xref: /linux/drivers/spi/spi-pxa2xx.c (revision b6ebbac51bedf9e98e837688bc838f400196da5e)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/slab.h>
32 #include <linux/clk.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/acpi.h>
35 
36 #include "spi-pxa2xx.h"
37 
38 MODULE_AUTHOR("Stephen Street");
39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
40 MODULE_LICENSE("GPL");
41 MODULE_ALIAS("platform:pxa2xx-spi");
42 
43 #define TIMOUT_DFLT		1000
44 
45 /*
46  * for testing SSCR1 changes that require SSP restart, basically
47  * everything except the service and interrupt enables, the pxa270 developer
48  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
49  * list, but the PXA255 dev man says all bits without really meaning the
50  * service and interrupt enables
51  */
52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
53 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
54 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
55 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
56 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
57 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
58 
59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
60 				| QUARK_X1000_SSCR1_EFWR	\
61 				| QUARK_X1000_SSCR1_RFT		\
62 				| QUARK_X1000_SSCR1_TFT		\
63 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
64 
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
68 #define LPSS_CAPS_CS_EN_SHIFT			9
69 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
70 
71 struct lpss_config {
72 	/* LPSS offset from drv_data->ioaddr */
73 	unsigned offset;
74 	/* Register offsets from drv_data->lpss_base or -1 */
75 	int reg_general;
76 	int reg_ssp;
77 	int reg_cs_ctrl;
78 	int reg_capabilities;
79 	/* FIFO thresholds */
80 	u32 rx_threshold;
81 	u32 tx_threshold_lo;
82 	u32 tx_threshold_hi;
83 	/* Chip select control */
84 	unsigned cs_sel_shift;
85 	unsigned cs_sel_mask;
86 	unsigned cs_num;
87 };
88 
89 /* Keep these sorted with enum pxa_ssp_type */
90 static const struct lpss_config lpss_platforms[] = {
91 	{	/* LPSS_LPT_SSP */
92 		.offset = 0x800,
93 		.reg_general = 0x08,
94 		.reg_ssp = 0x0c,
95 		.reg_cs_ctrl = 0x18,
96 		.reg_capabilities = -1,
97 		.rx_threshold = 64,
98 		.tx_threshold_lo = 160,
99 		.tx_threshold_hi = 224,
100 	},
101 	{	/* LPSS_BYT_SSP */
102 		.offset = 0x400,
103 		.reg_general = 0x08,
104 		.reg_ssp = 0x0c,
105 		.reg_cs_ctrl = 0x18,
106 		.reg_capabilities = -1,
107 		.rx_threshold = 64,
108 		.tx_threshold_lo = 160,
109 		.tx_threshold_hi = 224,
110 	},
111 	{	/* LPSS_BSW_SSP */
112 		.offset = 0x400,
113 		.reg_general = 0x08,
114 		.reg_ssp = 0x0c,
115 		.reg_cs_ctrl = 0x18,
116 		.reg_capabilities = -1,
117 		.rx_threshold = 64,
118 		.tx_threshold_lo = 160,
119 		.tx_threshold_hi = 224,
120 		.cs_sel_shift = 2,
121 		.cs_sel_mask = 1 << 2,
122 		.cs_num = 2,
123 	},
124 	{	/* LPSS_SPT_SSP */
125 		.offset = 0x200,
126 		.reg_general = -1,
127 		.reg_ssp = 0x20,
128 		.reg_cs_ctrl = 0x24,
129 		.reg_capabilities = -1,
130 		.rx_threshold = 1,
131 		.tx_threshold_lo = 32,
132 		.tx_threshold_hi = 56,
133 	},
134 	{	/* LPSS_BXT_SSP */
135 		.offset = 0x200,
136 		.reg_general = -1,
137 		.reg_ssp = 0x20,
138 		.reg_cs_ctrl = 0x24,
139 		.reg_capabilities = 0xfc,
140 		.rx_threshold = 1,
141 		.tx_threshold_lo = 16,
142 		.tx_threshold_hi = 48,
143 		.cs_sel_shift = 8,
144 		.cs_sel_mask = 3 << 8,
145 	},
146 };
147 
148 static inline const struct lpss_config
149 *lpss_get_config(const struct driver_data *drv_data)
150 {
151 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
152 }
153 
154 static bool is_lpss_ssp(const struct driver_data *drv_data)
155 {
156 	switch (drv_data->ssp_type) {
157 	case LPSS_LPT_SSP:
158 	case LPSS_BYT_SSP:
159 	case LPSS_BSW_SSP:
160 	case LPSS_SPT_SSP:
161 	case LPSS_BXT_SSP:
162 		return true;
163 	default:
164 		return false;
165 	}
166 }
167 
168 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
169 {
170 	return drv_data->ssp_type == QUARK_X1000_SSP;
171 }
172 
173 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
174 {
175 	switch (drv_data->ssp_type) {
176 	case QUARK_X1000_SSP:
177 		return QUARK_X1000_SSCR1_CHANGE_MASK;
178 	default:
179 		return SSCR1_CHANGE_MASK;
180 	}
181 }
182 
183 static u32
184 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
185 {
186 	switch (drv_data->ssp_type) {
187 	case QUARK_X1000_SSP:
188 		return RX_THRESH_QUARK_X1000_DFLT;
189 	default:
190 		return RX_THRESH_DFLT;
191 	}
192 }
193 
194 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
195 {
196 	u32 mask;
197 
198 	switch (drv_data->ssp_type) {
199 	case QUARK_X1000_SSP:
200 		mask = QUARK_X1000_SSSR_TFL_MASK;
201 		break;
202 	default:
203 		mask = SSSR_TFL_MASK;
204 		break;
205 	}
206 
207 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
208 }
209 
210 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
211 				     u32 *sccr1_reg)
212 {
213 	u32 mask;
214 
215 	switch (drv_data->ssp_type) {
216 	case QUARK_X1000_SSP:
217 		mask = QUARK_X1000_SSCR1_RFT;
218 		break;
219 	default:
220 		mask = SSCR1_RFT;
221 		break;
222 	}
223 	*sccr1_reg &= ~mask;
224 }
225 
226 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
227 				   u32 *sccr1_reg, u32 threshold)
228 {
229 	switch (drv_data->ssp_type) {
230 	case QUARK_X1000_SSP:
231 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
232 		break;
233 	default:
234 		*sccr1_reg |= SSCR1_RxTresh(threshold);
235 		break;
236 	}
237 }
238 
239 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
240 				  u32 clk_div, u8 bits)
241 {
242 	switch (drv_data->ssp_type) {
243 	case QUARK_X1000_SSP:
244 		return clk_div
245 			| QUARK_X1000_SSCR0_Motorola
246 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
247 			| SSCR0_SSE;
248 	default:
249 		return clk_div
250 			| SSCR0_Motorola
251 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
252 			| SSCR0_SSE
253 			| (bits > 16 ? SSCR0_EDSS : 0);
254 	}
255 }
256 
257 /*
258  * Read and write LPSS SSP private registers. Caller must first check that
259  * is_lpss_ssp() returns true before these can be called.
