819 
820 	/* Case 1 */
821 
822 	/* Set initial value for DDS_CLK_RATE */
823 	mul = (1 << 24) >> 1;
824 
825 	/* Calculate initial quot */
826 	q1 = DIV_ROUND_UP(fref1, rate);
827 
828 	/* Scale q1 if it's too big */
829 	if (q1 > 256) {
830 		/* Scale q1 to range [1, 512] */
831 		scale = fls_long(q1 - 1);
832 		if (scale > 9) {
833 			q1 >>= scale - 9;
834 			mul >>= scale - 9;
835 		}
836 
837 		/* Round the result if we have a remainder */
838 		q1 += q1 & 1;
839 	}
840 
841 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
842 	scale = __ffs(q1);
843 	q1 >>= scale;
844 	mul >>= scale;
845 
846 	/* Get the remainder */
847 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
848 
849 	/* Case 2 */
850 
851 	q2 = DIV_ROUND_UP(fref2, rate);
852 	r2 = abs(fref2 / q2 - rate);
853 
854 	/*
855 	 * Choose the best between two: less remainder we have the better. We
856 	 * can't go case 2 if q2 is greater than 256 since SCR register can
857 	 * hold only values 0 .. 255.
858 	 */
859 	if (r2 >= r1 || q2 > 256) {
860 		/* case 1 is better */
861 		r = r1;
862 		q = q1;
863 	} else {
864 		/* case 2 is better */
865 		r = r2;
866 		q = q2;
867 		mul = (1 << 24) * 2 / 5;
868 	}
869 
870 	/* Check case 3 only if the divisor is big enough */
871 	if (fref / rate >= 80) {
872 		u64 fssp;
873 		u32 m;
874 
875 		/* Calculate initial quot */
876 		q1 = DIV_ROUND_UP(fref, rate);
877 		m = (1 << 24) / q1;
878 
879 		/* Get the remainder */
880 		fssp = (u64)fref * m;
881 		do_div(fssp, 1 << 24);
882 		r1 = abs(fssp - rate);
883 
884 		/* Choose this one if it suits better */
885 		if (r1 < r) {
886 			/* case 3 is better */
887 			q = 1;
888 			mul = m;
889 		}
890 	}
891 
892 	*dds = mul;
893 	return q - 1;
894 }
895 
896 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
897 {
898 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
899 	const struct ssp_device *ssp = drv_data->ssp;
900 
901 	rate = min_t(int, ssp_clk, rate);
902 
903 	/*
904 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
905 	 * that the SSP transmission rate can be greater than the device rate.
906 	 */
907 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
908 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
909 	else
910 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
911 }
912 
913 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
914 					   int rate)
915 {
916 	struct chip_data *chip =
917 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
918 	unsigned int clk_div;
919 
920 	switch (drv_data->ssp_type) {
921 	case QUARK_X1000_SSP:
922 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
923 		break;
924 	default:
925 		clk_div = ssp_get_clk_div(drv_data, rate);
926 		break;
927 	}
928 	return clk_div << 8;
929 }
930 
931 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
932 			       struct spi_device *spi,
933 			       struct spi_transfer *xfer)
934 {
935 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
936 
937 	return drv_data->controller_info->enable_dma &&
938 	       xfer->len <= MAX_DMA_LEN &&
939 	       xfer->len >= drv_data->controller_info->dma_burst_size;
940 }
941 
942 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
943 				   struct spi_device *spi,
944 				   struct spi_transfer *transfer)
945 {
946 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
947 	struct chip_data *chip = spi_get_ctldata(spi);
948 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
949 	u32 dma_thresh;
950 	u32 clk_div;
951 	u8 bits;
952 	u32 speed;
953 	u32 cr0;
954 	u32 cr1;
955 	int err;
956 	int dma_mapped;
957 
958 	/* Check if we can DMA this transfer */
959 	if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
960 		/* Warn ... we force this to PIO mode */
961 		dev_warn_ratelimited(&spi->dev,
962 				     "DMA disabled for transfer length %u greater than %d\n",
963 				     transfer->len, MAX_DMA_LEN);
964 	}
965 
966 	/* Setup the transfer state based on the type of transfer */
967 	if (pxa2xx_spi_flush(drv_data) == 0) {
968 		dev_err(&spi->dev, "Flush failed\n");
969 		return -EIO;
970 	}
971 	drv_data->tx = (void *)transfer->tx_buf;
972 	drv_data->tx_end = drv_data->tx + transfer->len;
973 	drv_data->rx = transfer->rx_buf;
974 	drv_data->rx_end = drv_data->rx + transfer->len;
975 
976 	/* Change speed and bit per word on a per transfer */
977 	bits = transfer->bits_per_word;
978 	speed = transfer->speed_hz;
979 
980 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
981 
982 	if (bits <= 8) {
983 		drv_data->n_bytes = 1;
984 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
985 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
