xref: /linux/drivers/spi/spi-pxa2xx.c (revision 9cfc5c90ad38c8fc11bfd39de42a107da00871ba)
1 /*
2  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
3  * Copyright (C) 2013, Intel Corporation
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License as published by
7  * the Free Software Foundation; either version 2 of the License, or
8  * (at your option) any later version.
9  *
10  * This program is distributed in the hope that it will be useful,
11  * but WITHOUT ANY WARRANTY; without even the implied warranty of
12  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
13  * GNU General Public License for more details.
14  */
15 
16 #include <linux/bitops.h>
17 #include <linux/init.h>
18 #include <linux/module.h>
19 #include <linux/device.h>
20 #include <linux/ioport.h>
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/interrupt.h>
24 #include <linux/kernel.h>
25 #include <linux/pci.h>
26 #include <linux/platform_device.h>
27 #include <linux/spi/pxa2xx_spi.h>
28 #include <linux/spi/spi.h>
29 #include <linux/delay.h>
30 #include <linux/gpio.h>
31 #include <linux/slab.h>
32 #include <linux/clk.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/acpi.h>
35 
36 #include "spi-pxa2xx.h"
37 
38 MODULE_AUTHOR("Stephen Street");
39 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
40 MODULE_LICENSE("GPL");
41 MODULE_ALIAS("platform:pxa2xx-spi");
42 
43 #define TIMOUT_DFLT		1000
44 
45 /*
46  * for testing SSCR1 changes that require SSP restart, basically
47  * everything except the service and interrupt enables, the pxa270 developer
48  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
49  * list, but the PXA255 dev man says all bits without really meaning the
50  * service and interrupt enables
51  */
52 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
53 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
54 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
55 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
56 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
57 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
58 
59 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
60 				| QUARK_X1000_SSCR1_EFWR	\
61 				| QUARK_X1000_SSCR1_RFT		\
62 				| QUARK_X1000_SSCR1_TFT		\
63 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
64 
65 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
66 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
67 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
68 #define LPSS_CS_CONTROL_CS_SEL_SHIFT		8
69 #define LPSS_CS_CONTROL_CS_SEL_MASK		(3 << LPSS_CS_CONTROL_CS_SEL_SHIFT)
70 #define LPSS_CAPS_CS_EN_SHIFT			9
71 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
72 
73 struct lpss_config {
74 	/* LPSS offset from drv_data->ioaddr */
75 	unsigned offset;
76 	/* Register offsets from drv_data->lpss_base or -1 */
77 	int reg_general;
78 	int reg_ssp;
79 	int reg_cs_ctrl;
80 	int reg_capabilities;
81 	/* FIFO thresholds */
82 	u32 rx_threshold;
83 	u32 tx_threshold_lo;
84 	u32 tx_threshold_hi;
85 };
86 
87 /* Keep these sorted with enum pxa_ssp_type */
88 static const struct lpss_config lpss_platforms[] = {
89 	{	/* LPSS_LPT_SSP */
90 		.offset = 0x800,
91 		.reg_general = 0x08,
92 		.reg_ssp = 0x0c,
93 		.reg_cs_ctrl = 0x18,
94 		.reg_capabilities = -1,
95 		.rx_threshold = 64,
96 		.tx_threshold_lo = 160,
97 		.tx_threshold_hi = 224,
98 	},
99 	{	/* LPSS_BYT_SSP */
100 		.offset = 0x400,
101 		.reg_general = 0x08,
102 		.reg_ssp = 0x0c,
103 		.reg_cs_ctrl = 0x18,
104 		.reg_capabilities = -1,
105 		.rx_threshold = 64,
106 		.tx_threshold_lo = 160,
107 		.tx_threshold_hi = 224,
108 	},
109 	{	/* LPSS_SPT_SSP */
110 		.offset = 0x200,
111 		.reg_general = -1,
112 		.reg_ssp = 0x20,
113 		.reg_cs_ctrl = 0x24,
114 		.reg_capabilities = 0xfc,
115 		.rx_threshold = 1,
116 		.tx_threshold_lo = 32,
117 		.tx_threshold_hi = 56,
118 	},
119 	{	/* LPSS_BXT_SSP */
120 		.offset = 0x200,
121 		.reg_general = -1,
122 		.reg_ssp = 0x20,
123 		.reg_cs_ctrl = 0x24,
124 		.reg_capabilities = 0xfc,
125 		.rx_threshold = 1,
126 		.tx_threshold_lo = 16,
127 		.tx_threshold_hi = 48,
128 	},
129 };
130 
131 static inline const struct lpss_config
132 *lpss_get_config(const struct driver_data *drv_data)
133 {
134 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
135 }
136 
137 static bool is_lpss_ssp(const struct driver_data *drv_data)
138 {
139 	switch (drv_data->ssp_type) {
140 	case LPSS_LPT_SSP:
141 	case LPSS_BYT_SSP:
142 	case LPSS_SPT_SSP:
143 	case LPSS_BXT_SSP:
144 		return true;
145 	default:
146 		return false;
147 	}
148 }
149 
150 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
151 {
152 	return drv_data->ssp_type == QUARK_X1000_SSP;
153 }
154 
155 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
156 {
157 	switch (drv_data->ssp_type) {
158 	case QUARK_X1000_SSP:
159 		return QUARK_X1000_SSCR1_CHANGE_MASK;
160 	default:
161 		return SSCR1_CHANGE_MASK;
162 	}
163 }
164 
165 static u32
166 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
167 {
168 	switch (drv_data->ssp_type) {
169 	case QUARK_X1000_SSP:
170 		return RX_THRESH_QUARK_X1000_DFLT;
171 	default:
172 		return RX_THRESH_DFLT;
173 	}
174 }
175 
176 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
177 {
178 	u32 mask;
179 
180 	switch (drv_data->ssp_type) {
181 	case QUARK_X1000_SSP:
182 		mask = QUARK_X1000_SSSR_TFL_MASK;
183 		break;
184 	default:
185 		mask = SSSR_TFL_MASK;
186 		break;
187 	}
188 
189 	return (pxa2xx_spi_read(drv_data, SSSR) & mask) == mask;
190 }
191 
192 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
193 				     u32 *sccr1_reg)
194 {
195 	u32 mask;
196 
197 	switch (drv_data->ssp_type) {
198 	case QUARK_X1000_SSP:
199 		mask = QUARK_X1000_SSCR1_RFT;
200 		break;
201 	default:
202 		mask = SSCR1_RFT;
203 		break;
204 	}
205 	*sccr1_reg &= ~mask;
206 }
207 
208 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
209 				   u32 *sccr1_reg, u32 threshold)
210 {
211 	switch (drv_data->ssp_type) {
212 	case QUARK_X1000_SSP:
213 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
214 		break;
215 	default:
216 		*sccr1_reg |= SSCR1_RxTresh(threshold);
217 		break;
218 	}
219 }
220 
221 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
222 				  u32 clk_div, u8 bits)
223 {
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		return clk_div
227 			| QUARK_X1000_SSCR0_Motorola
228 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits)
229 			| SSCR0_SSE;
230 	default:
231 		return clk_div
232 			| SSCR0_Motorola
233 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
234 			| SSCR0_SSE
235 			| (bits > 16 ? SSCR0_EDSS : 0);
236 	}
237 }
238 
239 /*
240  * Read and write LPSS SSP private registers. Caller must first check that
241  * is_lpss_ssp() returns true before these can be called.