260  */
261 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
262 {
263 	WARN_ON(!drv_data->lpss_base);
264 	return readl(drv_data->lpss_base + offset);
265 }
266 
267 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
268 				  unsigned offset, u32 value)
269 {
270 	WARN_ON(!drv_data->lpss_base);
271 	writel(value, drv_data->lpss_base + offset);
272 }
273 
274 /*
275  * lpss_ssp_setup - perform LPSS SSP specific setup
276  * @drv_data: pointer to the driver private data
277  *
278  * Perform LPSS SSP specific setup. This function must be called first if
279  * one is going to use LPSS SSP private registers.
280  */
281 static void lpss_ssp_setup(struct driver_data *drv_data)
282 {
283 	const struct lpss_config *config;
284 	u32 value;
285 
286 	config = lpss_get_config(drv_data);
287 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
288 
289 	/* Enable software chip select control */
290 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
291 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
292 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
293 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
294 
295 	/* Enable multiblock DMA transfers */
296 	if (drv_data->master_info->enable_dma) {
297 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
298 
299 		if (config->reg_general >= 0) {
300 			value = __lpss_ssp_read_priv(drv_data,
301 						     config->reg_general);
302 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
303 			__lpss_ssp_write_priv(drv_data,
304 					      config->reg_general, value);
305 		}
306 	}
307 }
308 
309 static void lpss_ssp_select_cs(struct driver_data *drv_data,
310 			       const struct lpss_config *config)
311 {
312 	u32 value, cs;
313 
314 	if (!config->cs_sel_mask)
315 		return;
316 
317 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
318 
319 	cs = drv_data->cur_msg->spi->chip_select;
320 	cs <<= config->cs_sel_shift;
321 	if (cs != (value & config->cs_sel_mask)) {
322 		/*
323 		 * When switching another chip select output active the
324 		 * output must be selected first and wait 2 ssp_clk cycles
325 		 * before changing state to active. Otherwise a short
326 		 * glitch will occur on the previous chip select since
327 		 * output select is latched but state control is not.
328 		 */
329 		value &= ~config->cs_sel_mask;
330 		value |= cs;
331 		__lpss_ssp_write_priv(drv_data,
332 				      config->reg_cs_ctrl, value);
333 		ndelay(1000000000 /
334 		       (drv_data->master->max_speed_hz / 2));
335 	}
336 }
337 
338 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
339 {
340 	const struct lpss_config *config;
341 	u32 value;
342 
343 	config = lpss_get_config(drv_data);
344 
345 	if (enable)
346 		lpss_ssp_select_cs(drv_data, config);
347 
348 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
349 	if (enable)
350 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
351 	else
352 		value |= LPSS_CS_CONTROL_CS_HIGH;
353 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
354 }
355 
356 static void cs_assert(struct driver_data *drv_data)
357 {
358 	struct chip_data *chip = drv_data->cur_chip;
359 
360 	if (drv_data->ssp_type == CE4100_SSP) {
361 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
362 		return;
363 	}
364 
365 	if (chip->cs_control) {
366 		chip->cs_control(PXA2XX_CS_ASSERT);
367 		return;
368 	}
369 
370 	if (gpio_is_valid(chip->gpio_cs)) {
371 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
372 		return;
373 	}
374 
375 	if (is_lpss_ssp(drv_data))
376 		lpss_ssp_cs_control(drv_data, true);
377 }
378 
379 static void cs_deassert(struct driver_data *drv_data)
380 {
381 	struct chip_data *chip = drv_data->cur_chip;
382 
383 	if (drv_data->ssp_type == CE4100_SSP)
384 		return;
385 
386 	if (chip->cs_control) {
387 		chip->cs_control(PXA2XX_CS_DEASSERT);
388 		return;
389 	}
390 
391 	if (gpio_is_valid(chip->gpio_cs)) {
392 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
393 		return;
394 	}
395 
396 	if (is_lpss_ssp(drv_data))
397 		lpss_ssp_cs_control(drv_data, false);
398 }
399 
400 int pxa2xx_spi_flush(struct driver_data *drv_data)
401 {
402 	unsigned long limit = loops_per_jiffy << 1;
403 
404 	do {
405 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
406 			pxa2xx_spi_read(drv_data, SSDR);
407 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
408 	write_SSSR_CS(drv_data, SSSR_ROR);
409 
410 	return limit;
411 }
412 
413 static int null_writer(struct driver_data *drv_data)
414 {
415 	u8 n_bytes = drv_data->n_bytes;
416 
417 	if (pxa2xx_spi_txfifo_full(drv_data)
418 		|| (drv_data->tx == drv_data->tx_end))
419 		return 0;
420 
421 	pxa2xx_spi_write(drv_data, SSDR, 0);
422 	drv_data->tx += n_bytes;
423 
424 	return 1;
425 }
426 
427 static int null_reader(struct driver_data *drv_data)
428 {
429 	u8 n_bytes = drv_data->n_bytes;
430 
431 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
432 	       && (drv_data->rx < drv_data->rx_end)) {
433 		pxa2xx_spi_read(drv_data, SSDR);
434 		drv_data->rx += n_bytes;
435 	}
436 
437 	return drv_data->rx == drv_data->rx_end;
438 }
439 
440 static int u8_writer(struct driver_data *drv_data)
441 {
442 	if (pxa2xx_spi_txfifo_full(drv_data)
443 		|| (drv_data->tx == drv_data->tx_end))
444 		return 0;
445 
446 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
447 	++drv_data->tx;
448 
449 	return 1;
450 }
451 
452 static int u8_reader(struct driver_data *drv_data)
453 {
454 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
455 	       && (drv_data->rx < drv_data->rx_end)) {
456 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
457 		++drv_data->rx;
458 	}
459 
460 	return drv_data->rx == drv_data->rx_end;
461 }
462 
463 static int u16_writer(struct driver_data *drv_data)
464 {
465 	if (pxa2xx_spi_txfifo_full(drv_data)
466 		|| (drv_data->tx == drv_data->tx_end))
467 		return 0;
468 
469 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
470 	drv_data->tx += 2;
471 
472 	return 1;
473 }
474 
475 static int u16_reader(struct driver_data *drv_data)
476 {
477 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
478 	       && (drv_data->rx < drv_data->rx_end)) {
479 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
480 		drv_data->rx += 2;
481 	}
482 
483 	return drv_data->rx == drv_data->rx_end;
484 }
485 
486 static int u32_writer(struct driver_data *drv_data)
487 {
488 	if (pxa2xx_spi_txfifo_full(drv_data)
489 		|| (drv_data->tx == drv_data->tx_end))
490 		return 0;
491 
492 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
493 	drv_data->tx += 4;
494 
495 	return 1;
496 }
497 
498 static int u32_reader(struct driver_data *drv_data)
499 {
500 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
501 	       && (drv_data->rx < drv_data->rx_end)) {
502 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
503 		drv_data->rx += 4;
504 	}
505 
506 	return drv_data->rx == drv_data->rx_end;
507 }
508 
509 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
510 {
511 	struct spi_message *msg = drv_data->cur_msg;
512 	struct spi_transfer *trans = drv_data->cur_transfer;
513 
514 	/* Move to next transfer */
515 	if (trans->transfer_list.next != &msg->transfers) {
516 		drv_data->cur_transfer =
517 			list_entry(trans->transfer_list.next,
518 					struct spi_transfer,
519 					transfer_list);
520 		return RUNNING_STATE;
521 	} else
522 		return DONE_STATE;
523 }
524 
525 /* caller already set message->status; dma and pio irqs are blocked */
526 static void giveback(struct driver_data *drv_data)
527 {
528 	struct spi_transfer* last_transfer;
529 	struct spi_message *msg;
530 	unsigned long timeout;
531 
532 	msg = drv_data->cur_msg;
533 	drv_data->cur_msg = NULL;
534 	drv_data->cur_transfer = NULL;
535 
536 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
537 					transfer_list);
538 
539 	/* Delay if requested before any change in chip select */
540 	if (last_transfer->delay_usecs)
541 		udelay(last_transfer->delay_usecs);
542 
543 	/* Wait until SSP becomes idle before deasserting the CS */
544 	timeout = jiffies + msecs_to_jiffies(10);
545 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
546 	       !time_after(jiffies, timeout))
547 		cpu_relax();
548 
549 	/* Drop chip select UNLESS cs_change is true or we are returning
550 	 * a message with an error, or next message is for another chip
551 	 */
552 	if (!last_transfer->cs_change)
553 		cs_deassert(drv_data);
554 	else {
555 		struct spi_message *next_msg;
556 
557 		/* Holding of cs was hinted, but we need to make sure
558 		 * the next message is for the same chip.  Don't waste
559 		 * time with the following tests unless this was hinted.