986 	} else if (bits <= 16) {
987 		drv_data->n_bytes = 2;
988 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
989 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
990 	} else if (bits <= 32) {
991 		drv_data->n_bytes = 4;
992 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
993 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
994 	}
995 
996 	dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
997 	dma_mapped = spi_xfer_is_dma_mapped(controller, spi, transfer);
998 	if (dma_mapped) {
999 		/* Ensure we have the correct interrupt handler */
1000 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1001 
1002 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1003 		if (err)
1004 			return err;
1005 
1006 		/* Clear status and start DMA engine */
1007 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1008 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1009 
1010 		pxa2xx_spi_dma_start(drv_data);
1011 	} else {
1012 		/* Ensure we have the correct interrupt handler	*/
1013 		drv_data->transfer_handler = interrupt_transfer;
1014 
1015 		/* Clear status  */
1016 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1017 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1018 	}
1019 
1020 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1021 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1022 	if (!pxa25x_ssp_comp(drv_data))
1023 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1024 			controller->max_speed_hz
1025 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1026 			dma_mapped ? "DMA" : "PIO");
1027 	else
1028 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1029 			controller->max_speed_hz / 2
1030 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1031 			dma_mapped ? "DMA" : "PIO");
1032 
1033 	if (is_lpss_ssp(drv_data)) {
1034 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1035 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1036 	}
1037 
1038 	if (is_mrfld_ssp(drv_data)) {
1039 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1040 		u32 thresh = 0;
1041 
1042 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1043 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1044 
1045 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1046 	}
1047 
1048 	if (is_quark_x1000_ssp(drv_data))
1049 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1050 
1051 	/* Stop the SSP */
1052 	if (!is_mmp2_ssp(drv_data))
1053 		pxa_ssp_disable(drv_data->ssp);
1054 
1055 	if (!pxa25x_ssp_comp(drv_data))
1056 		pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
1057 
1058 	/* First set CR1 without interrupt and service enables */
1059 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1060 
1061 	/* See if we need to reload the configuration registers */
1062 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1063 
1064 	/* Restart the SSP */
1065 	pxa_ssp_enable(drv_data->ssp);
1066 
1067 	if (is_mmp2_ssp(drv_data)) {
1068 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1069 
1070 		if (tx_level) {
1071 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1072 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1073 			if (tx_level > transfer->len)
1074 				tx_level = transfer->len;
1075 			drv_data->tx += tx_level;
1076 		}
1077 	}
1078 
1079 	if (spi_controller_is_target(controller)) {
1080 		while (drv_data->write(drv_data))
1081 			;
1082 		if (drv_data->gpiod_ready) {
1083 			gpiod_set_value(drv_data->gpiod_ready, 1);
1084 			udelay(1);
1085 			gpiod_set_value(drv_data->gpiod_ready, 0);
1086 		}
1087 	}
1088 
1089 	/*
1090 	 * Release the data by enabling service requests and interrupts,
1091 	 * without changing any mode bits.
1092 	 */
1093 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1094 
1095 	return 1;
1096 }
1097 
1098 static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1099 {
1100 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1101 
1102 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1103 
1104 	return 0;
1105 }
1106 
1107 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1108 				 struct spi_message *msg)
1109 {
1110 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1111 
1112 	int_stop_and_reset(drv_data);
1113 
1114 	/* Disable the SSP */
1115 	pxa2xx_spi_off(drv_data);
1116 
1117 	/*
1118 	 * Stop the DMA if running. Note DMA callback handler may have unset
1119 	 * the dma_running already, which is fine as stopping is not needed
1120 	 * then but we shouldn't rely this flag for anything else than
1121 	 * stopping. For instance to differentiate between PIO and DMA
1122 	 * transfers.
