1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs 4 * Copyright (C) 2013, 2021 Intel Corporation 5 */ 6 7 #include <linux/acpi.h> 8 #include <linux/atomic.h> 9 #include <linux/bitops.h> 10 #include <linux/bug.h> 11 #include <linux/clk.h> 12 #include <linux/delay.h> 13 #include <linux/device.h> 14 #include <linux/dmaengine.h> 15 #include <linux/err.h> 16 #include <linux/gpio/consumer.h> 17 #include <linux/init.h> 18 #include <linux/interrupt.h> 19 #include <linux/io.h> 20 #include <linux/ioport.h> 21 #include <linux/math64.h> 22 #include <linux/minmax.h> 23 #include <linux/mod_devicetable.h> 24 #include <linux/module.h> 25 #include <linux/platform_device.h> 26 #include <linux/pm_runtime.h> 27 #include <linux/property.h> 28 #include <linux/slab.h> 29 #include <linux/types.h> 30 31 #include <linux/spi/spi.h> 32 33 #include "spi-pxa2xx.h" 34 35 MODULE_AUTHOR("Stephen Street"); 36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller"); 37 MODULE_LICENSE("GPL"); 38 MODULE_ALIAS("platform:pxa2xx-spi"); 39 40 #define TIMOUT_DFLT 1000 41 42 /* 43 * For testing SSCR1 changes that require SSP restart, basically 44 * everything except the service and interrupt enables, the PXA270 developer 45 * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this 46 * list, but the PXA255 developer manual says all bits without really meaning 47 * the service and interrupt enables. 48 */ 49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 50 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 51 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 52 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 53 | SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \ 54 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 55 56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF \ 57 | QUARK_X1000_SSCR1_EFWR \ 58 | QUARK_X1000_SSCR1_RFT \ 59 | QUARK_X1000_SSCR1_TFT \ 60 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 61 62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \ 63 | SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \ 64 | SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \ 65 | SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \ 66 | CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \ 67 | SSCR1_SPH | SSCR1_SPO | SSCR1_LBM) 68 69 struct chip_data { 70 u32 cr1; 71 u32 dds_rate; 72 u32 threshold; 73 u16 lpss_rx_threshold; 74 u16 lpss_tx_threshold; 75 }; 76 77 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE BIT(24) 78 #define LPSS_CS_CONTROL_SW_MODE BIT(0) 79 #define LPSS_CS_CONTROL_CS_HIGH BIT(1) 80 #define LPSS_CAPS_CS_EN_SHIFT 9 81 #define LPSS_CAPS_CS_EN_MASK (0xf << LPSS_CAPS_CS_EN_SHIFT) 82 83 #define LPSS_PRIV_CLOCK_GATE 0x38 84 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3 85 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3 86 87 struct lpss_config { 88 /* LPSS offset from drv_data->ioaddr */ 89 unsigned offset; 90 /* Register offsets from drv_data->lpss_base or -1 */ 91 int reg_general; 92 int reg_ssp; 93 int reg_cs_ctrl; 94 int reg_capabilities; 95 /* FIFO thresholds */ 96 u32 rx_threshold; 97 u32 tx_threshold_lo; 98 u32 tx_threshold_hi; 99 /* Chip select control */ 100 unsigned cs_sel_shift; 101 unsigned cs_sel_mask; 102 unsigned cs_num; 103 /* Quirks */ 104 unsigned cs_clk_stays_gated : 1; 105 }; 106 107 /* Keep these sorted with enum pxa_ssp_type */ 108 static const struct lpss_config lpss_platforms[] = { 109 { /* LPSS_LPT_SSP */ 110 .offset = 0x800, 111 .reg_general = 0x08, 112 .reg_ssp = 0x0c, 113 .reg_cs_ctrl = 0x18, 114 .reg_capabilities = -1, 115 .rx_threshold = 64, 116 .tx_threshold_lo = 160, 117 .tx_threshold_hi = 224, 118 }, 119 { /* LPSS_BYT_SSP */ 120 .offset = 0x400, 121 .reg_general = 0x08, 122 .reg_ssp = 0x0c, 123 .reg_cs_ctrl = 0x18, 124 .reg_capabilities = -1, 125 .rx_threshold = 64, 126 .tx_threshold_lo = 160, 127 .tx_threshold_hi = 224, 128 }, 129 { /* LPSS_BSW_SSP */ 130 .offset = 0x400, 131 .reg_general = 0x08, 132 .reg_ssp = 0x0c, 133 .reg_cs_ctrl = 0x18, 134 .reg_capabilities = -1, 135 .rx_threshold = 64, 136 .tx_threshold_lo = 160, 137 .tx_threshold_hi = 224, 138 .cs_sel_shift = 2, 139 .cs_sel_mask = 1 << 2, 140 .cs_num = 2, 141 }, 142 { /* LPSS_SPT_SSP */ 143 .offset = 0x200, 144 .reg_general = -1, 145 .reg_ssp = 0x20, 146 .reg_cs_ctrl = 0x24, 147 .reg_capabilities = -1, 148 .rx_threshold = 1, 149 .tx_threshold_lo = 32, 150 .tx_threshold_hi = 56, 151 }, 152 { /* LPSS_BXT_SSP */ 153 .offset = 0x200, 154 .reg_general = -1, 155 .reg_ssp = 0x20, 156 .reg_cs_ctrl = 0x24, 157 .reg_capabilities = 0xfc, 158 .rx_threshold = 1, 159 .tx_threshold_lo = 16, 160 .tx_threshold_hi = 48, 161 .cs_sel_shift = 8, 162 .cs_sel_mask = 3 << 8, 163 .cs_clk_stays_gated = true, 164 }, 165 { /* LPSS_CNL_SSP */ 166 .offset = 0x200, 167 .reg_general = -1, 168 .reg_ssp = 0x20, 169 .reg_cs_ctrl = 0x24, 170 .reg_capabilities = 0xfc, 171 .rx_threshold = 1, 172 .tx_threshold_lo = 32, 173 .tx_threshold_hi = 56, 174 .cs_sel_shift = 8, 175 .cs_sel_mask = 3 << 8, 176 .cs_clk_stays_gated = true, 177 }, 178 }; 179 180 static inline const struct lpss_config 181 *lpss_get_config(const struct driver_data *drv_data) 182 { 183 return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP]; 184 } 185 186 static bool is_lpss_ssp(const struct driver_data *drv_data) 187 { 188 switch (drv_data->ssp_type) { 189 case LPSS_LPT_SSP: 190 case LPSS_BYT_SSP: 191 case LPSS_BSW_SSP: 192 case LPSS_SPT_SSP: 193 case LPSS_BXT_SSP: 194 case LPSS_CNL_SSP: 195 return true; 196 default: 197 return false; 198 } 199 } 200 201 static bool is_quark_x1000_ssp(const struct driver_data *drv_data) 202 { 203 return drv_data->ssp_type == QUARK_X1000_SSP; 204 } 205 206 static bool is_mmp2_ssp(const struct driver_data *drv_data) 207 { 208 return drv_data->ssp_type == MMP2_SSP; 209 } 210 211 static bool is_mrfld_ssp(const struct driver_data *drv_data) 212 { 213 return drv_data->ssp_type == MRFLD_SSP; 214 } 215 216 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value) 217 { 218 if ((pxa2xx_spi_read(drv_data, reg) & mask) != value) 219 pxa2xx_spi_write(drv_data, reg, value & mask); 220 } 221 222 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data) 223 { 224 switch (drv_data->ssp_type) { 