1 /* 2 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 3 * Copyright (C) 2013, Intel Corporation 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License as published by 7 * the Free Software Foundation; either version 2 of the License, or 8 * (at your option) any later version. 9 * 10 * This program is distributed in the hope that it will be useful, 11 * but WITHOUT ANY WARRANTY; without even the implied warranty of 12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 13 * GNU General Public License for more details. 14 */ 15 16 #include <linux/bitops.h> 17 #include <linux/init.h> 18 #include <linux/module.h> 19 #include <linux/device.h> 20 #include <linux/ioport.h> 21 #include <linux/errno.h> 22 #include <linux/err.h> 23 #include <linux/interrupt.h> 24 #include <linux/kernel.h> 25 #include <linux/pci.h> 26 #include <linux/platform_device.h> 27 #include <linux/spi/pxa2xx_spi.h> 28 #include <linux/spi/spi.h> 29 #include <linux/delay.h> 30 #include <linux/gpio.h> 31 #include <linux/slab.h> 32 #include <linux/clk.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/acpi.h> 35 36 #include "spi-pxa2xx.h" 37 38 MODULE_AUTHOR("Stephen Street"); 39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 40 MODULE_LICENSE("GPL"); 41 MODULE_ALIAS("platform:pxa2xx-spi"); 42 43 #define TIMOUT_DFLT 1000 44 45 /* 46 * for testing SSCR1 changes that require SSP restart, basically 47 * everything except the service and interrupt enables, the pxa270 developer 48 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 49 * list, but the PXA255 dev man says all bits without really meaning the 50 * service and interrupt enables 51 */ 52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 53 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 54 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 55 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 56 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 57 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 58 59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 60 | QUARK_X1000_SSCR1_EFWR \ 61 | QUARK_X1000_SSCR1_RFT \ 62 | QUARK_X1000_SSCR1_TFT \ 63 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 64 65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 66 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 67 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 68 #define LPSS_CS_CONTROL_CS_SEL_SHIFT 8 69 #define LPSS_CS_CONTROL_CS_SEL_MASK (3 << LPSS_CS_CONTROL_CS_SEL_SHIFT) 70 #define LPSS_CAPS_CS_EN_SHIFT 9 71 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 72 73 struct lpss_config { 74 /* LPSS offset from drv_data->ioaddr */ 75 unsigned offset; 76 /* Register offsets from drv_data->lpss_base or -1 */ 77 int reg_general; 78 int reg_ssp; 79 int reg_cs_ctrl; 80 int reg_capabilities; 81 /* FIFO thresholds */ 82 u32 rx_threshold; 83 u32 tx_threshold_lo; 84 u32 tx_threshold_hi; 85 }; 86 87 /* Keep these sorted with enum pxa_ssp_type */ 88 static const struct lpss_config lpss_platforms[] = { 89 { /* LPSS_LPT_SSP */ 90 .offset = 0x800, 91 .reg_general = 0x08, 92 .reg_ssp = 0x0c, 93 .reg_cs_ctrl = 0x18, 94 .reg_capabilities = -1, 95 .rx_threshold = 64, 96 .tx_threshold_lo = 160, 97 .tx_threshold_hi = 224, 98 }, 99 { /* LPSS_BYT_SSP */ 100 .offset = 0x400, 101 .reg_general = 0x08, 102 .reg_ssp = 0x0c, 103 .reg_cs_ctrl = 0x18, 104 .reg_capabilities = -1, 105 .rx_threshold = 64, 106 .tx_threshold_lo = 160, 107 .tx_threshold_hi = 224, 108 }, 109 { /* LPSS_SPT_SSP */ 110 .offset = 0x200, 111 .reg_general = -1, 112 .reg_ssp = 0x20, 113 .reg_cs_ctrl = 0x24, 114 .reg_capabilities = 0xfc, 115 .rx_threshold = 1, 116 .tx_threshold_lo = 32, 117 .tx_threshold_hi = 56, 118 }, 119 { /* LPSS_BXT_SSP */ 120 .offset = 0x200, 121 .reg_general = -1, 122 .reg_ssp = 0x20, 123 .reg_cs_ctrl = 0x24, 124 .reg_capabilities = 0xfc, 125 .rx_threshold = 1, 126 .tx_threshold_lo = 16, 127 .tx_threshold_hi = 48, 128 }, 129 }; 130 131 static inline const struct lpss_config 132 *lpss_get_config(const struct driver_data *drv_data) 133 { 134 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 135 } 136 137 static bool is_lpss_ssp(const struct driver_data *drv_data) 138 { 139 switch (drv_data->ssp_type) { 140 case LPSS_LPT_SSP: 141 case LPSS_BYT_SSP: 142 case LPSS_SPT_SSP: 143 case LPSS_BXT_SSP: 144 return true; 145 default: 146 return false; 147 } 148 } 149 150 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 151 { 152 return drv_data->ssp_type == QUARK_X1000_SSP; 153 } 154 155 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 156 { 157 switch (drv_data->ssp_type) { 158 case QUARK_X1000_SSP: 159 return QUARK_X1000_SSCR1_CHANGE_MASK; 160 default: 161 return SSCR1_CHANGE_MASK; 162 } 163 } 164 165 static u32 166 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 167 { 168 switch (drv_data->ssp_type) { 169 case QUARK_X1000_SSP: 170 return RX_THRESH_QUARK_X1000_DFLT; 171 default: 172 return RX_THRESH_DFLT; 173 } 174 } 175 176 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 177 { 178 u32 mask; 179 180 switch (drv_data->ssp_type) { 181 case QUARK_X1000_SSP: 182 mask = QUARK_X1000_SSSR_TFL_MASK; 183 break; 184 default: 185 mask = SSSR_TFL_MASK; 186 break; 187 } 188 189 return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask; 190 } 191 192 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 193 u32 *sccr1_reg) 194 { 195 u32 mask; 196 197 switch (drv_data->ssp_type) { 198 case QUARK_X1000_SSP: 199 mask = QUARK_X1000_SSCR1_RFT; 200 break; 201 default: 202 mask = SSCR1_RFT; 203 break; 204 } 205 *sccr1_reg &= ~mask; 206 } 207 208 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 209 u32 *sccr1_reg, u32 threshold) 210 { 211 switch (drv_data->ssp_type) { 212 case QUARK_X1000_SSP: 213 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 214 break; 215 default: 216 *sccr1_reg |= SSCR1_RxTresh(threshold); 217 break; 218 } 219 } 220 221 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 222 u32 clk_div, u8 bits) 223 { 224 switch (drv_data->ssp_type) { 225 case QUARK_X1000_SSP: 226 return clk_div 227 | QUARK_X1000_SSCR0_Motorola 228 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits) 229 | SSCR0_SSE; 230 default: 231 return clk_div 232 | SSCR0_Motorola 233 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 234 | SSCR0_SSE 235 | (bits > 16 ? SSCR0_EDSS : 0); 236 } 237 } 238 239 /* 240 * Read and write LPSS SSP private registers. Caller must first check that 241 * is_lpss_ssp() returns true before these can be called. 