1123 	 */
1124 	if (atomic_read(&drv_data->dma_running))
1125 		pxa2xx_spi_dma_stop(drv_data);
1126 }
1127 
1128 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1129 {
1130 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1131 
1132 	/* Disable the SSP now */
1133 	pxa2xx_spi_off(drv_data);
1134 
1135 	return 0;
1136 }
1137 
1138 static int setup(struct spi_device *spi)
1139 {
1140 	struct chip_data *chip;
1141 	const struct lpss_config *config;
1142 	struct driver_data *drv_data =
1143 		spi_controller_get_devdata(spi->controller);
1144 	uint tx_thres, tx_hi_thres, rx_thres;
1145 
1146 	switch (drv_data->ssp_type) {
1147 	case QUARK_X1000_SSP:
1148 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1149 		tx_hi_thres = 0;
1150 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1151 		break;
1152 	case MRFLD_SSP:
1153 		tx_thres = TX_THRESH_MRFLD_DFLT;
1154 		tx_hi_thres = 0;
1155 		rx_thres = RX_THRESH_MRFLD_DFLT;
1156 		break;
1157 	case CE4100_SSP:
1158 		tx_thres = TX_THRESH_CE4100_DFLT;
1159 		tx_hi_thres = 0;
1160 		rx_thres = RX_THRESH_CE4100_DFLT;
1161 		break;
1162 	case LPSS_LPT_SSP:
1163 	case LPSS_BYT_SSP:
1164 	case LPSS_BSW_SSP:
1165 	case LPSS_SPT_SSP:
1166 	case LPSS_BXT_SSP:
1167 	case LPSS_CNL_SSP:
1168 		config = lpss_get_config(drv_data);
1169 		tx_thres = config->tx_threshold_lo;
1170 		tx_hi_thres = config->tx_threshold_hi;
1171 		rx_thres = config->rx_threshold;
1172 		break;
1173 	default:
1174 		tx_hi_thres = 0;
1175 		if (spi_controller_is_target(drv_data->controller)) {
1176 			tx_thres = 1;
1177 			rx_thres = 2;
1178 		} else {
1179 			tx_thres = TX_THRESH_DFLT;
1180 			rx_thres = RX_THRESH_DFLT;
1181 		}
1182 		break;
1183 	}
1184 
1185 	if (drv_data->ssp_type == CE4100_SSP) {
1186 		if (spi_get_chipselect(spi, 0) > 4) {
1187 			dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
1188 			return -EINVAL;
1189 		}
1190 	}
1191 
1192 	/* Only allocate on the first setup */
1193 	chip = spi_get_ctldata(spi);
1194 	if (!chip) {
1195 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1196 		if (!chip)
1197 			return -ENOMEM;
1198 	}
1199 
1200 	chip->cr1 = 0;
1201 	if (spi_controller_is_target(drv_data->controller)) {
1202 		chip->cr1 |= SSCR1_SCFR;
1203 		chip->cr1 |= SSCR1_SCLKDIR;
1204 		chip->cr1 |= SSCR1_SFRMDIR;
1205 		chip->cr1 |= SSCR1_SPH;
1206 	}
1207 
1208 	if (is_lpss_ssp(drv_data)) {
1209 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1210 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1211 					  SSITF_TxHiThresh(tx_hi_thres);
1212 	}
1213 
1214 	if (is_mrfld_ssp(drv_data)) {
1215 		chip->lpss_rx_threshold = rx_thres;
1216 		chip->lpss_tx_threshold = tx_thres;
1217 	}
1218 
1219 	switch (drv_data->ssp_type) {
1220 	case QUARK_X1000_SSP:
1221 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1222 				   & QUARK_X1000_SSCR1_RFT)
1223 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1224 				   & QUARK_X1000_SSCR1_TFT);
1225 		break;
1226 	case CE4100_SSP:
1227 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1228 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1229 		break;
1230 	default:
1231 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1232 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1233 		break;
1234 	}
1235 
1236 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1237 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1238 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1239 
1240 	if (spi->mode & SPI_LOOP)
1241 		chip->cr1 |= SSCR1_LBM;
1242 
1243 	spi_set_ctldata(spi, chip);
1244 
1245 	return 0;
1246 }
1247 
1248 static void cleanup(struct spi_device *spi)
1249 {
1250 	struct chip_data *chip = spi_get_ctldata(spi);
1251 
1252 	kfree(chip);
1253 }
1254 
1255 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1256 				      unsigned int cs)
1257 {
1258 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1259 
1260 	switch (drv_data->ssp_type) {
1261 	/*
1262 	 * For some of Intel Atoms the ACPI DeviceSelection used by the Windows
1263 	 * driver starts from 1 instead of 0 so translate it here to match what
1264 	 * Linux expects.