225 case QUARK_X1000_SSP: 226 return QUARK_X1000_SSCR1_CHANGE_MASK; 227 case CE4100_SSP: 228 return CE4100_SSCR1_CHANGE_MASK; 229 default: 230 return SSCR1_CHANGE_MASK; 231 } 232 } 233 234 static u32 235 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data) 236 { 237 switch (drv_data->ssp_type) { 238 case QUARK_X1000_SSP: 239 return RX_THRESH_QUARK_X1000_DFLT; 240 case CE4100_SSP: 241 return RX_THRESH_CE4100_DFLT; 242 default: 243 return RX_THRESH_DFLT; 244 } 245 } 246 247 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data) 248 { 249 u32 mask; 250 251 switch (drv_data->ssp_type) { 252 case QUARK_X1000_SSP: 253 mask = QUARK_X1000_SSSR_TFL_MASK; 254 break; 255 case CE4100_SSP: 256 mask = CE4100_SSSR_TFL_MASK; 257 break; 258 default: 259 mask = SSSR_TFL_MASK; 260 break; 261 } 262 263 return read_SSSR_bits(drv_data, mask) == mask; 264 } 265 266 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data, 267 u32 *sccr1_reg) 268 { 269 u32 mask; 270 271 switch (drv_data->ssp_type) { 272 case QUARK_X1000_SSP: 273 mask = QUARK_X1000_SSCR1_RFT; 274 break; 275 case CE4100_SSP: 276 mask = CE4100_SSCR1_RFT; 277 break; 278 default: 279 mask = SSCR1_RFT; 280 break; 281 } 282 *sccr1_reg &= ~mask; 283 } 284 285 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data, 286 u32 *sccr1_reg, u32 threshold) 287 { 288 switch (drv_data->ssp_type) { 289 case QUARK_X1000_SSP: 290 *sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold); 291 break; 292 case CE4100_SSP: 293 *sccr1_reg |= CE4100_SSCR1_RxTresh(threshold); 294 break; 295 default: 296 *sccr1_reg |= SSCR1_RxTresh(threshold); 297 break; 298 } 299 } 300 301 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data, 302 u32 clk_div, u8 bits) 303 { 304 switch (drv_data->ssp_type) { 305 case QUARK_X1000_SSP: 306 return clk_div 307 | QUARK_X1000_SSCR0_Motorola 308 | QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits); 309 default: 310 return clk_div 311 | SSCR0_Motorola 312 | SSCR0_DataSize(bits > 16 ? bits - 16 : bits) 313 | (bits > 16 ? SSCR0_EDSS : 0); 314 } 315 } 316 317 /* 318 * Read and write LPSS SSP private registers. Caller must first check that 319 * is_lpss_ssp() returns true before these can be called. 320 */ 321 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset) 322 { 323 WARN_ON(!drv_data->lpss_base); 324 return readl(drv_data->lpss_base + offset); 325 } 326 327 static void __lpss_ssp_write_priv(struct driver_data *drv_data, 328 unsigned offset, u32 value) 329 { 330 WARN_ON(!drv_data->lpss_base); 331 writel(value, drv_data->lpss_base + offset); 332 } 333 334 /* 335 * lpss_ssp_setup - perform LPSS SSP specific setup 336 * @drv_data: pointer to the driver private data 337 * 338 * Perform LPSS SSP specific setup. This function must be called first if 339 * one is going to use LPSS SSP private registers. 340 */ 341 static void lpss_ssp_setup(struct driver_data *drv_data) 342 { 343 const struct lpss_config *config; 344 u32 value; 345 346 config = lpss_get_config(drv_data); 347 drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset; 348 349 /* Enable software chip select control */ 350 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 351 value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH); 352 value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH; 353 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 354 355 /* Enable multiblock DMA transfers */ 356 if (drv_data->controller_info->enable_dma) { 357 __lpss_ssp_write_priv(drv_data, config->reg_ssp, 1); 358 359 if (config->reg_general >= 0) { 360 value = __lpss_ssp_read_priv(drv_data, 361 config->reg_general); 362 value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE; 363 __lpss_ssp_write_priv(drv_data, 364 config->reg_general, value); 365 } 366 } 367 } 368 369 static void lpss_ssp_select_cs(struct spi_device *spi, 370 const struct lpss_config *config) 371 { 372 struct driver_data *drv_data = 373 spi_controller_get_devdata(spi->controller); 374 u32 value, cs; 375 376 if (!config->cs_sel_mask) 377 return; 378 379 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 380 381 cs = spi_get_chipselect(spi, 0); 382 cs <<= config->cs_sel_shift; 383 if (cs != (value & config->cs_sel_mask)) { 384 /* 385 * When switching another chip select output active the 386 * output must be selected first and wait 2 ssp_clk cycles 387 * before changing state to active. Otherwise a short 388 * glitch will occur on the previous chip select since 389 * output select is latched but state control is not. 390 */ 391 value &= ~config->cs_sel_mask; 392 value |= cs; 393 __lpss_ssp_write_priv(drv_data, 394 config->reg_cs_ctrl, value); 395 ndelay(1000000000 / 396 (drv_data->controller->max_speed_hz / 2)); 397 } 398 } 399 400 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable) 401 { 402 struct driver_data *drv_data = 403 spi_controller_get_devdata(spi->controller); 404 const struct lpss_config *config; 405 u32 value; 406 407 config = lpss_get_config(drv_data); 408 409 if (enable) 410 lpss_ssp_select_cs(spi, config); 411 412 value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl); 413 if (enable) 414 value &= ~LPSS_CS_CONTROL_CS_HIGH; 415 else 416 value |= LPSS_CS_CONTROL_CS_HIGH; 417 __lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value); 418 if (config->cs_clk_stays_gated) { 419 u32 clkgate; 420 421 /* 422 * Changing CS alone when dynamic clock gating is on won't 423 * actually flip CS at that time. This ruins SPI transfers 424 * that specify delays, or have no data. Toggle the clock mode 425 * to force on briefly to poke the CS pin to move. 426 */ 427 clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE); 428 value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) | 429 LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON; 430 431 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value); 432 __lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate); 433 } 434 } 435 436 static void cs_assert(struct spi_device *spi) 437 { 438 struct driver_data *drv_data = 439 spi_controller_get_devdata(spi->controller); 440 441 if (drv_data->ssp_type == CE4100_SSP) { 442 pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0)); 443 return; 444 } 445 446 