560 		 *
561 		 * We cannot postpone this until pump_messages, because
562 		 * after calling msg->complete (below) the driver that
563 		 * sent the current message could be unloaded, which
564 		 * could invalidate the cs_control() callback...
565 		 */
566 
567 		/* get a pointer to the next message, if any */
568 		next_msg = spi_get_next_queued_message(drv_data->master);
569 
570 		/* see if the next and current messages point
571 		 * to the same chip
572 		 */
573 		if ((next_msg && next_msg->spi != msg->spi) ||
574 		    msg->state == ERROR_STATE)
575 			cs_deassert(drv_data);
576 	}
577 
578 	drv_data->cur_chip = NULL;
579 	spi_finalize_current_message(drv_data->master);
580 }
581 
582 static void reset_sccr1(struct driver_data *drv_data)
583 {
584 	struct chip_data *chip = drv_data->cur_chip;
585 	u32 sccr1_reg;
586 
587 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
588 	switch (drv_data->ssp_type) {
589 	case QUARK_X1000_SSP:
590 		sccr1_reg &= ~QUARK_X1000_SSCR1_RFT;
591 		break;
592 	default:
593 		sccr1_reg &= ~SSCR1_RFT;
594 		break;
595 	}
596 	sccr1_reg |= chip->threshold;
597 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
598 }
599 
600 static void int_error_stop(struct driver_data *drv_data, const char* msg)
601 {
602 	/* Stop and reset SSP */
603 	write_SSSR_CS(drv_data, drv_data->clear_sr);
604 	reset_sccr1(drv_data);
605 	if (!pxa25x_ssp_comp(drv_data))
606 		pxa2xx_spi_write(drv_data, SSTO, 0);
607 	pxa2xx_spi_flush(drv_data);
608 	pxa2xx_spi_write(drv_data, SSCR0,
609 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
610 
611 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
612 
613 	drv_data->cur_msg->state = ERROR_STATE;
614 	tasklet_schedule(&drv_data->pump_transfers);
615 }
616 
617 static void int_transfer_complete(struct driver_data *drv_data)
618 {
619 	/* Clear and disable interrupts */
620 	write_SSSR_CS(drv_data, drv_data->clear_sr);
621 	reset_sccr1(drv_data);
622 	if (!pxa25x_ssp_comp(drv_data))
623 		pxa2xx_spi_write(drv_data, SSTO, 0);
624 
625 	/* Update total byte transferred return count actual bytes read */
626 	drv_data->cur_msg->actual_length += drv_data->len -
627 				(drv_data->rx_end - drv_data->rx);
628 
629 	/* Transfer delays and chip select release are
630 	 * handled in pump_transfers or giveback
631 	 */
632 
633 	/* Move to next transfer */
634 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
635 
636 	/* Schedule transfer tasklet */
637 	tasklet_schedule(&drv_data->pump_transfers);
638 }
639 
640 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
641 {
642 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
643 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
644 
645 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
646 
647 	if (irq_status & SSSR_ROR) {
648 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
649 		return IRQ_HANDLED;
650 	}
651 
652 	if (irq_status & SSSR_TINT) {
653 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
654 		if (drv_data->read(drv_data)) {
655 			int_transfer_complete(drv_data);
656 			return IRQ_HANDLED;
657 		}
658 	}
659 
660 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
661 	do {
662 		if (drv_data->read(drv_data)) {
663 			int_transfer_complete(drv_data);
664 			return IRQ_HANDLED;
665 		}
666 	} while (drv_data->write(drv_data));
667 
668 	if (drv_data->read(drv_data)) {
669 		int_transfer_complete(drv_data);
670 		return IRQ_HANDLED;
671 	}
672 
673 	if (drv_data->tx == drv_data->tx_end) {
674 		u32 bytes_left;
675 		u32 sccr1_reg;
676 
677 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
678 		sccr1_reg &= ~SSCR1_TIE;
679 
680 		/*
681 		 * PXA25x_SSP has no timeout, set up rx threshould for the
682 		 * remaining RX bytes.
683 		 */
684 		if (pxa25x_ssp_comp(drv_data)) {
685 			u32 rx_thre;
686 
687 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
688 
689 			bytes_left = drv_data->rx_end - drv_data->rx;
690 			switch (drv_data->n_bytes) {
691 			case 4:
692 				bytes_left >>= 1;
693 			case 2:
694 				bytes_left >>= 1;
695 			}
696 
697 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
698 			if (rx_thre > bytes_left)
699 				rx_thre = bytes_left;
700 
701 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
702 		}
703 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
704 	}
705 
706 	/* We did something */
707 	return IRQ_HANDLED;
708 }
709 
710 static irqreturn_t ssp_int(int irq, void *dev_id)
711 {
712 	struct driver_data *drv_data = dev_id;
713 	u32 sccr1_reg;
714 	u32 mask = drv_data->mask_sr;
715 	u32 status;
716 
717 	/*
718 	 * The IRQ might be shared with other peripherals so we must first
719 	 * check that are we RPM suspended or not. If we are we assume that
720 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
721 	 * interrupt is enabled).
722 	 */
723 	if (pm_runtime_suspended(&drv_data->pdev->dev))
724 		return IRQ_NONE;
725 
726 	/*
727 	 * If the device is not yet in RPM suspended state and we get an
728 	 * interrupt that is meant for another device, check if status bits
729 	 * are all set to one. That means that the device is already
730 	 * powered off.