242  */
243 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
244 {
245 	WARN_ON(!drv_data->lpss_base);
246 	return readl(drv_data->lpss_base + offset);
247 }
248 
249 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
250 				  unsigned offset, u32 value)
251 {
252 	WARN_ON(!drv_data->lpss_base);
253 	writel(value, drv_data->lpss_base + offset);
254 }
255 
256 /*
257  * lpss_ssp_setup - perform LPSS SSP specific setup
258  * @drv_data: pointer to the driver private data
259  *
260  * Perform LPSS SSP specific setup. This function must be called first if
261  * one is going to use LPSS SSP private registers.
262  */
263 static void lpss_ssp_setup(struct driver_data *drv_data)
264 {
265 	const struct lpss_config *config;
266 	u32 value;
267 
268 	config = lpss_get_config(drv_data);
269 	drv_data->lpss_base = drv_data->ioaddr + config->offset;
270 
271 	/* Enable software chip select control */
272 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
273 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
274 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
275 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
276 
277 	/* Enable multiblock DMA transfers */
278 	if (drv_data->master_info->enable_dma) {
279 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
280 
281 		if (config->reg_general >= 0) {
282 			value = __lpss_ssp_read_priv(drv_data,
283 						     config->reg_general);
284 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
285 			__lpss_ssp_write_priv(drv_data,
286 					      config->reg_general, value);
287 		}
288 	}
289 }
290 
291 static void lpss_ssp_cs_control(struct driver_data *drv_data, bool enable)
292 {
293 	const struct lpss_config *config;
294 	u32 value, cs;
295 
296 	config = lpss_get_config(drv_data);
297 
298 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
299 	if (enable) {
300 		cs = drv_data->cur_msg->spi->chip_select;
301 		cs <<= LPSS_CS_CONTROL_CS_SEL_SHIFT;
302 		if (cs != (value & LPSS_CS_CONTROL_CS_SEL_MASK)) {
303 			/*
304 			 * When switching another chip select output active
305 			 * the output must be selected first and wait 2 ssp_clk
306 			 * cycles before changing state to active. Otherwise
307 			 * a short glitch will occur on the previous chip
308 			 * select since output select is latched but state
309 			 * control is not.
310 			 */
311 			value &= ~LPSS_CS_CONTROL_CS_SEL_MASK;
312 			value |= cs;
313 			__lpss_ssp_write_priv(drv_data,
314 					      config->reg_cs_ctrl, value);
315 			ndelay(1000000000 /
316 			       (drv_data->master->max_speed_hz / 2));
317 		}
318 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
319 	} else {
320 		value |= LPSS_CS_CONTROL_CS_HIGH;
321 	}
322 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
323 }
324 
325 static void cs_assert(struct driver_data *drv_data)
326 {
327 	struct chip_data *chip = drv_data->cur_chip;
328 
329 	if (drv_data->ssp_type == CE4100_SSP) {
330 		pxa2xx_spi_write(drv_data, SSSR, drv_data->cur_chip->frm);
331 		return;
332 	}
333 
334 	if (chip->cs_control) {
335 		chip->cs_control(PXA2XX_CS_ASSERT);
336 		return;
337 	}
338 
339 	if (gpio_is_valid(chip->gpio_cs)) {
340 		gpio_set_value(chip->gpio_cs, chip->gpio_cs_inverted);
341 		return;
342 	}
343 
344 	if (is_lpss_ssp(drv_data))
345 		lpss_ssp_cs_control(drv_data, true);
346 }
347 
348 static void cs_deassert(struct driver_data *drv_data)
349 {
350 	struct chip_data *chip = drv_data->cur_chip;
351 
352 	if (drv_data->ssp_type == CE4100_SSP)
353 		return;
354 
355 	if (chip->cs_control) {
356 		chip->cs_control(PXA2XX_CS_DEASSERT);
357 		return;
358 	}
359 
360 	if (gpio_is_valid(chip->gpio_cs)) {
361 		gpio_set_value(chip->gpio_cs, !chip->gpio_cs_inverted);
362 		return;
363 	}
364 
365 	if (is_lpss_ssp(drv_data))
366 		lpss_ssp_cs_control(drv_data, false);
367 }
368 
369 int pxa2xx_spi_flush(struct driver_data *drv_data)
370 {
371 	unsigned long limit = loops_per_jiffy << 1;
372 
373 	do {
374 		while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
375 			pxa2xx_spi_read(drv_data, SSDR);
376 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
377 	write_SSSR_CS(drv_data, SSSR_ROR);
378 
379 	return limit;
380 }
381 
382 static int null_writer(struct driver_data *drv_data)
383 {
384 	u8 n_bytes = drv_data->n_bytes;
385 
386 	if (pxa2xx_spi_txfifo_full(drv_data)
387 		|| (drv_data->tx == drv_data->tx_end))
388 		return 0;
389 
390 	pxa2xx_spi_write(drv_data, SSDR, 0);
391 	drv_data->tx += n_bytes;
392 
393 	return 1;
394 }
395 
396 static int null_reader(struct driver_data *drv_data)
397 {
398 	u8 n_bytes = drv_data->n_bytes;
399 
400 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
401 	       && (drv_data->rx < drv_data->rx_end)) {
402 		pxa2xx_spi_read(drv_data, SSDR);
403 		drv_data->rx += n_bytes;
404 	}
405 
406 	return drv_data->rx == drv_data->rx_end;
407 }
408 
409 static int u8_writer(struct driver_data *drv_data)
410 {
411 	if (pxa2xx_spi_txfifo_full(drv_data)
412 		|| (drv_data->tx == drv_data->tx_end))
413 		return 0;
414 
415 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
416 	++drv_data->tx;
417 
418 	return 1;
419 }
420 
421 static int u8_reader(struct driver_data *drv_data)
422 {
423 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
424 	       && (drv_data->rx < drv_data->rx_end)) {
425 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
426 		++drv_data->rx;
427 	}
428 
429 	return drv_data->rx == drv_data->rx_end;
430 }
431 
432 static int u16_writer(struct driver_data *drv_data)
433 {
434 	if (pxa2xx_spi_txfifo_full(drv_data)
435 		|| (drv_data->tx == drv_data->tx_end))
436 		return 0;
437 
438 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
439 	drv_data->tx += 2;
440 
441 	return 1;
442 }
443 
444 static int u16_reader(struct driver_data *drv_data)
445 {
446 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
447 	       && (drv_data->rx < drv_data->rx_end)) {
448 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
449 		drv_data->rx += 2;
450 	}
451 
452 	return drv_data->rx == drv_data->rx_end;
453 }
454 
455 static int u32_writer(struct driver_data *drv_data)
456 {
457 	if (pxa2xx_spi_txfifo_full(drv_data)
458 		|| (drv_data->tx == drv_data->tx_end))
459 		return 0;
460 
461 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
462 	drv_data->tx += 4;
463 
464 	return 1;
465 }
466 
467 static int u32_reader(struct driver_data *drv_data)
468 {
469 	while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_RNE)
470 	       && (drv_data->rx < drv_data->rx_end)) {
471 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
472 		drv_data->rx += 4;
473 	}
474 
475 	return drv_data->rx == drv_data->rx_end;
476 }
477 
478 void *pxa2xx_spi_next_transfer(struct driver_data *drv_data)
479 {
480 	struct spi_message *msg = drv_data->cur_msg;
481 	struct spi_transfer *trans = drv_data->cur_transfer;
482 
483 	/* Move to next transfer */
484 	if (trans->transfer_list.next != &msg->transfers) {
485 		drv_data->cur_transfer =
486 			list_entry(trans->transfer_list.next,
487 					struct spi_transfer,
488 					transfer_list);
489 		return RUNNING_STATE;
490 	} else
491 		return DONE_STATE;
492 }
493 
494 /* caller already set message->status; dma and pio irqs are blocked */
495 static void giveback(struct driver_data *drv_data)
496 {
497 	struct spi_transfer* last_transfer;
498 	struct spi_message *msg;
499 
500 	msg = drv_data->cur_msg;
501 	drv_data->cur_msg = NULL;
502 	drv_data->cur_transfer = NULL;
503 
504 	last_transfer = list_last_entry(&msg->transfers, struct spi_transfer,
505 					transfer_list);
506 
507 	/* Delay if requested before any change in chip select */
508 	if (last_transfer->delay_usecs)
509 		udelay(last_transfer->delay_usecs);
510 
511 	/* Drop chip select UNLESS cs_change is true or we are returning
512 	 * a message with an error, or next message is for another chip
513 	 */
514 	if (!last_transfer->cs_change)
515 		cs_deassert(drv_data);
516 	else {
517 		struct spi_message *next_msg;
518 
519 		/* Holding of cs was hinted, but we need to make sure
520 		 * the next message is for the same chip.  Don't waste
521 		 * time with the following tests unless this was hinted.