242 */ 243 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 244 { 245 WARN_ON(!drv_data->lpss_base); 246 return readl(drv_data->lpss_base + offset); 247 } 248 249 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 250 unsigned offset, u32 value) 251 { 252 WARN_ON(!drv_data->lpss_base); 253 writel(value, drv_data->lpss_base + offset); 254 } 255 256 /* 257 * lpss_ssp_setup - perform LPSS SSP specific setup 258 * @drv_data: pointer to the driver private data 259 * 260 * Perform LPSS SSP specific setup. This function must be called first if 261 * one is going to use LPSS SSP private registers. 262 */ 263 static void lpss_ssp_setup(struct driver_data *drv_data) 264 { 265 const struct lpss_config *config; 266 u32 value; 267 268 config = lpss_get_config(drv_data); 269 drv_data->lpss_base = drv_data->ioaddr + config->offset; 270 271 /* Enable software chip select control */ 272 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 273 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 274 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 275 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 276 277 /* Enable multiblock DMA transfers */ 278 if (drv_data->master_info->enable_dma) { 279 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 280 281 if (config->reg_general >= 0) { 282 value = __lpss_ssp_read_priv(drv_data, 283 config->reg_general); 284 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 285 __lpss_ssp_write_priv(drv_data, 286 config->reg_general, value); 287 } 288 } 289 } 290 291 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable) 292 { 293 const struct lpss_config *config; 294 u32 value, cs; 295 296 config = lpss_get_config(drv_data); 297 298 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 299 if (enable) { 300 cs = drv_data->cur_msg->spi->chip_select; 301 cs <<= LPSS_CS_CONTROL_CS_SEL_SHIFT; 302 if (cs != (value & LPSS_CS_CONTROL_CS_SEL_MASK)) { 303 /* 304 * When switching another chip select output active 305 * the output must be selected first and wait 2 ssp_clk 306 * cycles before changing state to active. Otherwise 307 * a short glitch will occur on the previous chip 308 * select since output select is latched but state 309 * control is not. 310 */ 311 value &= ~LPSS_CS_CONTROL_CS_SEL_MASK; 312 value |= cs; 313 __lpss_ssp_write_priv(drv_data, 314 config->reg_cs_ctrl, value); 315 ndelay(1000000000 / 316 (drv_data->master->max_speed_hz / 2)); 317 } 318 value &= ~LPSS_CS_CONTROL_CS_HIGH; 319 } else { 320 value |= LPSS_CS_CONTROL_CS_HIGH; 321 } 322 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 323 } 324 325 static void cs_assert(struct driver_data *drv_data) 326 { 327 struct chip_data *chip = drv_data->cur_chip; 328 329 if (drv_data->ssp_type == CE4100_SSP) { 330 pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm); 331 return; 332 } 333 334 if (chip->cs_control) { 335 chip->cs_control(PXA2XX_CS_ASSERT); 336 return; 337 } 338 339 if (gpio_is_valid(chip->gpio_cs)) { 340 gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted); 341 return; 342 } 343 344 if (is_lpss_ssp(drv_data)) 345 lpss_ssp_cs_control(drv_data, true); 346 } 347 348 static void cs_deassert(struct driver_data *drv_data) 349 { 350 struct chip_data *chip = drv_data->cur_chip; 351 352 if (drv_data->ssp_type == CE4100_SSP) 353 return; 354 355 if (chip->cs_control) { 356 chip->cs_control(PXA2XX_CS_DEASSERT); 357 return; 358 } 359 360 if (gpio_is_valid(chip->gpio_cs)) { 361 gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted); 362 return; 363 } 364 365 if (is_lpss_ssp(drv_data)) 366 lpss_ssp_cs_control(drv_data, false); 367 } 368 369 int pxa2xx_spi_flush(struct driver_data *drv_data) 370 { 371 unsigned long limit = loops_per_jiffy << 1; 372 373 do { 374 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 375 pxa2xx_spi_read(drv_data, SSDR); 376 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 377 write_SSSR_CS(drv_data, SSSR_ROR); 378 379 return limit; 380 } 381 382 static int null_writer(struct driver_data *drv_data) 383 { 384 u8 n_bytes = drv_data->n_bytes; 385 386 if (pxa2xx_spi_txfifo_full(drv_data) 387 || (drv_data->tx == drv_data->tx_end)) 388 return 0; 389 390 pxa2xx_spi_write(drv_data, SSDR, 0); 391 drv_data->tx += n_bytes; 392 393 return 1; 394 } 395 396 static int null_reader(struct driver_data *drv_data) 397 { 398 u8 n_bytes = drv_data->n_bytes; 399 400 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 401 && (drv_data->rx < drv_data->rx_end)) { 402 pxa2xx_spi_read(drv_data, SSDR); 403 drv_data->rx += n_bytes; 404 } 405 406 return drv_data->rx == drv_data->rx_end; 407 } 408 409 static int u8_writer(struct driver_data *drv_data) 410 { 411 if (pxa2xx_spi_txfifo_full(drv_data) 412 || (drv_data->tx == drv_data->tx_end)) 413 return 0; 414 415 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 416 ++drv_data->tx; 417 418 return 1; 419 } 420 421 static int u8_reader(struct driver_data *drv_data) 422 { 423 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 424 && (drv_data->rx < drv_data->rx_end)) { 425 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 426 ++drv_data->rx; 427 } 428 429 return drv_data->rx == drv_data->rx_end; 430 } 431 432 static int u16_writer(struct driver_data *drv_data) 433 { 434 if (pxa2xx_spi_txfifo_full(drv_data) 435 || (drv_data->tx == drv_data->tx_end)) 436 return 0; 437 438 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 439 drv_data->tx += 2; 440 441 return 1; 442 } 443 444 static int u16_reader(struct driver_data *drv_data) 445 { 446 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 447 && (drv_data->rx < drv_data->rx_end)) { 448 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 449 drv_data->rx += 2; 450 } 451 452 return drv_data->rx == drv_data->rx_end; 453 } 454 455 static int u32_writer(struct driver_data *drv_data) 456 { 457 if (pxa2xx_spi_txfifo_full(drv_data) 458 || (drv_data->tx == drv_data->tx_end)) 459 return 0; 460 461 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 462 drv_data->tx += 4; 463 464 return 1; 465 } 466 467 static int u32_reader(struct driver_data *drv_data) 468 { 469 while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE) 