731 	 */
732 	status = pxa2xx_spi_read(drv_data, SSSR);
733 	if (status == ~0)
734 		return IRQ_NONE;
735 
736 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
737 
738 	/* Ignore possible writes if we don't need to write */
739 	if (!(sccr1_reg & SSCR1_TIE))
740 		mask &= ~SSSR_TFS;
741 
742 	/* Ignore RX timeout interrupt if it is disabled */
743 	if (!(sccr1_reg & SSCR1_TINTE))
744 		mask &= ~SSSR_TINT;
745 
746 	if (!(status & mask))
747 		return IRQ_NONE;
748 
749 	if (!drv_data->cur_msg) {
750 
751 		pxa2xx_spi_write(drv_data, SSCR0,
752 				 pxa2xx_spi_read(drv_data, SSCR0)
753 				 & ~SSCR0_SSE);
754 		pxa2xx_spi_write(drv_data, SSCR1,
755 				 pxa2xx_spi_read(drv_data, SSCR1)
756 				 & ~drv_data->int_cr1);
757 		if (!pxa25x_ssp_comp(drv_data))
758 			pxa2xx_spi_write(drv_data, SSTO, 0);
759 		write_SSSR_CS(drv_data, drv_data->clear_sr);
760 
761 		dev_err(&drv_data->pdev->dev,
762 			"bad message state in interrupt handler\n");
763 
764 		/* Never fail */
765 		return IRQ_HANDLED;
766 	}
767 
768 	return drv_data->transfer_handler(drv_data);
769 }
770 
771 /*
772  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
773  * input frequency by fractions of 2^24. It also has a divider by 5.
774  *
775  * There are formulas to get baud rate value for given input frequency and
776  * divider parameters, such as DDS_CLK_RATE and SCR:
777  *
778  * Fsys = 200MHz
779  *
780  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
781  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
782  *
783  * DDS_CLK_RATE either 2^n or 2^n / 5.
784  * SCR is in range 0 .. 255
785  *
786  * Divisor = 5^i * 2^j * 2 * k
787  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
788  *       j = [0, 23]     j = 0 iff i = 1
789  *       k = [1, 256]
790  * Special case: j = 0, i = 1: Divisor = 2 / 5
791  *
792  * Accordingly to the specification the recommended values for DDS_CLK_RATE
793  * are:
794  *	Case 1:		2^n, n = [0, 23]
795  *	Case 2:		2^24 * 2 / 5 (0x666666)
796  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
797  *
798  * In all cases the lowest possible value is better.
799  *
800  * The function calculates parameters for all cases and chooses the one closest
801  * to the asked baud rate.
802  */
803 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
804 {
805 	unsigned long xtal = 200000000;
806 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
807 						   see (2) */
808 						/* case 3 */
809 	unsigned long fref1 = fref / 2;		/* case 1 */
810 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
811 	unsigned long scale;
812 	unsigned long q, q1, q2;
813 	long r, r1, r2;
814 	u32 mul;
815 
816 	/* Case 1 */
817 
818 	/* Set initial value for DDS_CLK_RATE */
819 	mul = (1 << 24) >> 1;
820 
821 	/* Calculate initial quot */
822 	q1 = DIV_ROUND_UP(fref1, rate);
823 
824 	/* Scale q1 if it's too big */
825 	if (q1 > 256) {
826 		/* Scale q1 to range [1, 512] */
827 		scale = fls_long(q1 - 1);
828 		if (scale > 9) {
829 			q1 >>= scale - 9;
830 			mul >>= scale - 9;
831 		}
832 
833 		/* Round the result if we have a remainder */
834 		q1 += q1 & 1;
835 	}
836 
837 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
838 	scale = __ffs(q1);
839 	q1 >>= scale;
840 	mul >>= scale;
841 
842 	/* Get the remainder */
843 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
844 
845 	/* Case 2 */
846 
847 	q2 = DIV_ROUND_UP(fref2, rate);
848 	r2 = abs(fref2 / q2 - rate);
849 
850 	/*
851 	 * Choose the best between two: less remainder we have the better. We
852 	 * can't go case 2 if q2 is greater than 256 since SCR register can
853 	 * hold only values 0 .. 255.
854 	 */
855 	if (r2 >= r1 || q2 > 256) {
856 		/* case 1 is better */
857 		r = r1;
858 		q = q1;
859 	} else {
860 		/* case 2 is better */
861 		r = r2;
862 		q = q2;
863 		mul = (1 << 24) * 2 / 5;
864 	}
865 
866 	/* Check case 3 only if the divisor is big enough */
867 	if (fref / rate >= 80) {
868 		u64 fssp;
869 		u32 m;
870 
871 		/* Calculate initial quot */
872 		q1 = DIV_ROUND_UP(fref, rate);
873 		m = (1 << 24) / q1;
874 
875 		/* Get the remainder */
876 		fssp = (u64)fref * m;
877 		do_div(fssp, 1 << 24);
878 		r1 = abs(fssp - rate);
879 
880 		/* Choose this one if it suits better */
881 		if (r1 < r) {
882 			/* case 3 is better */
883 			q = 1;
884 			mul = m;
885 		}
886 	}
887 
888 	*dds = mul;
889 	return q - 1;
890 }
891 
892 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
893 {
894 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
895 	const struct ssp_device *ssp = drv_data->ssp;
896 
897 	rate = min_t(int, ssp_clk, rate);
898 
899 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
900 		return (ssp_clk / (2 * rate) - 1) & 0xff;
901 	else
902 		return (ssp_clk / rate - 1) & 0xfff;
903 }
904 
905 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
906 					   int rate)
907 {
908 	struct chip_data *chip = drv_data->cur_chip;
909 	unsigned int clk_div;
910 
911 	switch (drv_data->ssp_type) {
912 	case QUARK_X1000_SSP:
913 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
914 		break;
915 	default:
916 		clk_div = ssp_get_clk_div(drv_data, rate);
917 		break;
918 	}
919 	return clk_div << 8;
920 }
921 
922 static bool pxa2xx_spi_can_dma(struct spi_master *master,
923 			       struct spi_device *spi,
924 			       struct spi_transfer *xfer)
925 {
926 	struct chip_data *chip = spi_get_ctldata(spi);
927 
928 	return chip->enable_dma &&
929 	       xfer->len <= MAX_DMA_LEN &&
930 	       xfer->len >= chip->dma_burst_size;
931 }
932 
933 static void pump_transfers(unsigned long data)
934 {
935 	struct driver_data *drv_data = (struct driver_data *)data;
936 	struct spi_master *master = drv_data->master;
937 	struct spi_message *message = NULL;
938 	struct spi_transfer *transfer = NULL;
939 	struct spi_transfer *previous = NULL;
940 	struct chip_data *chip = NULL;
941 	u32 clk_div = 0;
942 	u8 bits = 0;
943 	u32 speed = 0;
944 	u32 cr0;
945 	u32 cr1;
946 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
947 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
948 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
949 	int err;
950 	int dma_mapped;
951 
952 	/* Get current state information */
953 	message = drv_data->cur_msg;
954 	transfer = drv_data->cur_transfer;
955 	chip = drv_data->cur_chip;
956 
957 	/* Handle for abort */
958 	if (message->state == ERROR_STATE) {
959 		message->status = -EIO;
960 		giveback(drv_data);
961 		return;
962 	}
963 
964 	/* Handle end of message */
965 	if (message->state == DONE_STATE) {
966 		message->status = 0;
967 		giveback(drv_data);
968 		return;
969 	}
970 
971 	/* Delay if requested at end of transfer before CS change */
972 	if (message->state == RUNNING_STATE) {
973 		previous = list_entry(transfer->transfer_list.prev,
974 					struct spi_transfer,
975 					transfer_list);
976 		if (previous->delay_usecs)