1265 	 */
1266 	case LPSS_BYT_SSP:
1267 	case LPSS_BSW_SSP:
1268 		return cs - 1;
1269 
1270 	default:
1271 		return cs;
1272 	}
1273 }
1274 
1275 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1276 {
1277 	return MAX_DMA_LEN;
1278 }
1279 
1280 int pxa2xx_spi_probe(struct device *dev, struct ssp_device *ssp,
1281 		     struct pxa2xx_spi_controller *platform_info)
1282 {
1283 	struct spi_controller *controller;
1284 	struct driver_data *drv_data;
1285 	const struct lpss_config *config;
1286 	int status;
1287 	u32 tmp;
1288 
1289 	if (platform_info->is_target)
1290 		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1291 	else
1292 		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1293 	if (!controller)
1294 		return dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
1295 
1296 	drv_data = spi_controller_get_devdata(controller);
1297 	drv_data->controller = controller;
1298 	drv_data->controller_info = platform_info;
1299 	drv_data->ssp = ssp;
1300 
1301 	device_set_node(&controller->dev, dev_fwnode(dev));
1302 
1303 	/* The spi->mode bits understood by this driver: */
1304 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1305 
1306 	controller->bus_num = ssp->port_id;
1307 	controller->dma_alignment = DMA_ALIGNMENT;
1308 	controller->cleanup = cleanup;
1309 	controller->setup = setup;
1310 	controller->set_cs = pxa2xx_spi_set_cs;
1311 	controller->transfer_one = pxa2xx_spi_transfer_one;
1312 	controller->target_abort = pxa2xx_spi_target_abort;
1313 	controller->handle_err = pxa2xx_spi_handle_err;
1314 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1315 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1316 	controller->auto_runtime_pm = true;
1317 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1318 
1319 	drv_data->ssp_type = ssp->type;
1320 
1321 	if (pxa25x_ssp_comp(drv_data)) {
1322 		switch (drv_data->ssp_type) {
1323 		case QUARK_X1000_SSP:
1324 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1325 			break;
1326 		default:
1327 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1328 			break;
1329 		}
1330 
1331 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1332 		drv_data->dma_cr1 = 0;
1333 		drv_data->clear_sr = SSSR_ROR;
1334 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1335 	} else {
1336 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1337 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1338 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1339 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1340 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1341 						| SSSR_ROR | SSSR_TUR;
1342 	}
1343 
1344 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1345 			drv_data);
1346 	if (status < 0)
1347 		return dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
1348 
1349 	/* Setup DMA if requested */
1350 	if (platform_info->enable_dma) {
1351 		status = pxa2xx_spi_dma_setup(drv_data);
1352 		if (status) {
1353 			dev_warn(dev, "no DMA channels available, using PIO\n");
1354 			platform_info->enable_dma = false;
1355 		} else {
1356 			controller->can_dma = pxa2xx_spi_can_dma;
1357 			controller->max_dma_len = MAX_DMA_LEN;
1358 			controller->max_transfer_size =
1359 				pxa2xx_spi_max_dma_transfer_size;
1360 
1361 			dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
1362 		}
1363 	}
1364 
1365 	/* Enable SOC clock */
1366 	status = clk_prepare_enable(ssp->clk);
1367 	if (status)
1368 		goto out_error_dma_irq_alloc;
1369 
1370 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1371 	/*
1372 	 * Set minimum speed for all other platforms than Intel Quark which is
1373 	 * able do under 1 Hz transfers.
1374 	 */
1375 	if (!pxa25x_ssp_comp(drv_data))
1376 		controller->min_speed_hz =
1377 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1378 	else if (!is_quark_x1000_ssp(drv_data))
1379 		controller->min_speed_hz =
1380 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1381 
1382 	pxa_ssp_disable(ssp);
1383 
1384 	/* Load default SSP configuration */
1385 	switch (drv_data->ssp_type) {
1386 	case QUARK_X1000_SSP:
1387 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1388 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1389 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1390 
1391 		/* Using the Motorola SPI protocol and use 8 bit frame */
1392 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1393 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1394 		break;
1395 	case CE4100_SSP:
1396 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1397 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1398 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1399 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1400 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1401 		break;