470 && (drv_data->rx < drv_data->rx_end)) { 471 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 472 drv_data->rx += 4; 473 } 474 475 return drv_data->rx == drv_data->rx_end; 476 } 477 478 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data) 479 { 480 struct spi_message *msg = drv_data->cur_msg; 481 struct spi_transfer *trans = drv_data->cur_transfer; 482 483 /* Move to next transfer */ 484 if (trans->transfer_list.next != &msg->transfers) { 485 drv_data->cur_transfer = 486 list_entry(trans->transfer_list.next, 487 struct spi_transfer, 488 transfer_list); 489 return RUNNING_STATE; 490 } else 491 return DONE_STATE; 492 } 493 494 /* caller already set message->status; dma and pio irqs are blocked */ 495 static void giveback(struct driver_data *drv_data) 496 { 497 struct spi_transfer* last_transfer; 498 struct spi_message *msg; 499 500 msg = drv_data->cur_msg; 501 drv_data->cur_msg = NULL; 502 drv_data->cur_transfer = NULL; 503 504 last_transfer = list_last_entry(&msg->transfers, struct spi_transfer, 505 transfer_list); 506 507 /* Delay if requested before any change in chip select */ 508 if (last_transfer->delay_usecs) 509 udelay(last_transfer->delay_usecs); 510 511 /* Drop chip select UNLESS cs_change is true or we are returning 512 * a message with an error, or next message is for another chip 513 */ 514 if (!last_transfer->cs_change) 515 cs_deassert(drv_data); 516 else { 517 struct spi_message *next_msg; 518 519 /* Holding of cs was hinted, but we need to make sure 520 * the next message is for the same chip. Don't waste 521 * time with the following tests unless this was hinted. 522 * 523 * We cannot postpone this until pump_messages, because 524 * after calling msg->complete (below) the driver that 525 * sent the current message could be unloaded, which 526 * could invalidate the cs_control() callback... 527 */ 528 529 /* get a pointer to the next message, if any */ 530 next_msg = spi_get_next_queued_message(drv_data->master); 531 532 /* see if the next and current messages point 533 * to the same chip 534 */ 535 if (next_msg && next_msg->spi != msg->spi) 536 next_msg = NULL; 537 if (!next_msg || msg->state == ERROR_STATE) 538 cs_deassert(drv_data); 539 } 540 541 drv_data->cur_chip = NULL; 542 spi_finalize_current_message(drv_data->master); 543 } 544 545 static void reset_sccr1(struct driver_data *drv_data) 546 { 547 struct chip_data *chip = drv_data->cur_chip; 548 u32 sccr1_reg; 549 550 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1; 551 sccr1_reg &= ~SSCR1_RFT; 552 sccr1_reg |= chip->threshold; 553 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 554 } 555 556 static void int_error_stop(struct driver_data *drv_data, const char* msg) 557 { 558 /* Stop and reset SSP */ 559 write_SSSR_CS(drv_data, drv_data->clear_sr); 560 reset_sccr1(drv_data); 561 if (!pxa25x_ssp_comp(drv_data)) 562 pxa2xx_spi_write(drv_data, SSTO, 0); 563 pxa2xx_spi_flush(drv_data); 564 pxa2xx_spi_write(drv_data, SSCR0, 565 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 566 567 dev_err(&drv_data->pdev->dev, "%s\n", msg); 568 569 drv_data->cur_msg->state = ERROR_STATE; 570 tasklet_schedule(&drv_data->pump_transfers); 571 } 572 573 static void int_transfer_complete(struct driver_data *drv_data) 574 { 575 /* Stop SSP */ 576 write_SSSR_CS(drv_data, drv_data->clear_sr); 577 reset_sccr1(drv_data); 578 if (!pxa25x_ssp_comp(drv_data)) 579 pxa2xx_spi_write(drv_data, SSTO, 0); 580 581 /* Update total byte transferred return count actual bytes read */ 582 drv_data->cur_msg->actual_length += drv_data->len - 583 (drv_data->rx_end - drv_data->rx); 584 585 /* Transfer delays and chip select release are 586 * handled in pump_transfers or giveback 587 */ 588 589 /* Move to next transfer */ 590 drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data); 591 592 /* Schedule transfer tasklet */ 593 tasklet_schedule(&drv_data->pump_transfers); 594 } 595 596 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 597 { 598 u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ? 599 drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS; 600 601 u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask; 602 603 if (irq_status & SSSR_ROR) { 604 int_error_stop(drv_data, "interrupt_transfer: fifo overrun"); 605 return IRQ_HANDLED; 606 } 607 608 if (irq_status & SSSR_TINT) { 609 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 610 if (drv_data->read(drv_data)) { 611 int_transfer_complete(drv_data); 612 return IRQ_HANDLED; 613 } 614 } 615 616 /* Drain rx fifo, Fill tx fifo and prevent overruns */ 617 do { 618 if (drv_data->read(drv_data)) { 619 int_transfer_complete(drv_data); 620 return IRQ_HANDLED; 621 } 622 } while (drv_data->write(drv_data)); 623 624 if (drv_data->read(drv_data)) { 625 int_transfer_complete(drv_data); 626 return IRQ_HANDLED; 627 } 628 629 if (drv_data->tx == drv_data->tx_end) { 630 u32 bytes_left; 631 u32 sccr1_reg; 632 633 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 634 sccr1_reg &= ~SSCR1_TIE; 635 636 /* 637 * PXA25x_SSP has no timeout, set up rx threshould for the 638 * remaining RX bytes. 639 */ 640 if (pxa25x_ssp_comp(drv_data)) { 641 u32 rx_thre; 642 643 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 644 645 bytes_left = drv_data->rx_end - drv_data->rx; 646 switch (drv_data->n_bytes) { 647 case 4: 648 bytes_left >>= 1; 649 case 2: 650 bytes_left >>= 1; 651 } 652 653 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 654 if (rx_thre > bytes_left) 655 rx_thre = bytes_left; 656 657 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 658 } 659 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 660 } 661 662 /* We did something */ 663 return IRQ_HANDLED; 664 } 665 666 static irqreturn_t ssp_int(int irq, void *dev_id) 667 { 668 struct driver_data *drv_data = dev_id; 669 u32 sccr1_reg; 670 u32 mask = drv_data->mask_sr; 671 u32 status; 672 673 /* 674 * The IRQ might be shared with other peripherals so we must first 675 * check that are we RPM suspended or not. If we are we assume that 676 * the IRQ was not for us (we shouldn't be RPM suspended when the 677 * interrupt is enabled). 