977 			udelay(previous->delay_usecs);
978 
979 		/* Drop chip select only if cs_change is requested */
980 		if (previous->cs_change)
981 			cs_deassert(drv_data);
982 	}
983 
984 	/* Check if we can DMA this transfer */
985 	if (transfer->len > MAX_DMA_LEN && chip->enable_dma) {
986 
987 		/* reject already-mapped transfers; PIO won't always work */
988 		if (message->is_dma_mapped
989 				|| transfer->rx_dma || transfer->tx_dma) {
990 			dev_err(&drv_data->pdev->dev,
991 				"pump_transfers: mapped transfer length of "
992 				"%u is greater than %d\n",
993 				transfer->len, MAX_DMA_LEN);
994 			message->status = -EINVAL;
995 			giveback(drv_data);
996 			return;
997 		}
998 
999 		/* warn ... we force this to PIO mode */
1000 		dev_warn_ratelimited(&message->spi->dev,
1001 				     "pump_transfers: DMA disabled for transfer length %ld "
1002 				     "greater than %d\n",
1003 				     (long)drv_data->len, MAX_DMA_LEN);
1004 	}
1005 
1006 	/* Setup the transfer state based on the type of transfer */
1007 	if (pxa2xx_spi_flush(drv_data) == 0) {
1008 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
1009 		message->status = -EIO;
1010 		giveback(drv_data);
1011 		return;
1012 	}
1013 	drv_data->n_bytes = chip->n_bytes;
1014 	drv_data->tx = (void *)transfer->tx_buf;
1015 	drv_data->tx_end = drv_data->tx + transfer->len;
1016 	drv_data->rx = transfer->rx_buf;
1017 	drv_data->rx_end = drv_data->rx + transfer->len;
1018 	drv_data->len = transfer->len;
1019 	drv_data->write = drv_data->tx ? chip->write : null_writer;
1020 	drv_data->read = drv_data->rx ? chip->read : null_reader;
1021 
1022 	/* Change speed and bit per word on a per transfer */
1023 	bits = transfer->bits_per_word;
1024 	speed = transfer->speed_hz;
1025 
1026 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
1027 
1028 	if (bits <= 8) {
1029 		drv_data->n_bytes = 1;
1030 		drv_data->read = drv_data->read != null_reader ?
1031 					u8_reader : null_reader;
1032 		drv_data->write = drv_data->write != null_writer ?
1033 					u8_writer : null_writer;
1034 	} else if (bits <= 16) {
1035 		drv_data->n_bytes = 2;
1036 		drv_data->read = drv_data->read != null_reader ?
1037 					u16_reader : null_reader;
1038 		drv_data->write = drv_data->write != null_writer ?
1039 					u16_writer : null_writer;
1040 	} else if (bits <= 32) {
1041 		drv_data->n_bytes = 4;
1042 		drv_data->read = drv_data->read != null_reader ?
1043 					u32_reader : null_reader;
1044 		drv_data->write = drv_data->write != null_writer ?
1045 					u32_writer : null_writer;
1046 	}
1047 	/*
1048 	 * if bits/word is changed in dma mode, then must check the
1049 	 * thresholds and burst also
1050 	 */
1051 	if (chip->enable_dma) {
1052 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
1053 						message->spi,
1054 						bits, &dma_burst,
1055 						&dma_thresh))
1056 			dev_warn_ratelimited(&message->spi->dev,
1057 					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1058 	}
1059 
1060 	message->state = RUNNING_STATE;
1061 
1062 	dma_mapped = master->can_dma &&
1063 		     master->can_dma(master, message->spi, transfer) &&
1064 		     master->cur_msg_mapped;
1065 	if (dma_mapped) {
1066 
1067 		/* Ensure we have the correct interrupt handler */
1068 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1069 
1070 		err = pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1071 		if (err) {
1072 			message->status = err;
1073 			giveback(drv_data);
1074 			return;
1075 		}
1076 
1077 		/* Clear status and start DMA engine */
1078 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1079 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1080 
1081 		pxa2xx_spi_dma_start(drv_data);
1082 	} else {
1083 		/* Ensure we have the correct interrupt handler	*/
1084 		drv_data->transfer_handler = interrupt_transfer;
1085 
1086 		/* Clear status  */
1087 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1088 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1089 	}
1090 
1091 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1092 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1093 	if (!pxa25x_ssp_comp(drv_data))
1094 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1095 			master->max_speed_hz
1096 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1097 			dma_mapped ? "DMA" : "PIO");
1098 	else
1099 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1100 			master->max_speed_hz / 2
1101 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1102 			dma_mapped ? "DMA" : "PIO");
1103 
1104 	if (is_lpss_ssp(drv_data)) {
1105 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1106 		    != chip->lpss_rx_threshold)
1107 			pxa2xx_spi_write(drv_data, SSIRF,
1108 					 chip->lpss_rx_threshold);
1109 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1110 		    != chip->lpss_tx_threshold)
1111 			pxa2xx_spi_write(drv_data, SSITF,
1112 					 chip->lpss_tx_threshold);
1113 	}
1114 
1115 	if (is_quark_x1000_ssp(drv_data) &&
1116 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1117 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1118 
1119 	/* see if we need to reload the config registers */
1120 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1121 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1122 	    != (cr1 & change_mask)) {
1123 		/* stop the SSP, and update the other bits */
1124 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1125 		if (!pxa25x_ssp_comp(drv_data))
1126 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1127 		/* first set CR1 without interrupt and service enables */
1128 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1129 		/* restart the SSP */
1130 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1131 
1132 	} else {
1133 		if (!pxa25x_ssp_comp(drv_data))
1134 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1135 	}
1136 
1137 	cs_assert(drv_data);
1138 
1139 	/* after chip select, release the data by enabling service
1140 	 * requests and interrupts, without changing any mode bits */
1141 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1142 }
1143 
1144 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1145 					   struct spi_message *msg)
1146 {
1147 	struct driver_data *drv_data = spi_master_get_devdata(master);
1148 
1149 	drv_data->cur_msg = msg;
1150 	/* Initial message state*/
1151 	drv_data->cur_msg->state = START_STATE;
1152 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1153 						struct spi_transfer,
1154 						transfer_list);
1155 
1156 	/* prepare to setup the SSP, in pump_transfers, using the per
1157 	 * chip configuration */
1158 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1159 
1160 	/* Mark as busy and launch transfers */
1161 	tasklet_schedule(&drv_data->pump_transfers);
1162 	return 0;
1163 }
1164 
1165 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1166 {
1167 	struct driver_data *drv_data = spi_master_get_devdata(master);