522 		 *
523 		 * We cannot postpone this until pump_messages, because
524 		 * after calling msg->complete (below) the driver that
525 		 * sent the current message could be unloaded, which
526 		 * could invalidate the cs_control() callback...
527 		 */
528 
529 		/* get a pointer to the next message, if any */
530 		next_msg = spi_get_next_queued_message(drv_data->master);
531 
532 		/* see if the next and current messages point
533 		 * to the same chip
534 		 */
535 		if (next_msg && next_msg->spi != msg->spi)
536 			next_msg = NULL;
537 		if (!next_msg || msg->state == ERROR_STATE)
538 			cs_deassert(drv_data);
539 	}
540 
541 	drv_data->cur_chip = NULL;
542 	spi_finalize_current_message(drv_data->master);
543 }
544 
545 static void reset_sccr1(struct driver_data *drv_data)
546 {
547 	struct chip_data *chip = drv_data->cur_chip;
548 	u32 sccr1_reg;
549 
550 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1) & ~drv_data->int_cr1;
551 	sccr1_reg &= ~SSCR1_RFT;
552 	sccr1_reg |= chip->threshold;
553 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
554 }
555 
556 static void int_error_stop(struct driver_data *drv_data, const char* msg)
557 {
558 	/* Stop and reset SSP */
559 	write_SSSR_CS(drv_data, drv_data->clear_sr);
560 	reset_sccr1(drv_data);
561 	if (!pxa25x_ssp_comp(drv_data))
562 		pxa2xx_spi_write(drv_data, SSTO, 0);
563 	pxa2xx_spi_flush(drv_data);
564 	pxa2xx_spi_write(drv_data, SSCR0,
565 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
566 
567 	dev_err(&drv_data->pdev->dev, "%s\n", msg);
568 
569 	drv_data->cur_msg->state = ERROR_STATE;
570 	tasklet_schedule(&drv_data->pump_transfers);
571 }
572 
573 static void int_transfer_complete(struct driver_data *drv_data)
574 {
575 	/* Stop SSP */
576 	write_SSSR_CS(drv_data, drv_data->clear_sr);
577 	reset_sccr1(drv_data);
578 	if (!pxa25x_ssp_comp(drv_data))
579 		pxa2xx_spi_write(drv_data, SSTO, 0);
580 
581 	/* Update total byte transferred return count actual bytes read */
582 	drv_data->cur_msg->actual_length += drv_data->len -
583 				(drv_data->rx_end - drv_data->rx);
584 
585 	/* Transfer delays and chip select release are
586 	 * handled in pump_transfers or giveback
587 	 */
588 
589 	/* Move to next transfer */
590 	drv_data->cur_msg->state = pxa2xx_spi_next_transfer(drv_data);
591 
592 	/* Schedule transfer tasklet */
593 	tasklet_schedule(&drv_data->pump_transfers);
594 }
595 
596 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
597 {
598 	u32 irq_mask = (pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE) ?
599 		       drv_data->mask_sr : drv_data->mask_sr & ~SSSR_TFS;
600 
601 	u32 irq_status = pxa2xx_spi_read(drv_data, SSSR) & irq_mask;
602 
603 	if (irq_status & SSSR_ROR) {
604 		int_error_stop(drv_data, "interrupt_transfer: fifo overrun");
605 		return IRQ_HANDLED;
606 	}
607 
608 	if (irq_status & SSSR_TINT) {
609 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
610 		if (drv_data->read(drv_data)) {
611 			int_transfer_complete(drv_data);
612 			return IRQ_HANDLED;
613 		}
614 	}
615 
616 	/* Drain rx fifo, Fill tx fifo and prevent overruns */
617 	do {
618 		if (drv_data->read(drv_data)) {
619 			int_transfer_complete(drv_data);
620 			return IRQ_HANDLED;
621 		}
622 	} while (drv_data->write(drv_data));
623 
624 	if (drv_data->read(drv_data)) {
625 		int_transfer_complete(drv_data);
626 		return IRQ_HANDLED;
627 	}
628 
629 	if (drv_data->tx == drv_data->tx_end) {
630 		u32 bytes_left;
631 		u32 sccr1_reg;
632 
633 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
634 		sccr1_reg &= ~SSCR1_TIE;
635 
636 		/*
637 		 * PXA25x_SSP has no timeout, set up rx threshould for the
638 		 * remaining RX bytes.
639 		 */
640 		if (pxa25x_ssp_comp(drv_data)) {
641 			u32 rx_thre;
642 
643 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
644 
645 			bytes_left = drv_data->rx_end - drv_data->rx;
646 			switch (drv_data->n_bytes) {
647 			case 4:
648 				bytes_left >>= 1;
649 			case 2:
650 				bytes_left >>= 1;
651 			}
652 
653 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
654 			if (rx_thre > bytes_left)
655 				rx_thre = bytes_left;
656 
657 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
658 		}
659 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
660 	}
661 
662 	/* We did something */
663 	return IRQ_HANDLED;
664 }
665 
666 static irqreturn_t ssp_int(int irq, void *dev_id)
667 {
668 	struct driver_data *drv_data = dev_id;
669 	u32 sccr1_reg;
670 	u32 mask = drv_data->mask_sr;
671 	u32 status;
672 
673 	/*
674 	 * The IRQ might be shared with other peripherals so we must first
675 	 * check that are we RPM suspended or not. If we are we assume that
676 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
677 	 * interrupt is enabled).
678 	 */
679 	if (pm_runtime_suspended(&drv_data->pdev->dev))
680 		return IRQ_NONE;
681 
682 	/*
683 	 * If the device is not yet in RPM suspended state and we get an
684 	 * interrupt that is meant for another device, check if status bits
685 	 * are all set to one. That means that the device is already
686 	 * powered off.
687 	 */
688 	status = pxa2xx_spi_read(drv_data, SSSR);
689 	if (status == ~0)
690 		return IRQ_NONE;
691 
692 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
693 
694 	/* Ignore possible writes if we don't need to write */
695 	if (!(sccr1_reg & SSCR1_TIE))
696 		mask &= ~SSSR_TFS;
697 
698 	/* Ignore RX timeout interrupt if it is disabled */
699 	if (!(sccr1_reg & SSCR1_TINTE))
700 		mask &= ~SSSR_TINT;
701 
702 	if (!(status & mask))
703 		return IRQ_NONE;
704 
705 	if (!drv_data->cur_msg) {
706 
707 		pxa2xx_spi_write(drv_data, SSCR0,
708 				 pxa2xx_spi_read(drv_data, SSCR0)
709 				 & ~SSCR0_SSE);
710 		pxa2xx_spi_write(drv_data, SSCR1,
711 				 pxa2xx_spi_read(drv_data, SSCR1)
712 				 & ~drv_data->int_cr1);
713 		if (!pxa25x_ssp_comp(drv_data))
714 			pxa2xx_spi_write(drv_data, SSTO, 0);
715 		write_SSSR_CS(drv_data, drv_data->clear_sr);
716 
717 		dev_err(&drv_data->pdev->dev,
718 			"bad message state in interrupt handler\n");
719 
720 		/* Never fail */
721 		return IRQ_HANDLED;
722 	}
723 
724 	return drv_data->transfer_handler(drv_data);
725 }
726 
727 /*
728  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
729  * input frequency by fractions of 2^24. It also has a divider by 5.