if (is_lpss_ssp(drv_data)) 447 lpss_ssp_cs_control(spi, true); 448 } 449 450 static void cs_deassert(struct spi_device *spi) 451 { 452 struct driver_data *drv_data = 453 spi_controller_get_devdata(spi->controller); 454 unsigned long timeout; 455 456 if (drv_data->ssp_type == CE4100_SSP) 457 return; 458 459 /* Wait until SSP becomes idle before deasserting the CS */ 460 timeout = jiffies + msecs_to_jiffies(10); 461 while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY && 462 !time_after(jiffies, timeout)) 463 cpu_relax(); 464 465 if (is_lpss_ssp(drv_data)) 466 lpss_ssp_cs_control(spi, false); 467 } 468 469 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level) 470 { 471 if (level) 472 cs_deassert(spi); 473 else 474 cs_assert(spi); 475 } 476 477 int pxa2xx_spi_flush(struct driver_data *drv_data) 478 { 479 unsigned long limit = loops_per_jiffy << 1; 480 481 do { 482 while (read_SSSR_bits(drv_data, SSSR_RNE)) 483 pxa2xx_spi_read(drv_data, SSDR); 484 } while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit); 485 write_SSSR_CS(drv_data, SSSR_ROR); 486 487 return limit; 488 } 489 490 static void pxa2xx_spi_off(struct driver_data *drv_data) 491 { 492 /* On MMP, disabling SSE seems to corrupt the Rx FIFO */ 493 if (is_mmp2_ssp(drv_data)) 494 return; 495 496 pxa_ssp_disable(drv_data->ssp); 497 } 498 499 static int null_writer(struct driver_data *drv_data) 500 { 501 u8 n_bytes = drv_data->n_bytes; 502 503 if (pxa2xx_spi_txfifo_full(drv_data) 504 || (drv_data->tx == drv_data->tx_end)) 505 return 0; 506 507 pxa2xx_spi_write(drv_data, SSDR, 0); 508 drv_data->tx += n_bytes; 509 510 return 1; 511 } 512 513 static int null_reader(struct driver_data *drv_data) 514 { 515 u8 n_bytes = drv_data->n_bytes; 516 517 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 518 pxa2xx_spi_read(drv_data, SSDR); 519 drv_data->rx += n_bytes; 520 } 521 522 return drv_data->rx == drv_data->rx_end; 523 } 524 525 static int u8_writer(struct driver_data *drv_data) 526 { 527 if (pxa2xx_spi_txfifo_full(drv_data) 528 || (drv_data->tx == drv_data->tx_end)) 529 return 0; 530 531 pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx)); 532 ++drv_data->tx; 533 534 return 1; 535 } 536 537 static int u8_reader(struct driver_data *drv_data) 538 { 539 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 540 *(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 541 ++drv_data->rx; 542 } 543 544 return drv_data->rx == drv_data->rx_end; 545 } 546 547 static int u16_writer(struct driver_data *drv_data) 548 { 549 if (pxa2xx_spi_txfifo_full(drv_data) 550 || (drv_data->tx == drv_data->tx_end)) 551 return 0; 552 553 pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx)); 554 drv_data->tx += 2; 555 556 return 1; 557 } 558 559 static int u16_reader(struct driver_data *drv_data) 560 { 561 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 562 *(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 563 drv_data->rx += 2; 564 } 565 566 return drv_data->rx == drv_data->rx_end; 567 } 568 569 static int u32_writer(struct driver_data *drv_data) 570 { 571 if (pxa2xx_spi_txfifo_full(drv_data) 572 || (drv_data->tx == drv_data->tx_end)) 573 return 0; 574 575 pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx)); 576 drv_data->tx += 4; 577 578 return 1; 579 } 580 581 static int u32_reader(struct driver_data *drv_data) 582 { 583 while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) { 584 *(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR); 585 drv_data->rx += 4; 586 } 587 588 return drv_data->rx == drv_data->rx_end; 589 } 590 591 static void reset_sccr1(struct driver_data *drv_data) 592 { 593 u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold; 594 struct chip_data *chip; 595 596 if (drv_data->controller->cur_msg) { 597 chip = spi_get_ctldata(drv_data->controller->cur_msg->spi); 598 threshold = chip->threshold; 599 } else { 600 threshold = 0; 601 } 602 603 switch (drv_data->ssp_type) { 604 case QUARK_X1000_SSP: 605 mask |= QUARK_X1000_SSCR1_RFT; 606 break; 607 case CE4100_SSP: 608 mask |= CE4100_SSCR1_RFT; 609 break; 610 default: 611 mask |= SSCR1_RFT; 612 break; 613 } 614 615 pxa2xx_spi_update(drv_data, SSCR1, mask, threshold); 616 } 617 618 static void int_stop_and_reset(struct driver_data *drv_data) 619 { 620 /* Clear and disable interrupts */ 621 write_SSSR_CS(drv_data, drv_data->clear_sr); 622 reset_sccr1(drv_data); 623 if (pxa25x_ssp_comp(drv_data)) 624 return; 625 626 pxa2xx_spi_write(drv_data, SSTO, 0); 627 } 628 629 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err) 630 { 631 int_stop_and_reset(drv_data); 632 pxa2xx_spi_flush(drv_data); 633 pxa2xx_spi_off(drv_data); 634 635 dev_err(drv_data->ssp->dev, "%s\n", msg); 636 637 drv_data->controller->cur_msg->status = err; 638 spi_finalize_current_transfer(drv_data->controller); 639 } 640 641 static void int_transfer_complete(struct driver_data *drv_data) 642 { 643 int_stop_and_reset(drv_data); 644 645 spi_finalize_current_transfer(drv_data->controller); 646 } 647 648 static irqreturn_t interrupt_transfer(struct driver_data *drv_data) 649 { 650 u32 irq_status; 651 652 irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr); 653 if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE)) 654 irq_status &= ~SSSR_TFS; 655 656 if (irq_status & SSSR_ROR) { 657 int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO); 658 return IRQ_HANDLED; 659 } 660 661 if (irq_status & SSSR_TUR) { 662 int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO); 663 return IRQ_HANDLED; 664 } 665 666 if (irq_status & SSSR_TINT) { 667 pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT); 668 if (drv_data->read(drv_data)) { 669 int_transfer_complete(drv_data); 670 return IRQ_HANDLED; 671 } 672 } 673 674 /* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */ 675 do { 676 if (drv_data->read(drv_data)) { 677 int_transfer_complete(drv_data); 678 return IRQ_HANDLED; 679 } 680 } while (drv_data->write(drv_data)); 681 682 if (drv_data->read(drv_data)) { 683 int_transfer_complete(drv_data); 684 return IRQ_HANDLED; 685 } 686 687 if (drv_data->tx == drv_data->tx_end) { 688 u32 bytes_left; 689 u32 sccr1_reg; 690 691 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 692 sccr1_reg &= ~SSCR1_TIE; 693 694 /* 695 * PXA25x_SSP has no timeout, set up Rx threshold for 696 * the remaining Rx bytes. 