1168 
1169 	/* Disable the SSP now */
1170 	pxa2xx_spi_write(drv_data, SSCR0,
1171 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1172 
1173 	return 0;
1174 }
1175 
1176 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1177 		    struct pxa2xx_spi_chip *chip_info)
1178 {
1179 	int err = 0;
1180 
1181 	if (chip == NULL || chip_info == NULL)
1182 		return 0;
1183 
1184 	/* NOTE: setup() can be called multiple times, possibly with
1185 	 * different chip_info, release previously requested GPIO
1186 	 */
1187 	if (gpio_is_valid(chip->gpio_cs))
1188 		gpio_free(chip->gpio_cs);
1189 
1190 	/* If (*cs_control) is provided, ignore GPIO chip select */
1191 	if (chip_info->cs_control) {
1192 		chip->cs_control = chip_info->cs_control;
1193 		return 0;
1194 	}
1195 
1196 	if (gpio_is_valid(chip_info->gpio_cs)) {
1197 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1198 		if (err) {
1199 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1200 				chip_info->gpio_cs);
1201 			return err;
1202 		}
1203 
1204 		chip->gpio_cs = chip_info->gpio_cs;
1205 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1206 
1207 		err = gpio_direction_output(chip->gpio_cs,
1208 					!chip->gpio_cs_inverted);
1209 	}
1210 
1211 	return err;
1212 }
1213 
1214 static int setup(struct spi_device *spi)
1215 {
1216 	struct pxa2xx_spi_chip *chip_info = NULL;
1217 	struct chip_data *chip;
1218 	const struct lpss_config *config;
1219 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1220 	uint tx_thres, tx_hi_thres, rx_thres;
1221 
1222 	switch (drv_data->ssp_type) {
1223 	case QUARK_X1000_SSP:
1224 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1225 		tx_hi_thres = 0;
1226 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1227 		break;
1228 	case LPSS_LPT_SSP:
1229 	case LPSS_BYT_SSP:
1230 	case LPSS_BSW_SSP:
1231 	case LPSS_SPT_SSP:
1232 	case LPSS_BXT_SSP:
1233 		config = lpss_get_config(drv_data);
1234 		tx_thres = config->tx_threshold_lo;
1235 		tx_hi_thres = config->tx_threshold_hi;
1236 		rx_thres = config->rx_threshold;
1237 		break;
1238 	default:
1239 		tx_thres = TX_THRESH_DFLT;
1240 		tx_hi_thres = 0;
1241 		rx_thres = RX_THRESH_DFLT;
1242 		break;
1243 	}
1244 
1245 	/* Only alloc on first setup */
1246 	chip = spi_get_ctldata(spi);
1247 	if (!chip) {
1248 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1249 		if (!chip)
1250 			return -ENOMEM;
1251 
1252 		if (drv_data->ssp_type == CE4100_SSP) {
1253 			if (spi->chip_select > 4) {
1254 				dev_err(&spi->dev,
1255 					"failed setup: cs number must not be > 4.\n");
1256 				kfree(chip);
1257 				return -EINVAL;
1258 			}
1259 
1260 			chip->frm = spi->chip_select;
1261 		} else
1262 			chip->gpio_cs = -1;
1263 		chip->enable_dma = drv_data->master_info->enable_dma;
1264 		chip->timeout = TIMOUT_DFLT;
1265 	}
1266 
1267 	/* protocol drivers may change the chip settings, so...
1268 	 * if chip_info exists, use it */
1269 	chip_info = spi->controller_data;
1270 
1271 	/* chip_info isn't always needed */
1272 	chip->cr1 = 0;
1273 	if (chip_info) {
1274 		if (chip_info->timeout)
1275 			chip->timeout = chip_info->timeout;
1276 		if (chip_info->tx_threshold)
1277 			tx_thres = chip_info->tx_threshold;
1278 		if (chip_info->tx_hi_threshold)
1279 			tx_hi_thres = chip_info->tx_hi_threshold;
1280 		if (chip_info->rx_threshold)
1281 			rx_thres = chip_info->rx_threshold;
1282 		chip->dma_threshold = 0;
1283 		if (chip_info->enable_loopback)
1284 			chip->cr1 = SSCR1_LBM;
1285 	}
1286 
1287 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1288 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1289 				| SSITF_TxHiThresh(tx_hi_thres);
1290 
1291 	/* set dma burst and threshold outside of chip_info path so that if
1292 	 * chip_info goes away after setting chip->enable_dma, the
1293 	 * burst and threshold can still respond to changes in bits_per_word */
1294 	if (chip->enable_dma) {
1295 		/* set up legal burst and threshold for dma */
1296 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1297 						spi->bits_per_word,
1298 						&chip->dma_burst_size,
1299 						&chip->dma_threshold)) {
1300 			dev_warn(&spi->dev,
1301 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1302 		}
1303 	}
1304 
1305 	switch (drv_data->ssp_type) {
1306 	case QUARK_X1000_SSP:
1307 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1308 				   & QUARK_X1000_SSCR1_RFT)
1309 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1310 				   & QUARK_X1000_SSCR1_TFT);
1311 		break;
1312 	default:
1313 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1314 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1315 		break;
1316 	}
1317 
1318 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1319 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1320 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1321 
1322 	if (spi->mode & SPI_LOOP)
1323 		chip->cr1 |= SSCR1_LBM;
1324 
1325 	if (spi->bits_per_word <= 8) {
1326 		chip->n_bytes = 1;
1327 		chip->read = u8_reader;
1328 		chip->write = u8_writer;
1329 	} else if (spi->bits_per_word <= 16) {
1330 		chip->n_bytes = 2;
1331 		chip->read = u16_reader;
1332 		chip->write = u16_writer;
1333 	} else if (spi->bits_per_word <= 32) {
1334 		chip->n_bytes = 4;
1335 		chip->read = u32_reader;
1336 		chip->write = u32_writer;
1337 	}
1338 
1339 	spi_set_ctldata(spi, chip);
1340 
1341 	if (drv_data->ssp_type == CE4100_SSP)
1342 		return 0;
1343 
1344 	return setup_cs(spi, chip, chip_info);
1345 }
1346 
1347 static void cleanup(struct spi_device *spi)
1348 {
1349 	struct chip_data *chip = spi_get_ctldata(spi);
1350 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1351 
1352 	if (!chip)
1353 		return;
1354 
1355 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1356 		gpio_free(chip->gpio_cs);
1357 
1358 	kfree(chip);
1359 }
1360 
1361 #ifdef CONFIG_PCI
1362 #ifdef CONFIG_ACPI
1363 
1364 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1365 	{ "INT33C0", LPSS_LPT_SSP },
1366 	{ "INT33C1", LPSS_LPT_SSP },
1367 	{ "INT3430", LPSS_LPT_SSP },
1368 	{ "INT3431", LPSS_LPT_SSP },
1369 	{ "80860F0E", LPSS_BYT_SSP },
1370 	{ "8086228E", LPSS_BSW_SSP },
1371 	{ },
1372 };
1373 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1374 
1375 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1376 {
1377 	unsigned int devid;
1378 	int port_id = -1;
1379 
1380 	if (adev && adev->pnp.unique_id &&
1381 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1382 		port_id = devid;
1383 	return port_id;
1384 }
1385 #else /* !CONFIG_ACPI */
1386 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1387 {
1388 	return -1;
1389 }
1390 #endif
1391 
1392 /*
1393  * PCI IDs of compound devices that integrate both host controller and private
1394  * integrated DMA engine. Please note these are not used in module
1395  * autoloading and probing in this module but matching the LPSS SSP type.