730  *
731  * There are formulas to get baud rate value for given input frequency and
732  * divider parameters, such as DDS_CLK_RATE and SCR:
733  *
734  * Fsys = 200MHz
735  *
736  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
737  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
738  *
739  * DDS_CLK_RATE either 2^n or 2^n / 5.
740  * SCR is in range 0 .. 255
741  *
742  * Divisor = 5^i * 2^j * 2 * k
743  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
744  *       j = [0, 23]     j = 0 iff i = 1
745  *       k = [1, 256]
746  * Special case: j = 0, i = 1: Divisor = 2 / 5
747  *
748  * Accordingly to the specification the recommended values for DDS_CLK_RATE
749  * are:
750  *	Case 1:		2^n, n = [0, 23]
751  *	Case 2:		2^24 * 2 / 5 (0x666666)
752  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
753  *
754  * In all cases the lowest possible value is better.
755  *
756  * The function calculates parameters for all cases and chooses the one closest
757  * to the asked baud rate.
758  */
759 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
760 {
761 	unsigned long xtal = 200000000;
762 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
763 						   see (2) */
764 						/* case 3 */
765 	unsigned long fref1 = fref / 2;		/* case 1 */
766 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
767 	unsigned long scale;
768 	unsigned long q, q1, q2;
769 	long r, r1, r2;
770 	u32 mul;
771 
772 	/* Case 1 */
773 
774 	/* Set initial value for DDS_CLK_RATE */
775 	mul = (1 << 24) >> 1;
776 
777 	/* Calculate initial quot */
778 	q1 = DIV_ROUND_UP(fref1, rate);
779 
780 	/* Scale q1 if it's too big */
781 	if (q1 > 256) {
782 		/* Scale q1 to range [1, 512] */
783 		scale = fls_long(q1 - 1);
784 		if (scale > 9) {
785 			q1 >>= scale - 9;
786 			mul >>= scale - 9;
787 		}
788 
789 		/* Round the result if we have a remainder */
790 		q1 += q1 & 1;
791 	}
792 
793 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
794 	scale = __ffs(q1);
795 	q1 >>= scale;
796 	mul >>= scale;
797 
798 	/* Get the remainder */
799 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
800 
801 	/* Case 2 */
802 
803 	q2 = DIV_ROUND_UP(fref2, rate);
804 	r2 = abs(fref2 / q2 - rate);
805 
806 	/*
807 	 * Choose the best between two: less remainder we have the better. We
808 	 * can't go case 2 if q2 is greater than 256 since SCR register can
809 	 * hold only values 0 .. 255.
810 	 */
811 	if (r2 >= r1 || q2 > 256) {
812 		/* case 1 is better */
813 		r = r1;
814 		q = q1;
815 	} else {
816 		/* case 2 is better */
817 		r = r2;
818 		q = q2;
819 		mul = (1 << 24) * 2 / 5;
820 	}
821 
822 	/* Check case 3 only if the divisor is big enough */
823 	if (fref / rate >= 80) {
824 		u64 fssp;
825 		u32 m;
826 
827 		/* Calculate initial quot */
828 		q1 = DIV_ROUND_UP(fref, rate);
829 		m = (1 << 24) / q1;
830 
831 		/* Get the remainder */
832 		fssp = (u64)fref * m;
833 		do_div(fssp, 1 << 24);
834 		r1 = abs(fssp - rate);
835 
836 		/* Choose this one if it suits better */
837 		if (r1 < r) {
838 			/* case 3 is better */
839 			q = 1;
840 			mul = m;
841 		}
842 	}
843 
844 	*dds = mul;
845 	return q - 1;
846 }
847 
848 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
849 {
850 	unsigned long ssp_clk = drv_data->master->max_speed_hz;
851 	const struct ssp_device *ssp = drv_data->ssp;
852 
853 	rate = min_t(int, ssp_clk, rate);
854 
855 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
856 		return (ssp_clk / (2 * rate) - 1) & 0xff;
857 	else
858 		return (ssp_clk / rate - 1) & 0xfff;
859 }
860 
861 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
862 					   int rate)
863 {
864 	struct chip_data *chip = drv_data->cur_chip;
865 	unsigned int clk_div;
866 
867 	switch (drv_data->ssp_type) {
868 	case QUARK_X1000_SSP:
869 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
870 		break;
871 	default:
872 		clk_div = ssp_get_clk_div(drv_data, rate);
873 		break;
874 	}
875 	return clk_div << 8;
876 }
877 
878 static void pump_transfers(unsigned long data)
879 {
880 	struct driver_data *drv_data = (struct driver_data *)data;
881 	struct spi_message *message = NULL;
882 	struct spi_transfer *transfer = NULL;
883 	struct spi_transfer *previous = NULL;
884 	struct chip_data *chip = NULL;
885 	u32 clk_div = 0;
886 	u8 bits = 0;
887 	u32 speed = 0;
888 	u32 cr0;
889 	u32 cr1;
890 	u32 dma_thresh = drv_data->cur_chip->dma_threshold;
891 	u32 dma_burst = drv_data->cur_chip->dma_burst_size;
892 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
893 
894 	/* Get current state information */
895 	message = drv_data->cur_msg;
896 	transfer = drv_data->cur_transfer;
897 	chip = drv_data->cur_chip;
898 
899 	/* Handle for abort */
900 	if (message->state == ERROR_STATE) {
901 		message->status = -EIO;
902 		giveback(drv_data);
903 		return;
904 	}
905 
906 	/* Handle end of message */
907 	if (message->state == DONE_STATE) {
908 		message->status = 0;
909 		giveback(drv_data);
910 		return;
911 	}
912 
913 	/* Delay if requested at end of transfer before CS change */
914 	if (message->state == RUNNING_STATE) {
915 		previous = list_entry(transfer->transfer_list.prev,
916 					struct spi_transfer,
917 					transfer_list);
918 		if (previous->delay_usecs)
919 			udelay(previous->delay_usecs);
920 
921 		/* Drop chip select only if cs_change is requested */
922 		if (previous->cs_change)
923 			cs_deassert(drv_data);
924 	}
925 
926 	/* Check if we can DMA this transfer */
927 	if (!pxa2xx_spi_dma_is_possible(transfer->len) && chip->enable_dma) {
928 
929 		/* reject already-mapped transfers; PIO won't always work */
930 		if (message->is_dma_mapped
931 				|| transfer->rx_dma || transfer->tx_dma) {
932 			dev_err(&drv_data->pdev->dev,
933 				"pump_transfers: mapped transfer length of "
934 				"%u is greater than %d\n",
935 				transfer->len, MAX_DMA_LEN);
936 			message->status = -EINVAL;
937 			giveback(drv_data);
938 			return;
939 		}
940 
941 		/* warn ... we force this to PIO mode */
942 		dev_warn_ratelimited(&message->spi->dev,
943 				     "pump_transfers: DMA disabled for transfer length %ld "
944 				     "greater than %d\n",
945 				     (long)drv_data->len, MAX_DMA_LEN);
946 	}
947 
948 	/* Setup the transfer state based on the type of transfer */
949 	if (pxa2xx_spi_flush(drv_data) == 0) {
950 		dev_err(&drv_data->pdev->dev, "pump_transfers: flush failed\n");
951 		message->status = -EIO;
952 		giveback(drv_data);
953 		return;
954 	}
955 	drv_data->n_bytes = chip->n_bytes;
956 	drv_data->tx = (void *)transfer->tx_buf;
957 	drv_data->tx_end = drv_data->tx + transfer->len;
958 	drv_data->rx = transfer->rx_buf;
959 	drv_data->rx_end = drv_data->rx + transfer->len;
960 	drv_data->rx_dma = transfer->rx_dma;
961 	drv_data->tx_dma = transfer->tx_dma;
962 	drv_data->len = transfer->len;
963 	drv_data->write = drv_data->tx ? chip->write : null_writer;
964 	drv_data->read = drv_data->rx ? chip->read : null_reader;
965 
966 	/* Change speed and bit per word on a per transfer */
967 	bits = transfer->bits_per_word;
968 	speed = transfer->speed_hz;
969 
970 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
971 
972 	if (bits <= 8) {
973 		drv_data->n_bytes = 1;
974 		drv_data->read = drv_data->read != null_reader ?