697 */ 698 if (pxa25x_ssp_comp(drv_data)) { 699 u32 rx_thre; 700 701 pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg); 702 703 bytes_left = drv_data->rx_end - drv_data->rx; 704 switch (drv_data->n_bytes) { 705 case 4: 706 bytes_left >>= 2; 707 break; 708 case 2: 709 bytes_left >>= 1; 710 break; 711 } 712 713 rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data); 714 if (rx_thre > bytes_left) 715 rx_thre = bytes_left; 716 717 pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre); 718 } 719 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 720 } 721 722 /* We did something */ 723 return IRQ_HANDLED; 724 } 725 726 static void handle_bad_msg(struct driver_data *drv_data) 727 { 728 int_stop_and_reset(drv_data); 729 pxa2xx_spi_off(drv_data); 730 731 dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n"); 732 } 733 734 static irqreturn_t ssp_int(int irq, void *dev_id) 735 { 736 struct driver_data *drv_data = dev_id; 737 u32 sccr1_reg; 738 u32 mask = drv_data->mask_sr; 739 u32 status; 740 741 /* 742 * The IRQ might be shared with other peripherals so we must first 743 * check that are we RPM suspended or not. If we are we assume that 744 * the IRQ was not for us (we shouldn't be RPM suspended when the 745 * interrupt is enabled). 746 */ 747 if (pm_runtime_suspended(drv_data->ssp->dev)) 748 return IRQ_NONE; 749 750 /* 751 * If the device is not yet in RPM suspended state and we get an 752 * interrupt that is meant for another device, check if status bits 753 * are all set to one. That means that the device is already 754 * powered off. 755 */ 756 status = pxa2xx_spi_read(drv_data, SSSR); 757 if (status == ~0) 758 return IRQ_NONE; 759 760 sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1); 761 762 /* Ignore possible writes if we don't need to write */ 763 if (!(sccr1_reg & SSCR1_TIE)) 764 mask &= ~SSSR_TFS; 765 766 /* Ignore RX timeout interrupt if it is disabled */ 767 if (!(sccr1_reg & SSCR1_TINTE)) 768 mask &= ~SSSR_TINT; 769 770 if (!(status & mask)) 771 return IRQ_NONE; 772 773 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1); 774 pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg); 775 776 if (!drv_data->controller->cur_msg) { 777 handle_bad_msg(drv_data); 778 /* Never fail */ 779 return IRQ_HANDLED; 780 } 781 782 return drv_data->transfer_handler(drv_data); 783 } 784 785 /* 786 * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply 787 * input frequency by fractions of 2^24. It also has a divider by 5. 788 * 789 * There are formulas to get baud rate value for given input frequency and 790 * divider parameters, such as DDS_CLK_RATE and SCR: 791 * 792 * Fsys = 200MHz 793 * 794 * Fssp = Fsys * DDS_CLK_RATE / 2^24 (1) 795 * Baud rate = Fsclk = Fssp / (2 * (SCR + 1)) (2) 796 * 797 * DDS_CLK_RATE either 2^n or 2^n / 5. 798 * SCR is in range 0 .. 255 799 * 800 * Divisor = 5^i * 2^j * 2 * k 801 * i = [0, 1] i = 1 iff j = 0 or j > 3 802 * j = [0, 23] j = 0 iff i = 1 803 * k = [1, 256] 804 * Special case: j = 0, i = 1: Divisor = 2 / 5 805 * 806 * Accordingly to the specification the recommended values for DDS_CLK_RATE 807 * are: 808 * Case 1: 2^n, n = [0, 23] 809 * Case 2: 2^24 * 2 / 5 (0x666666) 810 * Case 3: less than or equal to 2^24 / 5 / 16 (0x33333) 811 * 812 * In all cases the lowest possible value is better. 813 * 814 * The function calculates parameters for all cases and chooses the one closest 815 * to the asked baud rate. 816 */ 817 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds) 818 { 819 unsigned long xtal = 200000000; 820 unsigned long fref = xtal / 2; /* mandatory division by 2, 821 see (2) */ 822 /* case 3 */ 823 unsigned long fref1 = fref / 2; /* case 1 */ 824 unsigned long fref2 = fref * 2 / 5; /* case 2 */ 825 unsigned long scale; 826 unsigned long q, q1, q2; 827 long r, r1, r2; 828 u32 mul; 829 830 /* Case 1 */ 831 832 /* Set initial value for DDS_CLK_RATE */ 833 mul = (1 << 24) >> 1; 834 835 /* Calculate initial quot */ 836 q1 = DIV_ROUND_UP(fref1, rate); 837 838 /* Scale q1 if it's too big */ 839 if (q1 > 256) { 840 /* Scale q1 to range [1, 512] */ 841 scale = fls_long(q1 - 1); 842 if (scale > 9) { 843 q1 >>= scale - 9; 844 mul >>= scale - 9; 845 } 846 847 /* Round the result if we have a remainder */ 848 q1 += q1 & 1; 849 } 850 851 /* Decrease DDS_CLK_RATE as much as we can without loss in precision */ 852 scale = __ffs(q1); 853 q1 >>= scale; 854 mul >>= scale; 855 856 /* Get the remainder */ 857 r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate); 858 859 /* Case 2 */ 860 861 q2 = DIV_ROUND_UP(fref2, rate); 862 r2 = abs(fref2 / q2 - rate); 863 864 /* 865 * Choose the best between two: less remainder we have the better. We 866 * can't go case 2 if q2 is greater than 256 since SCR register can 867 * hold only values 0 .. 255. 868 */ 869 if (r2 >= r1 || q2 > 256) { 870 /* case 1 is better */ 871 r = r1; 872 q = q1; 873 } else { 874 /* case 2 is better */ 875 r = r2; 876 q = q2; 877 mul = (1 << 24) * 2 / 5; 878 } 879 880 /* Check case 3 only if the divisor is big enough */ 881 if (fref / rate >= 80) { 882 u64 fssp; 883 u32 m; 884 885 /* Calculate initial quot */ 886 q1 = DIV_ROUND_UP(fref, rate); 887 m = (1 << 24) / q1; 888 889 /* Get the remainder */ 890 fssp = (u64)fref * m; 891 do_div(fssp, 1 << 24); 892 r1 = abs(fssp - rate); 893 894 /* Choose this one if it suits better */ 895 if (r1 < r) { 896 /* case 3 is better */ 897 q = 1; 898 mul = m; 899 } 900 } 901 902 *dds = mul; 903 return q - 1; 904 } 905 906 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate) 907 { 908 unsigned long ssp_clk = drv_data->controller->max_speed_hz; 909 const struct ssp_device *ssp = drv_data->ssp; 910 911 rate = min_t(int, ssp_clk, rate); 912 913 /* 914 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding 915 * that the SSP transmission rate can be greater than the device rate. 916 */ 917 if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP) 918 return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff; 919 else 920 return (DIV_ROUND_UP(ssp_clk, rate) - 1) & 0xfff; 921 } 922 923 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data, 