1396  */
1397 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1398 	/* SPT-LP */
1399 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1400 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1401 	/* SPT-H */
1402 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1403 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1404 	/* KBL-H */
1405 	{ PCI_VDEVICE(INTEL, 0xa2a9), LPSS_SPT_SSP },
1406 	{ PCI_VDEVICE(INTEL, 0xa2aa), LPSS_SPT_SSP },
1407 	/* BXT A-Step */
1408 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1409 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1410 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1411 	/* BXT B-Step */
1412 	{ PCI_VDEVICE(INTEL, 0x1ac2), LPSS_BXT_SSP },
1413 	{ PCI_VDEVICE(INTEL, 0x1ac4), LPSS_BXT_SSP },
1414 	{ PCI_VDEVICE(INTEL, 0x1ac6), LPSS_BXT_SSP },
1415 	/* APL */
1416 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1417 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1418 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1419 	{ },
1420 };
1421 
1422 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1423 {
1424 	struct device *dev = param;
1425 
1426 	if (dev != chan->device->dev->parent)
1427 		return false;
1428 
1429 	return true;
1430 }
1431 
1432 static struct pxa2xx_spi_master *
1433 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1434 {
1435 	struct pxa2xx_spi_master *pdata;
1436 	struct acpi_device *adev;
1437 	struct ssp_device *ssp;
1438 	struct resource *res;
1439 	const struct acpi_device_id *adev_id = NULL;
1440 	const struct pci_device_id *pcidev_id = NULL;
1441 	int type;
1442 
1443 	adev = ACPI_COMPANION(&pdev->dev);
1444 
1445 	if (dev_is_pci(pdev->dev.parent))
1446 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1447 					 to_pci_dev(pdev->dev.parent));
1448 	else if (adev)
1449 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1450 					    &pdev->dev);
1451 	else
1452 		return NULL;
1453 
1454 	if (adev_id)
1455 		type = (int)adev_id->driver_data;
1456 	else if (pcidev_id)
1457 		type = (int)pcidev_id->driver_data;
1458 	else
1459 		return NULL;
1460 
1461 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1462 	if (!pdata)
1463 		return NULL;
1464 
1465 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1466 	if (!res)
1467 		return NULL;
1468 
1469 	ssp = &pdata->ssp;
1470 
1471 	ssp->phys_base = res->start;
1472 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1473 	if (IS_ERR(ssp->mmio_base))
1474 		return NULL;
1475 
1476 	if (pcidev_id) {
1477 		pdata->tx_param = pdev->dev.parent;
1478 		pdata->rx_param = pdev->dev.parent;
1479 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1480 	}
1481 
1482 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1483 	ssp->irq = platform_get_irq(pdev, 0);
1484 	ssp->type = type;
1485 	ssp->pdev = pdev;
1486 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1487 
1488 	pdata->num_chipselect = 1;
1489 	pdata->enable_dma = true;
1490 
1491 	return pdata;
1492 }
1493 
1494 #else /* !CONFIG_PCI */
1495 static inline struct pxa2xx_spi_master *
1496 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1497 {
1498 	return NULL;
1499 }
1500 #endif
1501 
1502 static int pxa2xx_spi_fw_translate_cs(struct spi_master *master, unsigned cs)
1503 {
1504 	struct driver_data *drv_data = spi_master_get_devdata(master);
1505 
1506 	if (has_acpi_companion(&drv_data->pdev->dev)) {
1507 		switch (drv_data->ssp_type) {
1508 		/*
1509 		 * For Atoms the ACPI DeviceSelection used by the Windows
1510 		 * driver starts from 1 instead of 0 so translate it here
1511 		 * to match what Linux expects.
1512 		 */
1513 		case LPSS_BYT_SSP:
1514 		case LPSS_BSW_SSP:
1515 			return cs - 1;
1516 
1517 		default:
1518 			break;
1519 		}
1520 	}
1521 
1522 	return cs;
1523 }
1524 
1525 static int pxa2xx_spi_probe(struct platform_device *pdev)
1526 {
1527 	struct device *dev = &pdev->dev;
1528 	struct pxa2xx_spi_master *platform_info;
1529 	struct spi_master *master;
1530 	struct driver_data *drv_data;
1531 	struct ssp_device *ssp;
1532 	const struct lpss_config *config;
1533 	int status;
1534 	u32 tmp;
1535 
1536 	platform_info = dev_get_platdata(dev);
1537 	if (!platform_info) {
1538 		platform_info = pxa2xx_spi_init_pdata(pdev);
1539 		if (!platform_info) {
1540 			dev_err(&pdev->dev, "missing platform data\n");
1541 			return -ENODEV;
1542 		}
1543 	}
1544 
1545 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1546 	if (!ssp)
1547 		ssp = &platform_info->ssp;
1548 
1549 	if (!ssp->mmio_base) {
1550 		dev_err(&pdev->dev, "failed to get ssp\n");
1551 		return -ENODEV;
1552 	}
1553 
1554 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1555 	if (!master) {
1556 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1557 		pxa_ssp_free(ssp);
1558 		return -ENOMEM;
1559 	}
1560 	drv_data = spi_master_get_devdata(master);
1561 	drv_data->master = master;
1562 	drv_data->master_info = platform_info;
1563 	drv_data->pdev = pdev;
1564 	drv_data->ssp = ssp;
1565 
1566 	master->dev.of_node = pdev->dev.of_node;
1567 	/* the spi->mode bits understood by this driver: */
1568 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1569 
1570 	master->bus_num = ssp->port_id;
1571 	master->dma_alignment = DMA_ALIGNMENT;
1572 	master->cleanup = cleanup;
1573 	master->setup = setup;
1574 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1575 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1576 	master->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1577 	master->auto_runtime_pm = true;
1578 	master->flags = SPI_MASTER_MUST_RX | SPI_MASTER_MUST_TX;
1579 
1580 	drv_data->ssp_type = ssp->type;
1581 
1582 	drv_data->ioaddr = ssp->mmio_base;
1583 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1584 	if (pxa25x_ssp_comp(drv_data)) {
1585 		switch (drv_data->ssp_type) {
1586 		case QUARK_X1000_SSP:
1587 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1588 			break;
1589 		default:
1590 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1591 			break;
1592 		}
1593 
1594 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1595 		drv_data->dma_cr1 = 0;
1596 		drv_data->clear_sr = SSSR_ROR;
1597 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1598 	} else {
1599 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1600 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1601 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1602 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1603 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1604 	}
1605 
1606 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1607 			drv_data);