975 					u8_reader : null_reader;
976 		drv_data->write = drv_data->write != null_writer ?
977 					u8_writer : null_writer;
978 	} else if (bits <= 16) {
979 		drv_data->n_bytes = 2;
980 		drv_data->read = drv_data->read != null_reader ?
981 					u16_reader : null_reader;
982 		drv_data->write = drv_data->write != null_writer ?
983 					u16_writer : null_writer;
984 	} else if (bits <= 32) {
985 		drv_data->n_bytes = 4;
986 		drv_data->read = drv_data->read != null_reader ?
987 					u32_reader : null_reader;
988 		drv_data->write = drv_data->write != null_writer ?
989 					u32_writer : null_writer;
990 	}
991 	/*
992 	 * if bits/word is changed in dma mode, then must check the
993 	 * thresholds and burst also
994 	 */
995 	if (chip->enable_dma) {
996 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip,
997 						message->spi,
998 						bits, &dma_burst,
999 						&dma_thresh))
1000 			dev_warn_ratelimited(&message->spi->dev,
1001 					     "pump_transfers: DMA burst size reduced to match bits_per_word\n");
1002 	}
1003 
1004 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1005 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1006 	if (!pxa25x_ssp_comp(drv_data))
1007 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1008 			drv_data->master->max_speed_hz
1009 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1010 			chip->enable_dma ? "DMA" : "PIO");
1011 	else
1012 		dev_dbg(&message->spi->dev, "%u Hz actual, %s\n",
1013 			drv_data->master->max_speed_hz / 2
1014 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1015 			chip->enable_dma ? "DMA" : "PIO");
1016 
1017 	message->state = RUNNING_STATE;
1018 
1019 	drv_data->dma_mapped = 0;
1020 	if (pxa2xx_spi_dma_is_possible(drv_data->len))
1021 		drv_data->dma_mapped = pxa2xx_spi_map_dma_buffers(drv_data);
1022 	if (drv_data->dma_mapped) {
1023 
1024 		/* Ensure we have the correct interrupt handler */
1025 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1026 
1027 		pxa2xx_spi_dma_prepare(drv_data, dma_burst);
1028 
1029 		/* Clear status and start DMA engine */
1030 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1031 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1032 
1033 		pxa2xx_spi_dma_start(drv_data);
1034 	} else {
1035 		/* Ensure we have the correct interrupt handler	*/
1036 		drv_data->transfer_handler = interrupt_transfer;
1037 
1038 		/* Clear status  */
1039 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1040 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1041 	}
1042 
1043 	if (is_lpss_ssp(drv_data)) {
1044 		if ((pxa2xx_spi_read(drv_data, SSIRF) & 0xff)
1045 		    != chip->lpss_rx_threshold)
1046 			pxa2xx_spi_write(drv_data, SSIRF,
1047 					 chip->lpss_rx_threshold);
1048 		if ((pxa2xx_spi_read(drv_data, SSITF) & 0xffff)
1049 		    != chip->lpss_tx_threshold)
1050 			pxa2xx_spi_write(drv_data, SSITF,
1051 					 chip->lpss_tx_threshold);
1052 	}
1053 
1054 	if (is_quark_x1000_ssp(drv_data) &&
1055 	    (pxa2xx_spi_read(drv_data, DDS_RATE) != chip->dds_rate))
1056 		pxa2xx_spi_write(drv_data, DDS_RATE, chip->dds_rate);
1057 
1058 	/* see if we need to reload the config registers */
1059 	if ((pxa2xx_spi_read(drv_data, SSCR0) != cr0)
1060 	    || (pxa2xx_spi_read(drv_data, SSCR1) & change_mask)
1061 	    != (cr1 & change_mask)) {
1062 		/* stop the SSP, and update the other bits */
1063 		pxa2xx_spi_write(drv_data, SSCR0, cr0 & ~SSCR0_SSE);
1064 		if (!pxa25x_ssp_comp(drv_data))
1065 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1066 		/* first set CR1 without interrupt and service enables */
1067 		pxa2xx_spi_write(drv_data, SSCR1, cr1 & change_mask);
1068 		/* restart the SSP */
1069 		pxa2xx_spi_write(drv_data, SSCR0, cr0);
1070 
1071 	} else {
1072 		if (!pxa25x_ssp_comp(drv_data))
1073 			pxa2xx_spi_write(drv_data, SSTO, chip->timeout);
1074 	}
1075 
1076 	cs_assert(drv_data);
1077 
1078 	/* after chip select, release the data by enabling service
1079 	 * requests and interrupts, without changing any mode bits */
1080 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1081 }
1082 
1083 static int pxa2xx_spi_transfer_one_message(struct spi_master *master,
1084 					   struct spi_message *msg)
1085 {
1086 	struct driver_data *drv_data = spi_master_get_devdata(master);
1087 
1088 	drv_data->cur_msg = msg;
1089 	/* Initial message state*/
1090 	drv_data->cur_msg->state = START_STATE;
1091 	drv_data->cur_transfer = list_entry(drv_data->cur_msg->transfers.next,
1092 						struct spi_transfer,
1093 						transfer_list);
1094 
1095 	/* prepare to setup the SSP, in pump_transfers, using the per
1096 	 * chip configuration */
1097 	drv_data->cur_chip = spi_get_ctldata(drv_data->cur_msg->spi);
1098 
1099 	/* Mark as busy and launch transfers */
1100 	tasklet_schedule(&drv_data->pump_transfers);
1101 	return 0;
1102 }
1103 
1104 static int pxa2xx_spi_unprepare_transfer(struct spi_master *master)
1105 {
1106 	struct driver_data *drv_data = spi_master_get_devdata(master);
1107 
1108 	/* Disable the SSP now */
1109 	pxa2xx_spi_write(drv_data, SSCR0,
1110 			 pxa2xx_spi_read(drv_data, SSCR0) & ~SSCR0_SSE);
1111 
1112 	return 0;
1113 }
1114 
1115 static int setup_cs(struct spi_device *spi, struct chip_data *chip,
1116 		    struct pxa2xx_spi_chip *chip_info)
1117 {
1118 	int err = 0;
1119 
1120 	if (chip == NULL || chip_info == NULL)
1121 		return 0;
1122 
1123 	/* NOTE: setup() can be called multiple times, possibly with
1124 	 * different chip_info, release previously requested GPIO
1125 	 */
1126 	if (gpio_is_valid(chip->gpio_cs))
1127 		gpio_free(chip->gpio_cs);
1128 
1129 	/* If (*cs_control) is provided, ignore GPIO chip select */
1130 	if (chip_info->cs_control) {
1131 		chip->cs_control = chip_info->cs_control;
1132 		return 0;
1133 	}
1134 
1135 	if (gpio_is_valid(chip_info->gpio_cs)) {
1136 		err = gpio_request(chip_info->gpio_cs, "SPI_CS");
1137 		if (err) {
1138 			dev_err(&spi->dev, "failed to request chip select GPIO%d\n",
1139 				chip_info->gpio_cs);
1140 			return err;
1141 		}
1142 
1143 		chip->gpio_cs = chip_info->gpio_cs;
1144 		chip->gpio_cs_inverted = spi->mode & SPI_CS_HIGH;