924 int rate) 925 { 926 struct chip_data *chip = 927 spi_get_ctldata(drv_data->controller->cur_msg->spi); 928 unsigned int clk_div; 929 930 switch (drv_data->ssp_type) { 931 case QUARK_X1000_SSP: 932 clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate); 933 break; 934 default: 935 clk_div = ssp_get_clk_div(drv_data, rate); 936 break; 937 } 938 return clk_div << 8; 939 } 940 941 static bool pxa2xx_spi_can_dma(struct spi_controller *controller, 942 struct spi_device *spi, 943 struct spi_transfer *xfer) 944 { 945 struct driver_data *drv_data = spi_controller_get_devdata(controller); 946 947 return drv_data->controller_info->enable_dma && 948 xfer->len <= MAX_DMA_LEN && 949 xfer->len >= drv_data->controller_info->dma_burst_size; 950 } 951 952 static int pxa2xx_spi_transfer_one(struct spi_controller *controller, 953 struct spi_device *spi, 954 struct spi_transfer *transfer) 955 { 956 struct driver_data *drv_data = spi_controller_get_devdata(controller); 957 struct chip_data *chip = spi_get_ctldata(spi); 958 u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data); 959 u32 dma_thresh; 960 u32 clk_div; 961 u8 bits; 962 u32 speed; 963 u32 cr0; 964 u32 cr1; 965 int err; 966 int dma_mapped; 967 968 /* Check if we can DMA this transfer */ 969 if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) { 970 /* Warn ... we force this to PIO mode */ 971 dev_warn_ratelimited(&spi->dev, 972 "DMA disabled for transfer length %u greater than %d\n", 973 transfer->len, MAX_DMA_LEN); 974 } 975 976 /* Setup the transfer state based on the type of transfer */ 977 if (pxa2xx_spi_flush(drv_data) == 0) { 978 dev_err(&spi->dev, "Flush failed\n"); 979 return -EIO; 980 } 981 drv_data->tx = (void *)transfer->tx_buf; 982 drv_data->tx_end = drv_data->tx + transfer->len; 983 drv_data->rx = transfer->rx_buf; 984 drv_data->rx_end = drv_data->rx + transfer->len; 985 986 /* Change speed and bit per word on a per transfer */ 987 bits = transfer->bits_per_word; 988 speed = transfer->speed_hz; 989 990 clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed); 991 992 if (bits <= 8) { 993 drv_data->n_bytes = 1; 994 drv_data->read = drv_data->rx ? u8_reader : null_reader; 995 drv_data->write = drv_data->tx ? u8_writer : null_writer; 996 } else if (bits <= 16) { 997 drv_data->n_bytes = 2; 998 drv_data->read = drv_data->rx ? u16_reader : null_reader; 999 drv_data->write = drv_data->tx ? u16_writer : null_writer; 1000 } else if (bits <= 32) { 1001 drv_data->n_bytes = 4; 1002 drv_data->read = drv_data->rx ? u32_reader : null_reader; 1003 drv_data->write = drv_data->tx ? u32_writer : null_writer; 1004 } 1005 1006 dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT); 1007 dma_mapped = controller->can_dma && 1008 controller->can_dma(controller, spi, transfer) && 1009 controller->cur_msg_mapped; 1010 if (dma_mapped) { 1011 1012 /* Ensure we have the correct interrupt handler */ 1013 drv_data->transfer_handler = pxa2xx_spi_dma_transfer; 1014 1015 err = pxa2xx_spi_dma_prepare(drv_data, transfer); 1016 if (err) 1017 return err; 1018 1019 /* Clear status and start DMA engine */ 1020 cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1; 1021 pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr); 1022 1023 pxa2xx_spi_dma_start(drv_data); 1024 } else { 1025 /* Ensure we have the correct interrupt handler */ 1026 drv_data->transfer_handler = interrupt_transfer; 1027 1028 /* Clear status */ 1029 cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1; 1030 write_SSSR_CS(drv_data, drv_data->clear_sr); 1031 } 1032 1033 /* NOTE: PXA25x_SSP _could_ use external clocking ... */ 1034 cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits); 1035 if (!pxa25x_ssp_comp(drv_data)) 1036 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1037 controller->max_speed_hz 1038 / (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)), 1039 dma_mapped ? "DMA" : "PIO"); 1040 else 1041 dev_dbg(&spi->dev, "%u Hz actual, %s\n", 1042 controller->max_speed_hz / 2 1043 / (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)), 1044 dma_mapped ? "DMA" : "PIO"); 1045 1046 if (is_lpss_ssp(drv_data)) { 1047 pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold); 1048 pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold); 1049 } 1050 1051 if (is_mrfld_ssp(drv_data)) { 1052 u32 mask = SFIFOTT_RFT | SFIFOTT_TFT; 1053 u32 thresh = 0; 1054 1055 thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold); 1056 thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold); 1057 1058 pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh); 1059 } 1060 1061 if (is_quark_x1000_ssp(drv_data)) 1062 pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate); 1063 1064 /* Stop the SSP */ 1065 if (!is_mmp2_ssp(drv_data)) 1066 pxa_ssp_disable(drv_data->ssp); 1067 1068 if (!pxa25x_ssp_comp(drv_data)) 1069 pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT); 1070 1071 /* First set CR1 without interrupt and service enables */ 1072 pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1); 1073 1074 /* See if we need to reload the configuration registers */ 1075 pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0); 1076 1077 /* Restart the SSP */ 1078 pxa_ssp_enable(drv_data->ssp); 1079 1080 if (is_mmp2_ssp(drv_data)) { 1081 u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8; 1082 1083 if (tx_level) { 1084 /* On MMP2, flipping SSE doesn't to empty Tx FIFO. */ 1085 dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level); 1086 if (tx_level > transfer->len) 1087 tx_level = transfer->len; 1088 drv_data->tx += tx_level; 1089 } 1090 } 1091 1092 if (spi_controller_is_target(controller)) { 1093 while (drv_data->write(drv_data)) 1094 ; 1095 if (drv_data->gpiod_ready) { 1096 gpiod_set_value(drv_data->gpiod_ready, 1); 1097 udelay(1); 1098 gpiod_set_value(drv_data->gpiod_ready, 0); 1099 } 1100 } 1101 1102 /* 1103 * Release the data by enabling service requests and interrupts, 1104 * without changing any mode bits. 1105 */ 1106 pxa2xx_spi_write(drv_data, SSCR1, cr1); 1107 1108 return 1; 1109 } 1110 1111 static int pxa2xx_spi_target_abort(struct spi_controller *controller) 1112 { 1113 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1114 1115 int_error_stop(drv_data, "transfer aborted", -EINTR); 1116 1117 return 0; 1118 } 1119 1120 static void pxa2xx_spi_handle_err(struct spi_controller *controller, 1121 struct spi_message *msg) 1122 { 1123 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1124 1125 int_stop_and_reset(drv_data); 1126 1127 /* Disable the SSP */ 1128 pxa2xx_spi_off(drv_data); 1129 1130 /* 1131 * Stop the DMA if running. Note DMA callback handler may have unset 1132 * the dma_running already, which is fine as stopping is not needed 1133 * then but we shouldn't rely this flag for anything else than 1134 * stopping. For instance to differentiate between PIO and DMA 1135 * transfers. 