1402 	default:
1403 
1404 		if (spi_controller_is_target(controller)) {
1405 			tmp = SSCR1_SCFR |
1406 			      SSCR1_SCLKDIR |
1407 			      SSCR1_SFRMDIR |
1408 			      SSCR1_RxTresh(2) |
1409 			      SSCR1_TxTresh(1) |
1410 			      SSCR1_SPH;
1411 		} else {
1412 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1413 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1414 		}
1415 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1416 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1417 		if (!spi_controller_is_target(controller))
1418 			tmp |= SSCR0_SCR(2);
1419 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1420 		break;
1421 	}
1422 
1423 	if (!pxa25x_ssp_comp(drv_data))
1424 		pxa2xx_spi_write(drv_data, SSTO, 0);
1425 
1426 	if (!is_quark_x1000_ssp(drv_data))
1427 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1428 
1429 	if (is_lpss_ssp(drv_data)) {
1430 		lpss_ssp_setup(drv_data);
1431 		config = lpss_get_config(drv_data);
1432 		if (config->reg_capabilities >= 0) {
1433 			tmp = __lpss_ssp_read_priv(drv_data,
1434 						   config->reg_capabilities);
1435 			tmp &= LPSS_CAPS_CS_EN_MASK;
1436 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1437 			platform_info->num_chipselect = ffz(tmp);
1438 		}
1439 	}
1440 	controller->num_chipselect = platform_info->num_chipselect;
1441 	controller->use_gpio_descriptors = true;
1442 
1443 	if (platform_info->is_target) {
1444 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1445 						"ready", GPIOD_OUT_LOW);
1446 		if (IS_ERR(drv_data->gpiod_ready)) {
1447 			status = PTR_ERR(drv_data->gpiod_ready);
1448 			goto out_error_clock_enabled;
1449 		}
1450 	}
1451 
1452 	/* Register with the SPI framework */
1453 	dev_set_drvdata(dev, drv_data);
1454 	status = spi_register_controller(controller);
1455 	if (status) {
1456 		dev_err_probe(dev, status, "problem registering SPI controller\n");
1457 		goto out_error_clock_enabled;
1458 	}
1459 
1460 	return status;
1461 
1462 out_error_clock_enabled:
1463 	clk_disable_unprepare(ssp->clk);
1464 
1465 out_error_dma_irq_alloc:
1466 	pxa2xx_spi_dma_release(drv_data);
1467 	free_irq(ssp->irq, drv_data);
1468 
1469 	return status;
1470 }
1471 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_probe, SPI_PXA2xx);
1472 
1473 void pxa2xx_spi_remove(struct device *dev)
1474 {
1475 	struct driver_data *drv_data = dev_get_drvdata(dev);
1476 	struct ssp_device *ssp = drv_data->ssp;
1477 
1478 	spi_unregister_controller(drv_data->controller);
1479 
1480 	/* Disable the SSP at the peripheral and SOC level */
1481 	pxa_ssp_disable(ssp);
1482 	clk_disable_unprepare(ssp->clk);
1483 
1484 	/* Release DMA */
1485 	if (drv_data->controller_info->enable_dma)
1486 		pxa2xx_spi_dma_release(drv_data);
1487 
1488 	/* Release IRQ */
1489 	free_irq(ssp->irq, drv_data);
1490 }
1491 EXPORT_SYMBOL_NS_GPL(pxa2xx_spi_remove, SPI_PXA2xx);
1492 
1493 static int pxa2xx_spi_suspend(struct device *dev)
1494 {
1495 	struct driver_data *drv_data = dev_get_drvdata(dev);
1496 	struct ssp_device *ssp = drv_data->ssp;
1497 	int status;
1498 
1499 	status = spi_controller_suspend(drv_data->controller);
1500 	if (status)
1501 		return status;
1502 
1503 	pxa_ssp_disable(ssp);
1504 
1505 	if (!pm_runtime_suspended(dev))
1506 		clk_disable_unprepare(ssp->clk);
1507 
1508 	return 0;
1509 }
1510 
1511 static int pxa2xx_spi_resume(struct device *dev)
1512 {
1513 	struct driver_data *drv_data = dev_get_drvdata(dev);
1514 	struct ssp_device *ssp = drv_data->ssp;
1515 	int status;
1516 
1517 	/* Enable the SSP clock */
1518 	if (!pm_runtime_suspended(dev)) {
1519 		status = clk_prepare_enable(ssp->clk);
1520 		if (status)
1521 			return status;
1522 	}
1523 
1524 	/* Start the queue running */
1525 	return spi_controller_resume(drv_data->controller);
1526 }
1527 
1528 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1529 {
1530 	struct driver_data *drv_data = dev_get_drvdata(dev);
1531 
1532 	clk_disable_unprepare(drv_data->ssp->clk);
1533 	return 0;
1534 }
1535 
1536 static int pxa2xx_spi_runtime_resume(struct device *dev)
1537 {
1538 	struct driver_data *drv_data = dev_get_drvdata(dev);
1539 
1540 	return clk_prepare_enable(drv_data->ssp->clk);
1541 }
1542 
1543 EXPORT_NS_GPL_DEV_PM_OPS(pxa2xx_spi_pm_ops, SPI_PXA2xx) = {
1544 	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1545 	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1546 };
1547 
1548 MODULE_AUTHOR("Stephen Street");
1549 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller core driver");
1550 MODULE_LICENSE("GPL");
1551