678 */ 679 if (pm_runtime_suspended(&drv_data->pdev->dev)) 680 return IRQ_NONE; 681 682 /* 683 * If the device is not yet in RPM suspended state and we get an 684 * interrupt that is meant for another device, check if status bits 685 * are all set to one. That means that the device is already 686 * powered off. 687 */ 688 status = pxa2xx_spi_read(drv_data, SSSR); 689 if (status == ~0) 690 return IRQ_NONE; 691 692 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 693 694 /* Ignore possible writes if we don't need to write */ 695 if (!(sccr1_reg & SSCR1_TIE)) 696 mask &= ~SSSR_TFS; 697 698 /* Ignore RX timeout interrupt if it is disabled */ 699 if (!(sccr1_reg & SSCR1_TINTE)) 700 mask &= ~SSSR_TINT; 701 702 if (!(status & mask)) 703 return IRQ_NONE; 704 705 if (!drv_data->cur_msg) { 706 707 pxa2xx_spi_write(drv_data, SSCR0, 708 pxa2xx_spi_read(drv_data, SSCR0) 709 & ~SSCR0_SSE); 710 pxa2xx_spi_write(drv_data, SSCR1, 711 pxa2xx_spi_read(drv_data, SSCR1) 712 & ~drv_data->int_cr1); 713 if (!pxa25x_ssp_comp(drv_data)) 714 pxa2xx_spi_write(drv_data, SSTO, 0); 715 write_SSSR_CS(drv_data, drv_data->clear_sr); 716 717 dev_err(&drv_data->pdev->dev, 718 "bad message state in interrupt handler\n"); 719 720 /* Never fail */ 721 return IRQ_HANDLED; 722 } 723 724 return drv_data->transfer_handler(drv_data); 725 } 726 727 /* 728 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 729 * input frequency by fractions of 2^24. It also has a divider by 5. 730 * 731 * There are formulas to get baud rate value for given input frequency and 732 * divider parameters, such as DDS_CLK_RATE and SCR: 733 * 734 * Fsys = 200MHz 735 * 736 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 737 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 738 * 739 * DDS_CLK_RATE either 2^n or 2^n / 5. 740 * SCR is in range 0 .. 255 741 * 742 * Divisor = 5^i * 2^j * 2 * k 743 * i = [0, 1] i = 1 iff j = 0 or j > 3 744 * j = [0, 23] j = 0 iff i = 1 745 * k = [1, 256] 746 * Special case: j = 0, i = 1: Divisor = 2 / 5 747 * 748 * Accordingly to the specification the recommended values for DDS_CLK_RATE 749 * are: 750 * Case 1: 2^n, n = [0, 23] 751 * Case 2: 2^24 * 2 / 5 (0x666666) 752 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 753 * 754 * In all cases the lowest possible value is better. 755 * 756 * The function calculates parameters for all cases and chooses the one closest 757 * to the asked baud rate. 758 */ 759 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 760 { 761 unsigned long xtal = 200000000; 762 unsigned long fref = xtal / 2; /* mandatory division by 2, 763 see (2) */ 764 /* case 3 */ 765 unsigned long fref1 = fref / 2; /* case 1 */ 766 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 767 unsigned long scale; 768 unsigned long q, q1, q2; 769 long r, r1, r2; 770 u32 mul; 771 772 /* Case 1 */ 773 774 /* Set initial value for DDS_CLK_RATE */ 775 mul = (1 << 24) >> 1; 776 777 /* Calculate initial quot */ 778 q1 = DIV_ROUND_UP(fref1, rate); 779 780 /* Scale q1 if it's too big */ 781 if (q1 > 256) { 782 /* Scale q1 to range [1, 512] */ 783 scale = fls_long(q1 - 1); 784 if (scale > 9) { 785 q1 >>= scale - 9; 786 mul >>= scale - 9; 787 } 788 789 /* Round the result if we have a remainder */ 790 q1 += q1 & 1; 791 } 792 793 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 794 scale = __ffs(q1); 795 q1 >>= scale; 796 mul >>= scale; 797 798 /* Get the remainder */ 799 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 800 801 /* Case 2 */ 802 803 q2 = DIV_ROUND_UP(fref2, rate); 804 r2 = abs(fref2 / q2 - rate); 805 806 /* 807 * Choose the best between two: less remainder we have the better. We 808 * can't go case 2 if q2 is greater than 256 since SCR register can 809 * hold only values 0 .. 255. 810 */ 811 if (r2 >= r1 || q2 > 256) { 812 /* case 1 is better */ 813 r = r1; 814 q = q1; 815 } else { 816 /* case 2 is better */ 817 r = r2; 818 q = q2; 819 mul = (1 << 24) * 2 / 5; 820 } 821 822 /* Check case 3 only if the divisor is big enough */ 823 if (fref / rate >= 80) { 824 u64 fssp; 825 u32 m; 826 827 /* Calculate initial quot */ 828 q1 = DIV_ROUND_UP(fref, rate); 829 m = (1 << 24) / q1; 830 831 /* Get the remainder */ 832 fssp = (u64)fref * m; 833 do_div(fssp, 1 << 24); 834 r1 = abs(fssp - rate); 835 836 /* Choose this one if it suits better */ 837 if (r1 < r) { 838 /* case 3 is better */ 839 q = 1; 840 mul = m; 841 } 842 } 843 844 *dds = mul; 845 return q - 1; 846 } 847 848 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 849 { 850 unsigned long ssp_clk = drv_data->master->max_speed_hz; 851 const struct ssp_device *ssp = drv_data->ssp; 852 853 rate = min_t(int, ssp_clk, rate); 854 855 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 856 return (ssp_clk / (2 * rate) - 1) & 0xff; 857 else 858 return (ssp_clk / rate - 1) & 0xfff; 859 } 860 861 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 862 int rate) 863 { 864 struct chip_data *chip = drv_data->cur_chip; 865 unsigned int clk_div; 866 867 switch (drv_data->ssp_type) { 868 case QUARK_X1000_SSP: 869 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 870 break; 871 default: 872 clk_div = ssp_get_clk_div(drv_data, rate); 873 break; 874 } 875 return clk_div << 8; 876 } 877 878 static void pump_transfers(unsigned long data) 879 { 880 struct driver_data *drv_data = (struct driver_data *)data; 881 struct spi_message *message = NULL; 882 struct spi_transfer *transfer = NULL; 883 struct spi_transfer *previous = NULL; 884 struct chip_data *chip = NULL; 885 u32 clk_div = 0; 886 u8 bits = 0; 887 u32 speed = 0; 888 u32 cr0; 889 u32 cr1; 890 u32 dma_thresh = drv_data->cur_chip->dma_threshold; 891 u32 dma_burst = drv_data->cur_chip->dma_burst_size; 892 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 893 894 /* Get current state information */ 895 message = drv_data->cur_msg; 896 transfer = drv_data->cur_transfer; 897 chip = drv_data->cur_chip; 898 899 /* Handle for abort */ 900 if (message->state == ERROR_STATE) { 901 message->status = -EIO; 902 giveback(drv_data); 903 return; 904 } 905 906 /* Handle end of message */ 907 if (message->state == DONE_STATE) { 908 message->status = 0; 909 giveback(drv_data); 910 return; 911 } 912 913 /* Delay if requested at end of transfer before CS change */ 914 if (message->state == RUNNING_STATE) { 915 previous = list_entry(transfer->transfer_list.prev, 916 struct spi_transfer, 917 transfer_list); 918 if (previous->delay_usecs) 919 udelay(previous->delay_usecs); 920 921 /* Drop chip select only if cs_change is requested */ 922 if (previous->cs_change) 923 cs_deassert(drv_data); 924 } 925 926 /* Check if we can DMA this transfer */ 927 if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) { 928 929 /* reject already-mapped transfers; PIO won't always work */ 930 if (message->is_dma_mapped 931 || transfer->rx_dma || transfer->tx_dma) { 932 dev_err(&drv_data->pdev->dev, 933 "pump_transfers: mapped transfer length of " 934 "%u is greater than %d\n", 935 transfer->len, MAX_DMA_LEN); 936 message->status = -EINVAL; 937 giveback(drv_data); 938 return; 939 } 940 941 /* warn ... we force this to PIO mode */ 942 dev_warn_ratelimited(&message->spi->dev, 943 "pump_transfers: DMA disabled for transfer length %ld " 944 "greater than %d\n", 945 (long)drv_data->len, MAX_DMA_LEN); 946 } 947 948 /* Setup the transfer state based on the type of transfer */ 949 if (pxa2xx_spi_flush(drv_data) == 0) { 950 dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n"); 951 message->status = -EIO; 952 giveback(drv_data); 953 return; 954 } 955 drv_data->n_bytes = chip->n_bytes; 956 drv_data->tx = (void *)transfer->tx_buf; 957 drv_data->tx_end = drv_data->tx + transfer->len; 958 drv_data->rx = transfer->rx_buf; 959 drv_data->rx_end = drv_data->rx + transfer->len; 960 drv_data->rx_dma = transfer->rx_dma; 961 drv_data->tx_dma = transfer->tx_dma; 962 drv_data->len = transfer->len; 963 drv_data->write = drv_data->tx ? chip->write : null_writer; 964 drv_data->read = drv_data->rx ? chip->read : null_reader; 965 966 /* Change speed and bit per word on a per transfer */ 967 bits = transfer->bits_per_word; 968 speed = transfer->speed_hz; 969 970 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 971 972 if (bits <= 8) { 973 drv_data->n_bytes = 1; 974 drv_data->read = drv_data->read != null_reader ? 975 u8_reader : null_reader; 976 drv_data->write = drv_data->write != null_writer ? 977 u8_writer : null_writer; 978 } else if (bits <= 16) { 979 drv_data->n_bytes = 2; 980 drv_data->read = drv_data->read != null_reader ? 981 u16_reader : null_reader; 982 drv_data->write = drv_data->write != null_writer ? 983 u16_writer : null_writer; 984 } else if (bits <= 32) { 985 drv_data->n_bytes = 4; 986 drv_data->read = drv_data->read != null_reader ? 987 u32_reader : null_reader; 988 drv_data->write = drv_data->write != null_writer ? 989 u32_writer : null_writer; 990 } 991 /* 992 * if bits/word is changed in dma mode, then must check the 993 * thresholds and burst also 994 */ 995 if (chip->enable_dma) { 996 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, 997 message->spi, 998 bits, &dma_burst, 999 &dma_thresh)) 1000 dev_warn_ratelimited(&message->spi->dev, 1001 "pump_transfers: DMA burst size reduced to match bits_per_word\n"); 1002 } 1003 1004 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1005 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1006 if (!pxa25x_ssp_comp(drv_data)) 1007 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1008 drv_data->master->max_speed_hz 1009 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1010 chip->enable_dma ? "DMA" : "PIO"); 1011 else 1012 dev_dbg(&message->spi->dev, "%u Hz actual, %s\n", 1013 drv_data->master->max_speed_hz / 2 1014 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1015 chip->enable_dma ? "DMA" : "PIO"); 1016 1017 message->state = RUNNING_STATE; 1018 1019 drv_data->dma_mapped = 0; 1020 if (pxa2xx_spi_dma_is_possible(drv_data->len)) 1021 drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data); 1022 if (drv_data->dma_mapped) { 1023 1024 /* Ensure we have the correct interrupt handler */ 1025 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1026 1027 pxa2xx_spi_dma_prepare(drv_data, dma_burst); 1028 1029 /* Clear status and start DMA engine */ 1030 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1031 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1032 1033 pxa2xx_spi_dma_start(drv_data); 1034 } else { 1035 /* Ensure we have the correct interrupt handler */ 1036 drv_data->transfer_handler = interrupt_transfer; 1037 1038 /* Clear status */ 1039 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1040 write_SSSR_CS(drv_data, drv_data->clear_sr); 1041 } 1042 1043 if (is_lpss_ssp(drv_data)) { 1044 if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff) 1045 != chip->lpss_rx_threshold) 1046 pxa2xx_spi_write(drv_data, SSIRF, 1047 chip->lpss_rx_threshold); 1048 if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff) 1049 != chip->lpss_tx_threshold) 1050 pxa2xx_spi_write(drv_data, SSITF, 1051 chip->lpss_tx_threshold); 1052 } 1053 1054 if (is_quark_x1000_ssp(drv_data) && 1055 (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate)) 1056 pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate); 1057 1058 /* see if we need to reload the config registers */ 1059 if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0) 1060 || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask) 1061 != (cr1 & change_mask)) { 1062 /* stop the SSP, and update the other bits */ 1063 pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE); 1064 if (!pxa25x_ssp_comp(drv_data)) 1065 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1066 /* first set CR1 without interrupt and service enables */ 1067 pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask); 1068 /* restart the SSP */ 1069 pxa2xx_spi_write(drv_data, SSCR0, cr0); 1070 1071 } else { 1072 if (!pxa25x_ssp_comp(drv_data)) 1073 pxa2xx_spi_write(drv_data, SSTO, chip->timeout); 1074 } 1075 1076 cs_assert(drv_data); 1077 1078 /* after chip select, release the data by enabling service 1079 * requests and interrupts, without changing any mode bits */ 1080 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1081 } 1082 1083 static int pxa2xx_spi_transfer_one_message(struct spi_master *master, 1084 struct spi_message *msg) 1085 { 1086 struct driver_data *drv_data = spi_master_get_devdata(master); 1087 1088 drv_data->cur_msg = msg; 1089 /* Initial message state*/ 1090 drv_data->cur_msg->state = START_STATE; 1091 drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next, 1092 struct spi_transfer, 1093 transfer_list); 1094 1095 /* prepare to setup the SSP, in pump_transfers, using the per 1096 * chip configuration */ 1097 drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi); 