1145 
1146 		err = gpio_direction_output(chip->gpio_cs,
1147 					!chip->gpio_cs_inverted);
1148 	}
1149 
1150 	return err;
1151 }
1152 
1153 static int setup(struct spi_device *spi)
1154 {
1155 	struct pxa2xx_spi_chip *chip_info = NULL;
1156 	struct chip_data *chip;
1157 	const struct lpss_config *config;
1158 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1159 	uint tx_thres, tx_hi_thres, rx_thres;
1160 
1161 	switch (drv_data->ssp_type) {
1162 	case QUARK_X1000_SSP:
1163 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1164 		tx_hi_thres = 0;
1165 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1166 		break;
1167 	case LPSS_LPT_SSP:
1168 	case LPSS_BYT_SSP:
1169 	case LPSS_SPT_SSP:
1170 	case LPSS_BXT_SSP:
1171 		config = lpss_get_config(drv_data);
1172 		tx_thres = config->tx_threshold_lo;
1173 		tx_hi_thres = config->tx_threshold_hi;
1174 		rx_thres = config->rx_threshold;
1175 		break;
1176 	default:
1177 		tx_thres = TX_THRESH_DFLT;
1178 		tx_hi_thres = 0;
1179 		rx_thres = RX_THRESH_DFLT;
1180 		break;
1181 	}
1182 
1183 	/* Only alloc on first setup */
1184 	chip = spi_get_ctldata(spi);
1185 	if (!chip) {
1186 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1187 		if (!chip)
1188 			return -ENOMEM;
1189 
1190 		if (drv_data->ssp_type == CE4100_SSP) {
1191 			if (spi->chip_select > 4) {
1192 				dev_err(&spi->dev,
1193 					"failed setup: cs number must not be > 4.\n");
1194 				kfree(chip);
1195 				return -EINVAL;
1196 			}
1197 
1198 			chip->frm = spi->chip_select;
1199 		} else
1200 			chip->gpio_cs = -1;
1201 		chip->enable_dma = 0;
1202 		chip->timeout = TIMOUT_DFLT;
1203 	}
1204 
1205 	/* protocol drivers may change the chip settings, so...
1206 	 * if chip_info exists, use it */
1207 	chip_info = spi->controller_data;
1208 
1209 	/* chip_info isn't always needed */
1210 	chip->cr1 = 0;
1211 	if (chip_info) {
1212 		if (chip_info->timeout)
1213 			chip->timeout = chip_info->timeout;
1214 		if (chip_info->tx_threshold)
1215 			tx_thres = chip_info->tx_threshold;
1216 		if (chip_info->tx_hi_threshold)
1217 			tx_hi_thres = chip_info->tx_hi_threshold;
1218 		if (chip_info->rx_threshold)
1219 			rx_thres = chip_info->rx_threshold;
1220 		chip->enable_dma = drv_data->master_info->enable_dma;
1221 		chip->dma_threshold = 0;
1222 		if (chip_info->enable_loopback)
1223 			chip->cr1 = SSCR1_LBM;
1224 	} else if (ACPI_HANDLE(&spi->dev)) {
1225 		/*
1226 		 * Slave devices enumerated from ACPI namespace don't
1227 		 * usually have chip_info but we still might want to use
1228 		 * DMA with them.
1229 		 */
1230 		chip->enable_dma = drv_data->master_info->enable_dma;
1231 	}
1232 
1233 	chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1234 	chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres)
1235 				| SSITF_TxHiThresh(tx_hi_thres);
1236 
1237 	/* set dma burst and threshold outside of chip_info path so that if
1238 	 * chip_info goes away after setting chip->enable_dma, the
1239 	 * burst and threshold can still respond to changes in bits_per_word */
1240 	if (chip->enable_dma) {
1241 		/* set up legal burst and threshold for dma */
1242 		if (pxa2xx_spi_set_dma_burst_and_threshold(chip, spi,
1243 						spi->bits_per_word,
1244 						&chip->dma_burst_size,
1245 						&chip->dma_threshold)) {
1246 			dev_warn(&spi->dev,
1247 				 "in setup: DMA burst size reduced to match bits_per_word\n");
1248 		}
1249 	}
1250 
1251 	switch (drv_data->ssp_type) {
1252 	case QUARK_X1000_SSP:
1253 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1254 				   & QUARK_X1000_SSCR1_RFT)
1255 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1256 				   & QUARK_X1000_SSCR1_TFT);
1257 		break;
1258 	default:
1259 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1260 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1261 		break;
1262 	}
1263 
1264 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1265 	chip->cr1 |= (((spi->mode & SPI_CPHA) != 0) ? SSCR1_SPH : 0)
1266 			| (((spi->mode & SPI_CPOL) != 0) ? SSCR1_SPO : 0);
1267 
1268 	if (spi->mode & SPI_LOOP)
1269 		chip->cr1 |= SSCR1_LBM;
1270 
1271 	if (spi->bits_per_word <= 8) {
1272 		chip->n_bytes = 1;
1273 		chip->read = u8_reader;
1274 		chip->write = u8_writer;
1275 	} else if (spi->bits_per_word <= 16) {
1276 		chip->n_bytes = 2;
1277 		chip->read = u16_reader;
1278 		chip->write = u16_writer;
1279 	} else if (spi->bits_per_word <= 32) {
1280 		chip->n_bytes = 4;
1281 		chip->read = u32_reader;
1282 		chip->write = u32_writer;
1283 	}
1284 
1285 	spi_set_ctldata(spi, chip);
1286 
1287 	if (drv_data->ssp_type == CE4100_SSP)
1288 		return 0;
1289 
1290 	return setup_cs(spi, chip, chip_info);
1291 }
1292 
1293 static void cleanup(struct spi_device *spi)
1294 {
1295 	struct chip_data *chip = spi_get_ctldata(spi);
1296 	struct driver_data *drv_data = spi_master_get_devdata(spi->master);
1297 
1298 	if (!chip)
1299 		return;
1300 
1301 	if (drv_data->ssp_type != CE4100_SSP && gpio_is_valid(chip->gpio_cs))
1302 		gpio_free(chip->gpio_cs);
1303 
1304 	kfree(chip);
1305 }
1306 
1307 #ifdef CONFIG_PCI
1308 #ifdef CONFIG_ACPI
1309 
1310 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1311 	{ "INT33C0", LPSS_LPT_SSP },
1312 	{ "INT33C1", LPSS_LPT_SSP },
1313 	{ "INT3430", LPSS_LPT_SSP },
1314 	{ "INT3431", LPSS_LPT_SSP },
1315 	{ "80860F0E", LPSS_BYT_SSP },
1316 	{ "8086228E", LPSS_BYT_SSP },
1317 	{ },
1318 };
1319 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1320 
1321 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1322 {
1323 	unsigned int devid;
1324 	int port_id = -1;
1325 
1326 	if (adev && adev->pnp.unique_id &&
1327 	    !kstrtouint(adev->pnp.unique_id, 0, &devid))
1328 		port_id = devid;
1329 	return port_id;
1330 }
1331 #else /* !CONFIG_ACPI */
1332 static int pxa2xx_spi_get_port_id(struct acpi_device *adev)
1333 {
1334 	return -1;
1335 }
1336 #endif
1337 
1338 /*
1339  * PCI IDs of compound devices that integrate both host controller and private
1340  * integrated DMA engine. Please note these are not used in module
1341  * autoloading and probing in this module but matching the LPSS SSP type.