1608 	if (status < 0) {
1609 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1610 		goto out_error_master_alloc;
1611 	}
1612 
1613 	/* Setup DMA if requested */
1614 	if (platform_info->enable_dma) {
1615 		status = pxa2xx_spi_dma_setup(drv_data);
1616 		if (status) {
1617 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1618 			platform_info->enable_dma = false;
1619 		} else {
1620 			master->can_dma = pxa2xx_spi_can_dma;
1621 		}
1622 	}
1623 
1624 	/* Enable SOC clock */
1625 	clk_prepare_enable(ssp->clk);
1626 
1627 	master->max_speed_hz = clk_get_rate(ssp->clk);
1628 
1629 	/* Load default SSP configuration */
1630 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1631 	switch (drv_data->ssp_type) {
1632 	case QUARK_X1000_SSP:
1633 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1634 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1635 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1636 
1637 		/* using the Motorola SPI protocol and use 8 bit frame */
1638 		pxa2xx_spi_write(drv_data, SSCR0,
1639 				 QUARK_X1000_SSCR0_Motorola
1640 				 | QUARK_X1000_SSCR0_DataSize(8));
1641 		break;
1642 	default:
1643 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1644 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1645 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1646 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1647 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1648 		break;
1649 	}
1650 
1651 	if (!pxa25x_ssp_comp(drv_data))
1652 		pxa2xx_spi_write(drv_data, SSTO, 0);
1653 
1654 	if (!is_quark_x1000_ssp(drv_data))
1655 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1656 
1657 	if (is_lpss_ssp(drv_data)) {
1658 		lpss_ssp_setup(drv_data);
1659 		config = lpss_get_config(drv_data);
1660 		if (config->reg_capabilities >= 0) {
1661 			tmp = __lpss_ssp_read_priv(drv_data,
1662 						   config->reg_capabilities);
1663 			tmp &= LPSS_CAPS_CS_EN_MASK;
1664 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1665 			platform_info->num_chipselect = ffz(tmp);
1666 		} else if (config->cs_num) {
1667 			platform_info->num_chipselect = config->cs_num;
1668 		}
1669 	}
1670 	master->num_chipselect = platform_info->num_chipselect;
1671 
1672 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1673 		     (unsigned long)drv_data);
1674 
1675 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1676 	pm_runtime_use_autosuspend(&pdev->dev);
1677 	pm_runtime_set_active(&pdev->dev);
1678 	pm_runtime_enable(&pdev->dev);
1679 
1680 	/* Register with the SPI framework */
1681 	platform_set_drvdata(pdev, drv_data);
1682 	status = devm_spi_register_master(&pdev->dev, master);
1683 	if (status != 0) {
1684 		dev_err(&pdev->dev, "problem registering spi master\n");
1685 		goto out_error_clock_enabled;
1686 	}
1687 
1688 	return status;
1689 
1690 out_error_clock_enabled:
1691 	clk_disable_unprepare(ssp->clk);
1692 	pxa2xx_spi_dma_release(drv_data);
1693 	free_irq(ssp->irq, drv_data);
1694 
1695 out_error_master_alloc:
1696 	spi_master_put(master);
1697 	pxa_ssp_free(ssp);
1698 	return status;
1699 }
1700 
1701 static int pxa2xx_spi_remove(struct platform_device *pdev)
1702 {
1703 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1704 	struct ssp_device *ssp;
1705 
1706 	if (!drv_data)
1707 		return 0;
1708 	ssp = drv_data->ssp;
1709 
1710 	pm_runtime_get_sync(&pdev->dev);
1711 
1712 	/* Disable the SSP at the peripheral and SOC level */
1713 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1714 	clk_disable_unprepare(ssp->clk);
1715 
1716 	/* Release DMA */
1717 	if (drv_data->master_info->enable_dma)
1718 		pxa2xx_spi_dma_release(drv_data);
1719 
1720 	pm_runtime_put_noidle(&pdev->dev);
1721 	pm_runtime_disable(&pdev->dev);
1722 
1723 	/* Release IRQ */
1724 	free_irq(ssp->irq, drv_data);
1725 
1726 	/* Release SSP */
1727 	pxa_ssp_free(ssp);
1728 
1729 	return 0;
1730 }
1731 
1732 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1733 {
1734 	int status = 0;
1735 
1736 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1737 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1738 }
1739 
1740 #ifdef CONFIG_PM_SLEEP
1741 static int pxa2xx_spi_suspend(struct device *dev)
1742 {
1743 	struct driver_data *drv_data = dev_get_drvdata(dev);
1744 	struct ssp_device *ssp = drv_data->ssp;
1745 	int status = 0;
1746 
1747 	status = spi_master_suspend(drv_data->master);
1748 	if (status != 0)
1749 		return status;
1750 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1751 
1752 	if (!pm_runtime_suspended(dev))
1753 		clk_disable_unprepare(ssp->clk);
1754 
1755 	return 0;
1756 }
1757 
1758 static int pxa2xx_spi_resume(struct device *dev)
1759 {
1760 	struct driver_data *drv_data = dev_get_drvdata(dev);
1761 	struct ssp_device *ssp = drv_data->ssp;
1762 	int status = 0;
1763 
1764 	/* Enable the SSP clock */
1765 	if (!pm_runtime_suspended(dev))
1766 		clk_prepare_enable(ssp->clk);
1767 
1768 	/* Restore LPSS private register bits */
1769 	if (is_lpss_ssp(drv_data))
1770 		lpss_ssp_setup(drv_data);
1771 
1772 	/* Start the queue running */
1773 	status = spi_master_resume(drv_data->master);
1774 	if (status != 0) {
1775 		dev_err(dev, "problem starting queue (%d)\n", status);
1776 		return status;
1777 	}
1778 
1779 	return 0;
1780 }
1781 #endif
1782 
1783 #ifdef CONFIG_PM
1784 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1785 {
1786 	struct driver_data *drv_data = dev_get_drvdata(dev);
1787 
1788 	clk_disable_unprepare(drv_data->ssp->clk);
1789 	return 0;
1790 }
1791 
1792 static int pxa2xx_spi_runtime_resume(struct device *dev)
1793 {
1794 	struct driver_data *drv_data = dev_get_drvdata(dev);
1795 
1796 	clk_prepare_enable(drv_data->ssp->clk);
1797 	return 0;
1798 }
1799 #endif
1800 
1801 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1802 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1803 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1804 			   pxa2xx_spi_runtime_resume, NULL)
1805 };
1806 
1807 static struct platform_driver driver = {
1808 	.driver = {
1809 		.name	= "pxa2xx-spi",
1810 		.pm	= &pxa2xx_spi_pm_ops,
1811 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1812 	},
1813 	.probe = pxa2xx_spi_probe,
1814 	.remove = pxa2xx_spi_remove,
1815 	.shutdown = pxa2xx_spi_shutdown,
1816 };
1817 
1818 static int __init pxa2xx_spi_init(void)
1819 {
1820 	return platform_driver_register(&driver);
1821 }
1822 subsys_initcall(pxa2xx_spi_init);
1823 
1824 static void __exit pxa2xx_spi_exit(void)
1825 {
1826 	platform_driver_unregister(&driver);
1827 }
1828 module_exit(pxa2xx_spi_exit);
1829