1136 */ 1137 if (atomic_read(&drv_data->dma_running)) 1138 pxa2xx_spi_dma_stop(drv_data); 1139 } 1140 1141 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller) 1142 { 1143 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1144 1145 /* Disable the SSP now */ 1146 pxa2xx_spi_off(drv_data); 1147 1148 return 0; 1149 } 1150 1151 static int setup(struct spi_device *spi) 1152 { 1153 struct chip_data *chip; 1154 const struct lpss_config *config; 1155 struct driver_data *drv_data = 1156 spi_controller_get_devdata(spi->controller); 1157 uint tx_thres, tx_hi_thres, rx_thres; 1158 1159 switch (drv_data->ssp_type) { 1160 case QUARK_X1000_SSP: 1161 tx_thres = TX_THRESH_QUARK_X1000_DFLT; 1162 tx_hi_thres = 0; 1163 rx_thres = RX_THRESH_QUARK_X1000_DFLT; 1164 break; 1165 case MRFLD_SSP: 1166 tx_thres = TX_THRESH_MRFLD_DFLT; 1167 tx_hi_thres = 0; 1168 rx_thres = RX_THRESH_MRFLD_DFLT; 1169 break; 1170 case CE4100_SSP: 1171 tx_thres = TX_THRESH_CE4100_DFLT; 1172 tx_hi_thres = 0; 1173 rx_thres = RX_THRESH_CE4100_DFLT; 1174 break; 1175 case LPSS_LPT_SSP: 1176 case LPSS_BYT_SSP: 1177 case LPSS_BSW_SSP: 1178 case LPSS_SPT_SSP: 1179 case LPSS_BXT_SSP: 1180 case LPSS_CNL_SSP: 1181 config = lpss_get_config(drv_data); 1182 tx_thres = config->tx_threshold_lo; 1183 tx_hi_thres = config->tx_threshold_hi; 1184 rx_thres = config->rx_threshold; 1185 break; 1186 default: 1187 tx_hi_thres = 0; 1188 if (spi_controller_is_target(drv_data->controller)) { 1189 tx_thres = 1; 1190 rx_thres = 2; 1191 } else { 1192 tx_thres = TX_THRESH_DFLT; 1193 rx_thres = RX_THRESH_DFLT; 1194 } 1195 break; 1196 } 1197 1198 if (drv_data->ssp_type == CE4100_SSP) { 1199 if (spi_get_chipselect(spi, 0) > 4) { 1200 dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n"); 1201 return -EINVAL; 1202 } 1203 } 1204 1205 /* Only allocate on the first setup */ 1206 chip = spi_get_ctldata(spi); 1207 if (!chip) { 1208 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1209 if (!chip) 1210 return -ENOMEM; 1211 } 1212 1213 chip->cr1 = 0; 1214 if (spi_controller_is_target(drv_data->controller)) { 1215 chip->cr1 |= SSCR1_SCFR; 1216 chip->cr1 |= SSCR1_SCLKDIR; 1217 chip->cr1 |= SSCR1_SFRMDIR; 1218 chip->cr1 |= SSCR1_SPH; 1219 } 1220 1221 if (is_lpss_ssp(drv_data)) { 1222 chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres); 1223 chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) | 1224 SSITF_TxHiThresh(tx_hi_thres); 1225 } 1226 1227 if (is_mrfld_ssp(drv_data)) { 1228 chip->lpss_rx_threshold = rx_thres; 1229 chip->lpss_tx_threshold = tx_thres; 1230 } 1231 1232 switch (drv_data->ssp_type) { 1233 case QUARK_X1000_SSP: 1234 chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres) 1235 & QUARK_X1000_SSCR1_RFT) 1236 | (QUARK_X1000_SSCR1_TxTresh(tx_thres) 1237 & QUARK_X1000_SSCR1_TFT); 1238 break; 1239 case CE4100_SSP: 1240 chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) | 1241 (CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT); 1242 break; 1243 default: 1244 chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) | 1245 (SSCR1_TxTresh(tx_thres) & SSCR1_TFT); 1246 break; 1247 } 1248 1249 chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH); 1250 chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) | 1251 ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0); 1252 1253 if (spi->mode & SPI_LOOP) 1254 chip->cr1 |= SSCR1_LBM; 1255 1256 spi_set_ctldata(spi, chip); 1257 1258 return 0; 1259 } 1260 1261 static void cleanup(struct spi_device *spi) 1262 { 1263 struct chip_data *chip = spi_get_ctldata(spi); 1264 1265 kfree(chip); 1266 } 1267 1268 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param) 1269 { 1270 return param == chan->device->dev; 1271 } 1272 1273 static int 1274 pxa2xx_spi_init_ssp(struct platform_device *pdev, struct ssp_device *ssp, enum pxa_ssp_type type) 1275 { 1276 struct device *dev = &pdev->dev; 1277 struct resource *res; 1278 int status; 1279 u64 uid; 1280 1281 ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res); 1282 if (IS_ERR(ssp->mmio_base)) 1283 return PTR_ERR(ssp->mmio_base); 1284 1285 ssp->phys_base = res->start; 1286 1287 ssp->clk = devm_clk_get(dev, NULL); 1288 if (IS_ERR(ssp->clk)) 1289 return PTR_ERR(ssp->clk); 1290 1291 ssp->irq = platform_get_irq(pdev, 0); 1292 if (ssp->irq < 0) 1293 return ssp->irq; 1294 1295 ssp->type = type; 1296 ssp->dev = dev; 1297 1298 status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid); 1299 if (status) 1300 ssp->port_id = -1; 1301 else 1302 ssp->port_id = uid; 1303 1304 return 0; 1305 } 1306 1307 static struct pxa2xx_spi_controller * 1308 pxa2xx_spi_init_pdata(struct platform_device *pdev) 1309 { 1310 struct pxa2xx_spi_controller *pdata; 1311 struct device *dev = &pdev->dev; 1312 struct device *parent = dev->parent; 1313 enum pxa_ssp_type type = SSP_UNDEFINED; 1314 struct ssp_device *ssp = NULL; 1315 const void *match; 1316 bool is_lpss_priv; 1317 u32 num_cs = 1; 1318 int status; 1319 1320 is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv"); 1321 1322 match = device_get_match_data(dev); 1323 if (match) 1324 type = (uintptr_t)match; 1325 else if (is_lpss_priv) { 1326 u32 value; 1327 1328 status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value); 1329 if (status) 1330 return ERR_PTR(status); 1331 1332 type = (enum pxa_ssp_type)value; 1333 } else { 1334 ssp = pxa_ssp_request(pdev->id, pdev->name); 1335 if (ssp) { 1336 type = ssp->type; 1337 pxa_ssp_free(ssp); 1338 } 1339 } 1340 1341 /* Validate the SSP type correctness */ 1342 if (!