1342  */
1343 static const struct pci_device_id pxa2xx_spi_pci_compound_match[] = {
1344 	/* SPT-LP */
1345 	{ PCI_VDEVICE(INTEL, 0x9d29), LPSS_SPT_SSP },
1346 	{ PCI_VDEVICE(INTEL, 0x9d2a), LPSS_SPT_SSP },
1347 	/* SPT-H */
1348 	{ PCI_VDEVICE(INTEL, 0xa129), LPSS_SPT_SSP },
1349 	{ PCI_VDEVICE(INTEL, 0xa12a), LPSS_SPT_SSP },
1350 	/* BXT */
1351 	{ PCI_VDEVICE(INTEL, 0x0ac2), LPSS_BXT_SSP },
1352 	{ PCI_VDEVICE(INTEL, 0x0ac4), LPSS_BXT_SSP },
1353 	{ PCI_VDEVICE(INTEL, 0x0ac6), LPSS_BXT_SSP },
1354 	/* APL */
1355 	{ PCI_VDEVICE(INTEL, 0x5ac2), LPSS_BXT_SSP },
1356 	{ PCI_VDEVICE(INTEL, 0x5ac4), LPSS_BXT_SSP },
1357 	{ PCI_VDEVICE(INTEL, 0x5ac6), LPSS_BXT_SSP },
1358 	{ },
1359 };
1360 
1361 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1362 {
1363 	struct device *dev = param;
1364 
1365 	if (dev != chan->device->dev->parent)
1366 		return false;
1367 
1368 	return true;
1369 }
1370 
1371 static struct pxa2xx_spi_master *
1372 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1373 {
1374 	struct pxa2xx_spi_master *pdata;
1375 	struct acpi_device *adev;
1376 	struct ssp_device *ssp;
1377 	struct resource *res;
1378 	const struct acpi_device_id *adev_id = NULL;
1379 	const struct pci_device_id *pcidev_id = NULL;
1380 	int type;
1381 
1382 	adev = ACPI_COMPANION(&pdev->dev);
1383 
1384 	if (dev_is_pci(pdev->dev.parent))
1385 		pcidev_id = pci_match_id(pxa2xx_spi_pci_compound_match,
1386 					 to_pci_dev(pdev->dev.parent));
1387 	else if (adev)
1388 		adev_id = acpi_match_device(pdev->dev.driver->acpi_match_table,
1389 					    &pdev->dev);
1390 	else
1391 		return NULL;
1392 
1393 	if (adev_id)
1394 		type = (int)adev_id->driver_data;
1395 	else if (pcidev_id)
1396 		type = (int)pcidev_id->driver_data;
1397 	else
1398 		return NULL;
1399 
1400 	pdata = devm_kzalloc(&pdev->dev, sizeof(*pdata), GFP_KERNEL);
1401 	if (!pdata)
1402 		return NULL;
1403 
1404 	res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1405 	if (!res)
1406 		return NULL;
1407 
1408 	ssp = &pdata->ssp;
1409 
1410 	ssp->phys_base = res->start;
1411 	ssp->mmio_base = devm_ioremap_resource(&pdev->dev, res);
1412 	if (IS_ERR(ssp->mmio_base))
1413 		return NULL;
1414 
1415 	if (pcidev_id) {
1416 		pdata->tx_param = pdev->dev.parent;
1417 		pdata->rx_param = pdev->dev.parent;
1418 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1419 	}
1420 
1421 	ssp->clk = devm_clk_get(&pdev->dev, NULL);
1422 	ssp->irq = platform_get_irq(pdev, 0);
1423 	ssp->type = type;
1424 	ssp->pdev = pdev;
1425 	ssp->port_id = pxa2xx_spi_get_port_id(adev);
1426 
1427 	pdata->num_chipselect = 1;
1428 	pdata->enable_dma = true;
1429 
1430 	return pdata;
1431 }
1432 
1433 #else /* !CONFIG_PCI */
1434 static inline struct pxa2xx_spi_master *
1435 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1436 {
1437 	return NULL;
1438 }
1439 #endif
1440 
1441 static int pxa2xx_spi_probe(struct platform_device *pdev)
1442 {
1443 	struct device *dev = &pdev->dev;
1444 	struct pxa2xx_spi_master *platform_info;
1445 	struct spi_master *master;
1446 	struct driver_data *drv_data;
1447 	struct ssp_device *ssp;
1448 	const struct lpss_config *config;
1449 	int status;
1450 	u32 tmp;
1451 
1452 	platform_info = dev_get_platdata(dev);
1453 	if (!platform_info) {
1454 		platform_info = pxa2xx_spi_init_pdata(pdev);
1455 		if (!platform_info) {
1456 			dev_err(&pdev->dev, "missing platform data\n");
1457 			return -ENODEV;
1458 		}
1459 	}
1460 
1461 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1462 	if (!ssp)
1463 		ssp = &platform_info->ssp;
1464 
1465 	if (!ssp->mmio_base) {
1466 		dev_err(&pdev->dev, "failed to get ssp\n");
1467 		return -ENODEV;
1468 	}
1469 
1470 	master = spi_alloc_master(dev, sizeof(struct driver_data));
1471 	if (!master) {
1472 		dev_err(&pdev->dev, "cannot alloc spi_master\n");
1473 		pxa_ssp_free(ssp);
1474 		return -ENOMEM;
1475 	}
1476 	drv_data = spi_master_get_devdata(master);
1477 	drv_data->master = master;
1478 	drv_data->master_info = platform_info;
1479 	drv_data->pdev = pdev;
1480 	drv_data->ssp = ssp;
1481 
1482 	master->dev.parent = &pdev->dev;
1483 	master->dev.of_node = pdev->dev.of_node;
1484 	/* the spi->mode bits understood by this driver: */
1485 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1486 
1487 	master->bus_num = ssp->port_id;
1488 	master->dma_alignment = DMA_ALIGNMENT;
1489 	master->cleanup = cleanup;
1490 	master->setup = setup;
1491 	master->transfer_one_message = pxa2xx_spi_transfer_one_message;
1492 	master->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1493 	master->auto_runtime_pm = true;
1494 
1495 	drv_data->ssp_type = ssp->type;
1496 
1497 	drv_data->ioaddr = ssp->mmio_base;
1498 	drv_data->ssdr_physical = ssp->phys_base + SSDR;
1499 	if (pxa25x_ssp_comp(drv_data)) {
1500 		switch (drv_data->ssp_type) {
1501 		case QUARK_X1000_SSP:
1502 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1503 			break;
1504 		default:
1505 			master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1506 			break;
1507 		}
1508 
1509 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1510 		drv_data->dma_cr1 = 0;
1511 		drv_data->clear_sr = SSSR_ROR;
1512 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1513 	} else {
1514 		master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1515 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1516 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1517 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1518 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS | SSSR_ROR;
1519 	}
1520 
1521 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1522 			drv_data);
1523 	if (status < 0) {
1524 		dev_err(&pdev->dev, "cannot get IRQ %d\n", ssp->irq);
1525 		goto out_error_master_alloc;
1526 	}
1527 
1528 	/* Setup DMA if requested */
1529 	if (platform_info->enable_dma) {
1530 		status = pxa2xx_spi_dma_setup(drv_data);
1531 		if (status) {
1532 			dev_dbg(dev, "no DMA channels available, using PIO\n");
1533 			platform_info->enable_dma = false;
1534 		}
1535 	}
1536 
1537 	/* Enable SOC clock */