1098 1099 /* Mark as busy and launch transfers */ 1100 tasklet_schedule(&drv_data->pump_transfers); 1101 return 0; 1102 } 1103 1104 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master) 1105 { 1106 struct driver_data *drv_data = spi_master_get_devdata(master); 1107 1108 /* Disable the SSP now */ 1109 pxa2xx_spi_write(drv_data, SSCR0, 1110 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE); 1111 1112 return 0; 1113 } 1114 1115 static int setup_cs(struct spi_device *spi, struct chip_data *chip, 1116 struct pxa2xx_spi_chip *chip_info) 1117 { 1118 int err = 0; 1119 1120 if (chip == NULL || chip_info == NULL) 1121 return 0; 1122 1123 /* NOTE: setup() can be called multiple times, possibly with 1124 * different chip_info, release previously requested GPIO 1125 */ 1126 if (gpio_is_valid(chip->gpio_cs)) 1127 gpio_free(chip->gpio_cs); 1128 1129 /* If (*cs_control) is provided, ignore GPIO chip select */ 1130 if (chip_info->cs_control) { 1131 chip->cs_control = chip_info->cs_control; 1132 return 0; 1133 } 1134 1135 if (gpio_is_valid(chip_info->gpio_cs)) { 1136 err = gpio_request(chip_info->gpio_cs, "SPI_CS"); 1137 if (err) { 1138 dev_err(&spi->dev, "failed to request chip select GPIO%d\n", 1139 chip_info->gpio_cs); 1140 return err; 1141 } 1142 1143 chip->gpio_cs = chip_info->gpio_cs; 1144 chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH; 1145 1146 err = gpio_direction_output(chip->gpio_cs, 1147 !chip->gpio_cs_inverted); 1148 } 1149 1150 return err; 1151 } 1152 1153 static int setup(struct spi_device *spi) 1154 { 1155 struct pxa2xx_spi_chip *chip_info = NULL; 1156 struct chip_data *chip; 1157 const struct lpss_config *config; 1158 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1159 uint tx_thres, tx_hi_thres, rx_thres; 1160 1161 switch (drv_data->ssp_type) { 1162 case QUARK_X1000_SSP: 1163 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1164 tx_hi_thres = 0; 1165 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1166 break; 1167 case LPSS_LPT_SSP: 1168 case LPSS_BYT_SSP: 1169 case LPSS_SPT_SSP: 1170 case LPSS_BXT_SSP: 1171 config = lpss_get_config(drv_data); 1172 tx_thres = config->tx_threshold_lo; 1173 tx_hi_thres = config->tx_threshold_hi; 1174 rx_thres = config->rx_threshold; 1175 break; 1176 default: 1177 tx_thres = TX_THRESH_DFLT; 1178 tx_hi_thres = 0; 1179 rx_thres = RX_THRESH_DFLT; 1180 break; 1181 } 1182 1183 /* Only alloc on first setup */ 1184 chip = spi_get_ctldata(spi); 1185 if (!chip) { 1186 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1187 if (!chip) 1188 return -ENOMEM; 1189 1190 if (drv_data->ssp_type == CE4100_SSP) { 1191 if (spi->chip_select > 4) { 1192 dev_err(&spi->dev, 1193 "failed setup: cs number must not be > 4.\n"); 1194 kfree(chip); 1195 return -EINVAL; 1196 } 1197 1198 chip->frm = spi->chip_select; 1199 } else 1200 chip->gpio_cs = -1; 1201 chip->enable_dma = 0; 1202 chip->timeout = TIMOUT_DFLT; 1203 } 1204 1205 /* protocol drivers may change the chip settings, so... 1206 * if chip_info exists, use it */ 1207 chip_info = spi->controller_data; 1208 1209 /* chip_info isn't always needed */ 1210 chip->cr1 = 0; 1211 if (chip_info) { 1212 if (chip_info->timeout) 1213 chip->timeout = chip_info->timeout; 1214 if (chip_info->tx_threshold) 1215 tx_thres = chip_info->tx_threshold; 1216 if (chip_info->tx_hi_threshold) 1217 tx_hi_thres = chip_info->tx_hi_threshold; 1218 if (chip_info->rx_threshold) 1219 rx_thres = chip_info->rx_threshold; 1220 chip->enable_dma = drv_data->master_info->enable_dma; 1221 chip->dma_threshold = 0; 1222 if (chip_info->enable_loopback) 1223 chip->cr1 = SSCR1_LBM; 1224 } else if (ACPI_HANDLE(&spi->dev)) { 1225 /* 1226 * Slave devices enumerated from ACPI namespace don't 1227 * usually have chip_info but we still might want to use 1228 * DMA with them. 1229 */ 1230 chip->enable_dma = drv_data->master_info->enable_dma; 1231 } 1232 1233 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1234 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) 1235 | SSITF_TxHiThresh(tx_hi_thres); 1236 1237 /* set dma burst and threshold outside of chip_info path so that if 1238 * chip_info goes away after setting chip->enable_dma, the 1239 * burst and threshold can still respond to changes in bits_per_word */ 1240 if (chip->enable_dma) { 1241 /* set up legal burst and threshold for dma */ 1242 if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi, 1243 spi->bits_per_word, 1244 &chip->dma_burst_size, 1245 &chip->dma_threshold)) { 1246 dev_warn(&spi->dev, 1247 "in setup: DMA burst size reduced to match bits_per_word\n"); 1248 } 1249 } 1250 1251 switch (drv_data->ssp_type) { 1252 case QUARK_X1000_SSP: 1253 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1254 & QUARK_X1000_SSCR1_RFT) 1255 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1256 & QUARK_X1000_SSCR1_TFT); 1257 break; 1258 default: 1259 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1260 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1261 break; 1262 } 1263 1264 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1265 chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0) 1266 | (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0); 1267 1268 if (spi->mode & SPI_LOOP) 1269 chip->cr1 |= SSCR1_LBM; 1270 1271 if (spi->bits_per_word <= 8) { 1272 chip->n_bytes = 1; 1273 chip->read = u8_reader; 1274 chip->write = u8_writer; 1275 } else if (spi->bits_per_word <= 16) { 1276 chip->n_bytes = 2; 1277 chip->read = u16_reader; 1278 chip->write = u16_writer; 1279 } else if (spi->bits_per_word <= 32) { 1280 chip->n_bytes = 4; 1281 chip->read = u32_reader; 1282 chip->write = u32_writer; 1283 } 1284 1285 spi_set_ctldata(spi, chip); 1286 1287 if (drv_data->ssp_type == CE4100_SSP) 1288 return 0; 1289 1290 return setup_cs(spi, chip, chip_info); 1291 } 1292 1293 static void cleanup(struct spi_device *spi) 1294 { 1295 struct chip_data *chip = spi_get_ctldata(spi); 1296 struct driver_data *drv_data = spi_master_get_devdata(spi->master); 1297 1298 if (!chip) 1299 return; 1300 1301 if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs)) 1302 gpio_free(chip->gpio_cs); 1303 1304 kfree(chip); 1305 } 1306 1307 #ifdef CONFIG_PCI 1308 #ifdef CONFIG_ACPI 1309 1310 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1311 { "INT33C0", LPSS_LPT_SSP }, 1312 { "INT33C1", LPSS_LPT_SSP }, 1313 { "INT3430", LPSS_LPT_SSP }, 1314 { "INT3431", LPSS_LPT_SSP }, 1315 { "80860F0E", LPSS_BYT_SSP }, 1316 { "8086228E", LPSS_BYT_SSP }, 1317 { }, 1318 }; 1319 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1320 1321 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1322 { 1323 unsigned int devid; 1324 int port_id = -1; 1325 1326 if (adev && adev->pnp.unique_id && 1327 !kstrtouint(adev->pnp.unique_id, 0, &devid)) 1328 port_id = devid; 1329 return port_id; 1330 } 1331 #else /* !CONFIG_ACPI */ 1332 static int pxa2xx_spi_get_port_id(struct acpi_device *adev) 1333 { 1334 return -1; 1335 } 1336 #endif 1337 1338 /* 1339 * PCI IDs of compound devices that integrate both host controller and private 1340 * integrated DMA engine. Please note these are not used in module 1341 * autoloading and probing in this module but matching the LPSS SSP type. 1342 */ 1343 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = { 1344 /* SPT-LP */ 1345 { PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP }, 1346 { PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP }, 1347 /* SPT-H */ 1348 { PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP }, 1349 { PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP }, 1350 /* BXT */ 1351 { PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP }, 1352 { PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP }, 1353 { PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP }, 1354 /* APL */ 1355 { PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP }, 1356 { PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP }, 1357 { PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP }, 1358 { }, 1359 }; 1360 1361 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1362 { 1363 struct device *dev = param; 1364 1365 if (dev != chan->device->dev->parent) 1366 return false; 1367 1368 return true; 1369 } 1370 1371 static struct pxa2xx_spi_master * 1372 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1373 { 1374 struct pxa2xx_spi_master *pdata; 1375 struct acpi_device *adev; 1376 struct ssp_device *ssp; 1377 struct resource *res; 1378 const struct acpi_device_id *adev_id = NULL; 1379 const struct pci_device_id *pcidev_id = NULL; 1380 int type; 1381 1382 adev = ACPI_COMPANION(&pdev->dev); 1383 1384 if (dev_is_pci(pdev->dev.parent)) 1385 pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match, 1386 to_pci_dev(pdev->dev.parent)); 1387 else if (adev) 1388 adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table, 1389 &pdev->dev); 1390 else 1391 return NULL; 1392 1393 if (adev_id) 1394 type = (int)adev_id->driver_data; 1395 else if (pcidev_id) 1396 type = (int)pcidev_id->driver_data; 1397 else 1398 return NULL; 1399 1400 pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL); 1401 if (!pdata) 1402 return NULL; 1403 1404 res = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1405 if (!res) 1406 return NULL; 1407 1408 ssp = &pdata->ssp; 1409 1410 ssp->phys_base = res->start; 1411 ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res); 1412 if (IS_ERR(ssp->mmio_base)) 1413 return NULL; 1414 1415 if (pcidev_id) { 1416 pdata->tx_param = pdev->dev.parent; 1417 pdata->rx_param = pdev->dev.parent; 1418 pdata->dma_filter = pxa2xx_spi_idma_filter; 1419 } 1420 1421 ssp->clk = devm_clk_get(&pdev->dev, NULL); 1422 ssp->irq = platform_get_irq(pdev, 0); 1423 ssp->type = type; 1424 ssp->pdev = pdev; 1425 ssp->port_id = pxa2xx_spi_get_port_id(adev); 1426 1427 pdata->num_chipselect = 1; 1428 pdata->enable_dma = true; 1429 1430 return pdata; 1431 } 1432 1433 #else /* !CONFIG_PCI */ 1434 static inline struct pxa2xx_spi_master * 1435 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1436 { 1437 return NULL; 1438 } 1439 #endif 1440 1441 static int pxa2xx_spi_probe(struct platform_device *pdev) 1442 { 1443 struct device *dev = &pdev->dev; 1444 struct pxa2xx_spi_master *platform_info; 1445 struct spi_master *master; 1446 struct driver_data *drv_data; 1447 struct ssp_device *ssp; 1448 const struct lpss_config *config; 1449 int status; 1450 u32 tmp; 1451 1452 platform_info = dev_get_platdata(dev); 1453 if (!platform_info) { 1454 platform_info = pxa2xx_spi_init_pdata(pdev); 1455 if (!platform_info) { 1456 dev_err(&pdev->dev, "missing platform data\n"); 1457 return -ENODEV; 1458 } 1459 } 1460 1461 ssp = pxa_ssp_request(pdev->id, pdev->name); 1462 if (!ssp) 1463 ssp = &platform_info->ssp; 1464 1465 if (!ssp->mmio_base) { 1466 dev_err(&pdev->dev, "failed to get ssp\n"); 1467 return -ENODEV; 1468 } 1469 1470 master = spi_alloc_master(dev, sizeof(struct driver_data)); 1471 if (!master) { 1472 dev_err(&pdev->dev, "cannot alloc spi_master\n"); 1473 pxa_ssp_free(ssp); 1474 return -ENOMEM; 1475 } 1476 drv_data = spi_master_get_devdata(master); 1477 drv_data->master = master; 1478 drv_data->master_info = platform_info; 1479 drv_data->pdev = pdev; 1480 drv_data->ssp = ssp; 1481 1482 master->dev.parent = &pdev->dev; 1483 master->dev.of_node = pdev->dev.of_node; 1484 /* the spi->mode bits understood by this driver: */ 1485 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1486 1487 master->bus_num = ssp->port_id; 1488 master->dma_alignment = DMA_ALIGNMENT; 1489 master->cleanup = cleanup; 1490 master->setup = setup; 1491 master->transfer_one_message = pxa2xx_spi_transfer_one_message; 1492 master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1493 master->auto_runtime_pm = true; 1494 1495 drv_data->ssp_type = ssp->type; 1496 1497 drv_data->ioaddr = ssp->mmio_base; 1498 drv_data->ssdr_physical = ssp->phys_base + SSDR; 1499 if (pxa25x_ssp_comp(drv_data)) { 1500 switch (drv_data->ssp_type) { 1501 case QUARK_X1000_SSP: 1502 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1503 break; 1504 default: 1505 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1506 break; 1507 } 1508 1509 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1510 drv_data->dma_cr1 = 0; 1511 drv_data->clear_sr = SSSR_ROR; 1512 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1513 } else { 1514 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1515 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1516 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1517 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1518 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR; 1519 } 1520 