(type > SSP_UNDEFINED && type < SSP_MAX)) 1343 return ERR_PTR(-EINVAL); 1344 1345 pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL); 1346 if (!pdata) 1347 return ERR_PTR(-ENOMEM); 1348 1349 /* Platforms with iDMA 64-bit */ 1350 if (is_lpss_priv) { 1351 pdata->tx_param = parent; 1352 pdata->rx_param = parent; 1353 pdata->dma_filter = pxa2xx_spi_idma_filter; 1354 } 1355 1356 /* Read number of chip select pins, if provided */ 1357 device_property_read_u32(dev, "num-cs", &num_cs); 1358 1359 pdata->num_chipselect = num_cs; 1360 pdata->is_target = device_property_read_bool(dev, "spi-slave"); 1361 pdata->enable_dma = true; 1362 pdata->dma_burst_size = 1; 1363 1364 /* If SSP has been already enumerated, use it */ 1365 if (ssp) 1366 return pdata; 1367 1368 status = pxa2xx_spi_init_ssp(pdev, &pdata->ssp, type); 1369 if (status) 1370 return ERR_PTR(status); 1371 1372 return pdata; 1373 } 1374 1375 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller, 1376 unsigned int cs) 1377 { 1378 struct driver_data *drv_data = spi_controller_get_devdata(controller); 1379 1380 if (has_acpi_companion(drv_data->ssp->dev)) { 1381 switch (drv_data->ssp_type) { 1382 /* 1383 * For Atoms the ACPI DeviceSelection used by the Windows 1384 * driver starts from 1 instead of 0 so translate it here 1385 * to match what Linux expects. 1386 */ 1387 case LPSS_BYT_SSP: 1388 case LPSS_BSW_SSP: 1389 return cs - 1; 1390 1391 default: 1392 break; 1393 } 1394 } 1395 1396 return cs; 1397 } 1398 1399 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi) 1400 { 1401 return MAX_DMA_LEN; 1402 } 1403 1404 static int pxa2xx_spi_probe(struct platform_device *pdev) 1405 { 1406 struct device *dev = &pdev->dev; 1407 struct pxa2xx_spi_controller *platform_info; 1408 struct spi_controller *controller; 1409 struct driver_data *drv_data; 1410 struct ssp_device *ssp; 1411 const struct lpss_config *config; 1412 int status; 1413 u32 tmp; 1414 1415 platform_info = dev_get_platdata(dev); 1416 if (!platform_info) { 1417 platform_info = pxa2xx_spi_init_pdata(pdev); 1418 if (IS_ERR(platform_info)) 1419 return dev_err_probe(dev, PTR_ERR(platform_info), "missing platform data\n"); 1420 } 1421 dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size); 1422 1423 ssp = pxa_ssp_request(pdev->id, pdev->name); 1424 if (!ssp) 1425 ssp = &platform_info->ssp; 1426 1427 if (!ssp->mmio_base) 1428 return dev_err_probe(dev, -ENODEV, "failed to get SSP\n"); 1429 1430 if (platform_info->is_target) 1431 controller = devm_spi_alloc_target(dev, sizeof(*drv_data)); 1432 else 1433 controller = devm_spi_alloc_host(dev, sizeof(*drv_data)); 1434 1435 if (!controller) { 1436 status = dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n"); 1437 goto out_error_controller_alloc; 1438 } 1439 drv_data = spi_controller_get_devdata(controller); 1440 drv_data->controller = controller; 1441 drv_data->controller_info = platform_info; 1442 drv_data->ssp = ssp; 1443 1444 device_set_node(&controller->dev, dev_fwnode(dev)); 1445 1446 /* The spi->mode bits understood by this driver: */ 1447 controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 1448 1449 controller->bus_num = ssp->port_id; 1450 controller->dma_alignment = DMA_ALIGNMENT; 1451 controller->cleanup = cleanup; 1452 controller->setup = setup; 1453 controller->set_cs = pxa2xx_spi_set_cs; 1454 controller->transfer_one = pxa2xx_spi_transfer_one; 1455 controller->target_abort = pxa2xx_spi_target_abort; 1456 controller->handle_err = pxa2xx_spi_handle_err; 1457 controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer; 1458 controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs; 1459 controller->auto_runtime_pm = true; 1460 controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX; 1461 1462 drv_data->ssp_type = ssp->type; 1463 1464 if (pxa25x_ssp_comp(drv_data)) { 1465 switch (drv_data->ssp_type) { 1466 case QUARK_X1000_SSP: 1467 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1468 break; 1469 default: 1470 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16); 1471 break; 1472 } 1473 1474 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE; 1475 drv_data->dma_cr1 = 0; 1476 drv_data->clear_sr = SSSR_ROR; 1477 drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR; 1478 } else { 1479 controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1480 drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE; 1481 drv_data->dma_cr1 = DEFAULT_DMA_CR1; 1482 drv_data->clear_sr = SSSR_ROR | SSSR_TINT; 1483 drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS 1484 | SSSR_ROR | SSSR_TUR; 1485 } 1486 1487 status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev), 1488 drv_data); 1489 if (status < 0) { 1490 dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq); 1491 goto out_error_controller_alloc; 1492 } 1493 1494 /* Setup DMA if requested */ 1495 if (platform_info->enable_dma) { 1496 status = pxa2xx_spi_dma_setup(drv_data); 1497 if (status) { 1498 dev_warn(dev, "no DMA channels available, using PIO\n"); 1499 platform_info->enable_dma = false; 1500 } else { 1501 controller->can_dma = pxa2xx_spi_can_dma; 1502 controller->max_dma_len = MAX_DMA_LEN; 1503 controller->max_transfer_size = 1504 pxa2xx_spi_max_dma_transfer_size; 1505 } 1506 } 1507 1508 /* Enable SOC clock */ 1509 status = clk_prepare_enable(ssp->clk); 1510 if (status) 1511 goto out_error_dma_irq_alloc; 1512 1513 controller->max_speed_hz = clk_get_rate(ssp->clk); 1514 /* 1515 * Set minimum speed for all other platforms than Intel Quark which is 1516 * able do under 1 Hz transfers. 