1538 	clk_prepare_enable(ssp->clk);
1539 
1540 	master->max_speed_hz = clk_get_rate(ssp->clk);
1541 
1542 	/* Load default SSP configuration */
1543 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1544 	switch (drv_data->ssp_type) {
1545 	case QUARK_X1000_SSP:
1546 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT)
1547 		      | QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1548 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1549 
1550 		/* using the Motorola SPI protocol and use 8 bit frame */
1551 		pxa2xx_spi_write(drv_data, SSCR0,
1552 				 QUARK_X1000_SSCR0_Motorola
1553 				 | QUARK_X1000_SSCR0_DataSize(8));
1554 		break;
1555 	default:
1556 		tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1557 		      SSCR1_TxTresh(TX_THRESH_DFLT);
1558 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1559 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1560 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1561 		break;
1562 	}
1563 
1564 	if (!pxa25x_ssp_comp(drv_data))
1565 		pxa2xx_spi_write(drv_data, SSTO, 0);
1566 
1567 	if (!is_quark_x1000_ssp(drv_data))
1568 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1569 
1570 	if (is_lpss_ssp(drv_data))
1571 		lpss_ssp_setup(drv_data);
1572 
1573 	if (is_lpss_ssp(drv_data)) {
1574 		lpss_ssp_setup(drv_data);
1575 		config = lpss_get_config(drv_data);
1576 		if (config->reg_capabilities >= 0) {
1577 			tmp = __lpss_ssp_read_priv(drv_data,
1578 						   config->reg_capabilities);
1579 			tmp &= LPSS_CAPS_CS_EN_MASK;
1580 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1581 			platform_info->num_chipselect = ffz(tmp);
1582 		}
1583 	}
1584 	master->num_chipselect = platform_info->num_chipselect;
1585 
1586 	tasklet_init(&drv_data->pump_transfers, pump_transfers,
1587 		     (unsigned long)drv_data);
1588 
1589 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1590 	pm_runtime_use_autosuspend(&pdev->dev);
1591 	pm_runtime_set_active(&pdev->dev);
1592 	pm_runtime_enable(&pdev->dev);
1593 
1594 	/* Register with the SPI framework */
1595 	platform_set_drvdata(pdev, drv_data);
1596 	status = devm_spi_register_master(&pdev->dev, master);
1597 	if (status != 0) {
1598 		dev_err(&pdev->dev, "problem registering spi master\n");
1599 		goto out_error_clock_enabled;
1600 	}
1601 
1602 	return status;
1603 
1604 out_error_clock_enabled:
1605 	clk_disable_unprepare(ssp->clk);
1606 	pxa2xx_spi_dma_release(drv_data);
1607 	free_irq(ssp->irq, drv_data);
1608 
1609 out_error_master_alloc:
1610 	spi_master_put(master);
1611 	pxa_ssp_free(ssp);
1612 	return status;
1613 }
1614 
1615 static int pxa2xx_spi_remove(struct platform_device *pdev)
1616 {
1617 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1618 	struct ssp_device *ssp;
1619 
1620 	if (!drv_data)
1621 		return 0;
1622 	ssp = drv_data->ssp;
1623 
1624 	pm_runtime_get_sync(&pdev->dev);
1625 
1626 	/* Disable the SSP at the peripheral and SOC level */
1627 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1628 	clk_disable_unprepare(ssp->clk);
1629 
1630 	/* Release DMA */
1631 	if (drv_data->master_info->enable_dma)
1632 		pxa2xx_spi_dma_release(drv_data);
1633 
1634 	pm_runtime_put_noidle(&pdev->dev);
1635 	pm_runtime_disable(&pdev->dev);
1636 
1637 	/* Release IRQ */
1638 	free_irq(ssp->irq, drv_data);
1639 
1640 	/* Release SSP */
1641 	pxa_ssp_free(ssp);
1642 
1643 	return 0;
1644 }
1645 
1646 static void pxa2xx_spi_shutdown(struct platform_device *pdev)
1647 {
1648 	int status = 0;
1649 
1650 	if ((status = pxa2xx_spi_remove(pdev)) != 0)
1651 		dev_err(&pdev->dev, "shutdown failed with %d\n", status);
1652 }
1653 
1654 #ifdef CONFIG_PM_SLEEP
1655 static int pxa2xx_spi_suspend(struct device *dev)
1656 {
1657 	struct driver_data *drv_data = dev_get_drvdata(dev);
1658 	struct ssp_device *ssp = drv_data->ssp;
1659 	int status = 0;
1660 
1661 	status = spi_master_suspend(drv_data->master);
1662 	if (status != 0)
1663 		return status;
1664 	pxa2xx_spi_write(drv_data, SSCR0, 0);
1665 
1666 	if (!pm_runtime_suspended(dev))
1667 		clk_disable_unprepare(ssp->clk);
1668 
1669 	return 0;
1670 }
1671 
1672 static int pxa2xx_spi_resume(struct device *dev)
1673 {
1674 	struct driver_data *drv_data = dev_get_drvdata(dev);
1675 	struct ssp_device *ssp = drv_data->ssp;
1676 	int status = 0;
1677 
1678 	/* Enable the SSP clock */
1679 	if (!pm_runtime_suspended(dev))
1680 		clk_prepare_enable(ssp->clk);
1681 
1682 	/* Restore LPSS private register bits */
1683 	if (is_lpss_ssp(drv_data))
1684 		lpss_ssp_setup(drv_data);
1685 
1686 	/* Start the queue running */
1687 	status = spi_master_resume(drv_data->master);
1688 	if (status != 0) {
1689 		dev_err(dev, "problem starting queue (%d)\n", status);
1690 		return status;
1691 	}
1692 
1693 	return 0;
1694 }
1695 #endif
1696 
1697 #ifdef CONFIG_PM
1698 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1699 {
1700 	struct driver_data *drv_data = dev_get_drvdata(dev);
1701 
1702 	clk_disable_unprepare(drv_data->ssp->clk);
1703 	return 0;
1704 }
1705 
1706 static int pxa2xx_spi_runtime_resume(struct device *dev)
1707 {
1708 	struct driver_data *drv_data = dev_get_drvdata(dev);
1709 
1710 	clk_prepare_enable(drv_data->ssp->clk);
1711 	return 0;
1712 }
1713 #endif
1714 
1715 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1716 	SET_SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1717 	SET_RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend,
1718 			   pxa2xx_spi_runtime_resume, NULL)
1719 };
1720 
1721 static struct platform_driver driver = {
1722 	.driver = {
1723 		.name	= "pxa2xx-spi",
1724 		.pm	= &pxa2xx_spi_pm_ops,
1725 		.acpi_match_table = ACPI_PTR(pxa2xx_spi_acpi_match),
1726 	},
1727 	.probe = pxa2xx_spi_probe,
1728 	.remove = pxa2xx_spi_remove,
1729 	.shutdown = pxa2xx_spi_shutdown,
1730 };
1731 
1732 static int __init pxa2xx_spi_init(void)
1733 {
1734 	return platform_driver_register(&driver);
1735 }
1736 subsys_initcall(pxa2xx_spi_init);
1737 
1738 static void __exit pxa2xx_spi_exit(void)
1739 {
1740 	platform_driver_unregister(&driver);
1741 }
1742 module_exit(pxa2xx_spi_exit);
1743