1521 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1522 drv_data); 1523 if (status < 0) { 1524 dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq); 1525 goto out_error_master_alloc; 1526 } 1527 1528 /* Setup DMA if requested */ 1529 if (platform_info->enable_dma) { 1530 status = pxa2xx_spi_dma_setup(drv_data); 1531 if (status) { 1532 dev_dbg(dev, "no DMA channels available, using PIO\n"); 1533 platform_info->enable_dma = false; 1534 } 1535 } 1536 1537 /* Enable SOC clock */ 1538 clk_prepare_enable(ssp->clk); 1539 1540 master->max_speed_hz = clk_get_rate(ssp->clk); 1541 1542 /* Load default SSP configuration */ 1543 pxa2xx_spi_write(drv_data, SSCR0, 0); 1544 switch (drv_data->ssp_type) { 1545 case QUARK_X1000_SSP: 1546 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) 1547 | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1548 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1549 1550 /* using the Motorola SPI protocol and use 8 bit frame */ 1551 pxa2xx_spi_write(drv_data, SSCR0, 1552 QUARK_X1000_SSCR0_Motorola 1553 | QUARK_X1000_SSCR0_DataSize(8)); 1554 break; 1555 default: 1556 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1557 SSCR1_TxTresh(TX_THRESH_DFLT); 1558 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1559 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1560 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1561 break; 1562 } 1563 1564 if (!pxa25x_ssp_comp(drv_data)) 1565 pxa2xx_spi_write(drv_data, SSTO, 0); 1566 1567 if (!is_quark_x1000_ssp(drv_data)) 1568 pxa2xx_spi_write(drv_data, SSPSP, 0); 1569 1570 if (is_lpss_ssp(drv_data)) 1571 lpss_ssp_setup(drv_data); 1572 1573 if (is_lpss_ssp(drv_data)) { 1574 lpss_ssp_setup(drv_data); 1575 config = lpss_get_config(drv_data); 1576 if (config->reg_capabilities >= 0) { 1577 tmp = __lpss_ssp_read_priv(drv_data, 1578 config->reg_capabilities); 1579 tmp &= LPSS_CAPS_CS_EN_MASK; 1580 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1581 platform_info->num_chipselect = ffz(tmp); 1582 } 1583 } 1584 master->num_chipselect = platform_info->num_chipselect; 1585 1586 tasklet_init(&drv_data->pump_transfers, pump_transfers, 1587 (unsigned long)drv_data); 1588 1589 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1590 pm_runtime_use_autosuspend(&pdev->dev); 1591 pm_runtime_set_active(&pdev->dev); 1592 pm_runtime_enable(&pdev->dev); 1593 1594 /* Register with the SPI framework */ 1595 platform_set_drvdata(pdev, drv_data); 1596 status = devm_spi_register_master(&pdev->dev, master); 1597 if (status != 0) { 1598 dev_err(&pdev->dev, "problem registering spi master\n"); 1599 goto out_error_clock_enabled; 1600 } 1601 1602 return status; 1603 1604 out_error_clock_enabled: 1605 clk_disable_unprepare(ssp->clk); 1606 pxa2xx_spi_dma_release(drv_data); 1607 free_irq(ssp->irq, drv_data); 1608 1609 out_error_master_alloc: 1610 spi_master_put(master); 1611 pxa_ssp_free(ssp); 1612 return status; 1613 } 1614 1615 static int pxa2xx_spi_remove(struct platform_device *pdev) 1616 { 1617 struct driver_data *drv_data = platform_get_drvdata(pdev); 1618 struct ssp_device *ssp; 1619 1620 if (!drv_data) 1621 return 0; 1622 ssp = drv_data->ssp; 1623 1624 pm_runtime_get_sync(&pdev->dev); 1625 1626 /* Disable the SSP at the peripheral and SOC level */ 1627 pxa2xx_spi_write(drv_data, SSCR0, 0); 1628 clk_disable_unprepare(ssp->clk); 1629 1630 /* Release DMA */ 1631 if (drv_data->master_info->enable_dma) 1632 pxa2xx_spi_dma_release(drv_data); 1633 1634 pm_runtime_put_noidle(&pdev->dev); 1635 pm_runtime_disable(&pdev->dev); 1636 1637 /* Release IRQ */ 1638 free_irq(ssp->irq, drv_data); 1639 1640 /* Release SSP */ 1641 pxa_ssp_free(ssp); 1642 1643 return 0; 1644 } 1645 1646 static void pxa2xx_spi_shutdown(struct platform_device *pdev) 1647 { 1648 int status = 0; 1649 1650 if ((status = pxa2xx_spi_remove(pdev)) != 0) 1651 dev_err(&pdev->dev, "shutdown failed with %d\n", status); 1652 } 1653 1654 #ifdef CONFIG_PM_SLEEP 1655 static int pxa2xx_spi_suspend(struct device *dev) 1656 { 1657 struct driver_data *drv_data = dev_get_drvdata(dev); 1658 struct ssp_device *ssp = drv_data->ssp; 1659 int status = 0; 1660 1661 status = spi_master_suspend(drv_data->master); 1662 if (status != 0) 1663 return status; 1664 pxa2xx_spi_write(drv_data, SSCR0, 0); 1665 1666 if (!pm_runtime_suspended(dev)) 1667 clk_disable_unprepare(ssp->clk); 1668 1669 return 0; 1670 } 1671 1672 static int pxa2xx_spi_resume(struct device *dev) 1673 { 1674 struct driver_data *drv_data = dev_get_drvdata(dev); 1675 struct ssp_device *ssp = drv_data->ssp; 1676 int status = 0; 1677 1678 /* Enable the SSP clock */ 1679 if (!pm_runtime_suspended(dev)) 1680 clk_prepare_enable(ssp->clk); 1681 1682 /* Restore LPSS private register bits */ 1683 if (is_lpss_ssp(drv_data)) 1684 lpss_ssp_setup(drv_data); 1685 1686 /* Start the queue running */ 1687 status = spi_master_resume(drv_data->master); 1688 if (status != 0) { 1689 dev_err(dev, "problem starting queue (%d)\n", status); 1690 return status; 1691 } 1692 1693 return 0; 1694 } 1695 #endif 1696 1697 #ifdef CONFIG_PM 1698 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1699 { 1700 struct driver_data *drv_data = dev_get_drvdata(dev); 1701 1702 clk_disable_unprepare(drv_data->ssp->clk); 1703 return 0; 1704 } 1705 1706 static int pxa2xx_spi_runtime_resume(struct device *dev) 1707 { 1708 struct driver_data *drv_data = dev_get_drvdata(dev); 1709 1710 clk_prepare_enable(drv_data->ssp->clk); 1711 return 0; 1712 } 1713 #endif 1714 1715 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1716 SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1717 SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, 1718 pxa2xx_spi_runtime_resume, NULL) 1719 }; 1720 1721 static struct platform_driver driver = { 1722 .driver = { 1723 .name = "pxa2xx-spi", 1724 .pm = &pxa2xx_spi_pm_ops, 1725 .acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match), 1726 }, 1727 .probe = pxa2xx_spi_probe, 1728 .remove = pxa2xx_spi_remove, 1729 .shutdown = pxa2xx_spi_shutdown, 1730 }; 1731 1732 static int __init pxa2xx_spi_init(void) 1733 { 1734 return platform_driver_register(&driver); 1735 } 1736 subsys_initcall(pxa2xx_spi_init); 1737 1738 static void __exit pxa2xx_spi_exit(void) 1739 { 1740 platform_driver_unregister(&driver); 1741 } 1742 module_exit(pxa2xx_spi_exit); 1743