1517 */ 1518 if (!pxa25x_ssp_comp(drv_data)) 1519 controller->min_speed_hz = 1520 DIV_ROUND_UP(controller->max_speed_hz, 4096); 1521 else if (!is_quark_x1000_ssp(drv_data)) 1522 controller->min_speed_hz = 1523 DIV_ROUND_UP(controller->max_speed_hz, 512); 1524 1525 pxa_ssp_disable(ssp); 1526 1527 /* Load default SSP configuration */ 1528 switch (drv_data->ssp_type) { 1529 case QUARK_X1000_SSP: 1530 tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) | 1531 QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT); 1532 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1533 1534 /* Using the Motorola SPI protocol and use 8 bit frame */ 1535 tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8); 1536 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1537 break; 1538 case CE4100_SSP: 1539 tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) | 1540 CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT); 1541 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1542 tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8); 1543 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1544 break; 1545 default: 1546 1547 if (spi_controller_is_target(controller)) { 1548 tmp = SSCR1_SCFR | 1549 SSCR1_SCLKDIR | 1550 SSCR1_SFRMDIR | 1551 SSCR1_RxTresh(2) | 1552 SSCR1_TxTresh(1) | 1553 SSCR1_SPH; 1554 } else { 1555 tmp = SSCR1_RxTresh(RX_THRESH_DFLT) | 1556 SSCR1_TxTresh(TX_THRESH_DFLT); 1557 } 1558 pxa2xx_spi_write(drv_data, SSCR1, tmp); 1559 tmp = SSCR0_Motorola | SSCR0_DataSize(8); 1560 if (!spi_controller_is_target(controller)) 1561 tmp |= SSCR0_SCR(2); 1562 pxa2xx_spi_write(drv_data, SSCR0, tmp); 1563 break; 1564 } 1565 1566 if (!pxa25x_ssp_comp(drv_data)) 1567 pxa2xx_spi_write(drv_data, SSTO, 0); 1568 1569 if (!is_quark_x1000_ssp(drv_data)) 1570 pxa2xx_spi_write(drv_data, SSPSP, 0); 1571 1572 if (is_lpss_ssp(drv_data)) { 1573 lpss_ssp_setup(drv_data); 1574 config = lpss_get_config(drv_data); 1575 if (config->reg_capabilities >= 0) { 1576 tmp = __lpss_ssp_read_priv(drv_data, 1577 config->reg_capabilities); 1578 tmp &= LPSS_CAPS_CS_EN_MASK; 1579 tmp >>= LPSS_CAPS_CS_EN_SHIFT; 1580 platform_info->num_chipselect = ffz(tmp); 1581 } else if (config->cs_num) { 1582 platform_info->num_chipselect = config->cs_num; 1583 } 1584 } 1585 controller->num_chipselect = platform_info->num_chipselect; 1586 controller->use_gpio_descriptors = true; 1587 1588 if (platform_info->is_target) { 1589 drv_data->gpiod_ready = devm_gpiod_get_optional(dev, 1590 "ready", GPIOD_OUT_LOW); 1591 if (IS_ERR(drv_data->gpiod_ready)) { 1592 status = PTR_ERR(drv_data->gpiod_ready); 1593 goto out_error_clock_enabled; 1594 } 1595 } 1596 1597 pm_runtime_set_autosuspend_delay(&pdev->dev, 50); 1598 pm_runtime_use_autosuspend(&pdev->dev); 1599 pm_runtime_set_active(&pdev->dev); 1600 pm_runtime_enable(&pdev->dev); 1601 1602 /* Register with the SPI framework */ 1603 platform_set_drvdata(pdev, drv_data); 1604 status = spi_register_controller(controller); 1605 if (status) { 1606 dev_err_probe(dev, status, "problem registering SPI controller\n"); 1607 goto out_error_pm_runtime_enabled; 1608 } 1609 1610 return status; 1611 1612 out_error_pm_runtime_enabled: 1613 pm_runtime_disable(&pdev->dev); 1614 1615 out_error_clock_enabled: 1616 clk_disable_unprepare(ssp->clk); 1617 1618 out_error_dma_irq_alloc: 1619 pxa2xx_spi_dma_release(drv_data); 1620 free_irq(ssp->irq, drv_data); 1621 1622 out_error_controller_alloc: 1623 pxa_ssp_free(ssp); 1624 return status; 1625 } 1626 1627 static void pxa2xx_spi_remove(struct platform_device *pdev) 1628 { 1629 struct driver_data *drv_data = platform_get_drvdata(pdev); 1630 struct ssp_device *ssp = drv_data->ssp; 1631 1632 pm_runtime_get_sync(&pdev->dev); 1633 1634 spi_unregister_controller(drv_data->controller); 1635 1636 /* Disable the SSP at the peripheral and SOC level */ 1637 pxa_ssp_disable(ssp); 1638 clk_disable_unprepare(ssp->clk); 1639 1640 /* Release DMA */ 1641 if (drv_data->controller_info->enable_dma) 1642 pxa2xx_spi_dma_release(drv_data); 1643 1644 pm_runtime_put_noidle(&pdev->dev); 1645 pm_runtime_disable(&pdev->dev); 1646 1647 /* Release IRQ */ 1648 free_irq(ssp->irq, drv_data); 1649 1650 /* Release SSP */ 1651 pxa_ssp_free(ssp); 1652 } 1653 1654 static int pxa2xx_spi_suspend(struct device *dev) 1655 { 1656 struct driver_data *drv_data = dev_get_drvdata(dev); 1657 struct ssp_device *ssp = drv_data->ssp; 1658 int status; 1659 1660 status = spi_controller_suspend(drv_data->controller); 1661 if (status) 1662 return status; 1663 1664 pxa_ssp_disable(ssp); 1665 1666 if (!pm_runtime_suspended(dev)) 1667 clk_disable_unprepare(ssp->clk); 1668 1669 return 0; 1670 } 1671 1672 static int pxa2xx_spi_resume(struct device *dev) 1673 { 1674 struct driver_data *drv_data = dev_get_drvdata(dev); 1675 struct ssp_device *ssp = drv_data->ssp; 1676 int status; 1677 1678 /* Enable the SSP clock */ 1679 if (!pm_runtime_suspended(dev)) { 1680 status = clk_prepare_enable(ssp->clk); 1681 if (status) 1682 return status; 1683 } 1684 1685 /* Start the queue running */ 1686 return spi_controller_resume(drv_data->controller); 1687 } 1688 1689 static int pxa2xx_spi_runtime_suspend(struct device *dev) 1690 { 1691 struct driver_data *drv_data = dev_get_drvdata(dev); 1692 1693 clk_disable_unprepare(drv_data->ssp->clk); 1694 return 0; 1695 } 1696 1697 static int pxa2xx_spi_runtime_resume(struct device *dev) 1698 { 1699 struct driver_data *drv_data = dev_get_drvdata(dev); 1700 1701 return clk_prepare_enable(drv_data->ssp->clk); 1702 } 1703 1704 static const struct dev_pm_ops pxa2xx_spi_pm_ops = { 1705 SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume) 1706 RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL) 1707 }; 1708 1709 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = { 1710 { "80860F0E", LPSS_BYT_SSP }, 1711 { "8086228E", LPSS_BSW_SSP }, 1712 { "INT33C0", LPSS_LPT_SSP }, 1713 { "INT33C1", LPSS_LPT_SSP }, 1714 { "INT3430", LPSS_LPT_SSP }, 1715 { "INT3431", LPSS_LPT_SSP }, 1716 {} 1717 }; 1718 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match); 1719 1720 static const struct of_device_id pxa2xx_spi_of_match[] = { 1721 { .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP }, 1722 {} 1723 }; 1724 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match); 1725 1726 static struct platform_driver driver = { 1727 .driver = { 1728 .name = "pxa2xx-spi", 1729 .pm = pm_ptr(&pxa2xx_spi_pm_ops), 1730 .acpi_match_table = pxa2xx_spi_acpi_match, 1731 .of_match_table = pxa2xx_spi_of_match, 1732 }, 1733 .probe = pxa2xx_spi_probe, 1734 .remove_new = pxa2xx_spi_remove, 1735 }; 1736 1737 static int __init pxa2xx_spi_init(void) 1738 { 1739 return platform_driver_register(&driver); 1740 } 1741 subsys_initcall(pxa2xx_spi_init); 1742 1743 static void __exit pxa2xx_spi_exit(void) 1744 { 1745 platform_driver_unregister(&driver); 1746 } 1747 module_exit(pxa2xx_spi_exit); 1748 1749 MODULE_SOFTDEP("pre: dw_dmac"); 1750