xref: /linux/drivers/spi/spi-pxa2xx.c (revision 40ccd6aa3e2e05be93394e3cd560c718dedfcc77)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2005 Stephen Street / StreetFire Sound Labs
4  * Copyright (C) 2013, 2021 Intel Corporation
5  */
6 
7 #include <linux/acpi.h>
8 #include <linux/atomic.h>
9 #include <linux/bitops.h>
10 #include <linux/bug.h>
11 #include <linux/clk.h>
12 #include <linux/delay.h>
13 #include <linux/device.h>
14 #include <linux/dmaengine.h>
15 #include <linux/err.h>
16 #include <linux/gpio/consumer.h>
17 #include <linux/init.h>
18 #include <linux/interrupt.h>
19 #include <linux/io.h>
20 #include <linux/ioport.h>
21 #include <linux/math64.h>
22 #include <linux/minmax.h>
23 #include <linux/mod_devicetable.h>
24 #include <linux/module.h>
25 #include <linux/platform_device.h>
26 #include <linux/pm_runtime.h>
27 #include <linux/property.h>
28 #include <linux/slab.h>
29 #include <linux/types.h>
30 
31 #include <linux/spi/spi.h>
32 
33 #include "spi-pxa2xx.h"
34 
35 MODULE_AUTHOR("Stephen Street");
36 MODULE_DESCRIPTION("PXA2xx SSP SPI Controller");
37 MODULE_LICENSE("GPL");
38 MODULE_ALIAS("platform:pxa2xx-spi");
39 
40 #define TIMOUT_DFLT		1000
41 
42 /*
43  * For testing SSCR1 changes that require SSP restart, basically
44  * everything except the service and interrupt enables, the PXA270 developer
45  * manual says only SSCR1_SCFR, SSCR1_SPH, SSCR1_SPO need to be in this
46  * list, but the PXA255 developer manual says all bits without really meaning
47  * the service and interrupt enables.
48  */
49 #define SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
50 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
51 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
52 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
53 				| SSCR1_RFT | SSCR1_TFT | SSCR1_MWDS \
54 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
55 
56 #define QUARK_X1000_SSCR1_CHANGE_MASK (QUARK_X1000_SSCR1_STRF	\
57 				| QUARK_X1000_SSCR1_EFWR	\
58 				| QUARK_X1000_SSCR1_RFT		\
59 				| QUARK_X1000_SSCR1_TFT		\
60 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
61 
62 #define CE4100_SSCR1_CHANGE_MASK (SSCR1_TTELP | SSCR1_TTE | SSCR1_SCFR \
63 				| SSCR1_ECRA | SSCR1_ECRB | SSCR1_SCLKDIR \
64 				| SSCR1_SFRMDIR | SSCR1_RWOT | SSCR1_TRAIL \
65 				| SSCR1_IFS | SSCR1_STRF | SSCR1_EFWR \
66 				| CE4100_SSCR1_RFT | CE4100_SSCR1_TFT | SSCR1_MWDS \
67 				| SSCR1_SPH | SSCR1_SPO | SSCR1_LBM)
68 
69 struct chip_data {
70 	u32 cr1;
71 	u32 dds_rate;
72 	u32 threshold;
73 	u16 lpss_rx_threshold;
74 	u16 lpss_tx_threshold;
75 };
76 
77 #define LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE	BIT(24)
78 #define LPSS_CS_CONTROL_SW_MODE			BIT(0)
79 #define LPSS_CS_CONTROL_CS_HIGH			BIT(1)
80 #define LPSS_CAPS_CS_EN_SHIFT			9
81 #define LPSS_CAPS_CS_EN_MASK			(0xf << LPSS_CAPS_CS_EN_SHIFT)
82 
83 #define LPSS_PRIV_CLOCK_GATE 0x38
84 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK 0x3
85 #define LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON 0x3
86 
87 struct lpss_config {
88 	/* LPSS offset from drv_data->ioaddr */
89 	unsigned offset;
90 	/* Register offsets from drv_data->lpss_base or -1 */
91 	int reg_general;
92 	int reg_ssp;
93 	int reg_cs_ctrl;
94 	int reg_capabilities;
95 	/* FIFO thresholds */
96 	u32 rx_threshold;
97 	u32 tx_threshold_lo;
98 	u32 tx_threshold_hi;
99 	/* Chip select control */
100 	unsigned cs_sel_shift;
101 	unsigned cs_sel_mask;
102 	unsigned cs_num;
103 	/* Quirks */
104 	unsigned cs_clk_stays_gated : 1;
105 };
106 
107 /* Keep these sorted with enum pxa_ssp_type */
108 static const struct lpss_config lpss_platforms[] = {
109 	{	/* LPSS_LPT_SSP */
110 		.offset = 0x800,
111 		.reg_general = 0x08,
112 		.reg_ssp = 0x0c,
113 		.reg_cs_ctrl = 0x18,
114 		.reg_capabilities = -1,
115 		.rx_threshold = 64,
116 		.tx_threshold_lo = 160,
117 		.tx_threshold_hi = 224,
118 	},
119 	{	/* LPSS_BYT_SSP */
120 		.offset = 0x400,
121 		.reg_general = 0x08,
122 		.reg_ssp = 0x0c,
123 		.reg_cs_ctrl = 0x18,
124 		.reg_capabilities = -1,
125 		.rx_threshold = 64,
126 		.tx_threshold_lo = 160,
127 		.tx_threshold_hi = 224,
128 	},
129 	{	/* LPSS_BSW_SSP */
130 		.offset = 0x400,
131 		.reg_general = 0x08,
132 		.reg_ssp = 0x0c,
133 		.reg_cs_ctrl = 0x18,
134 		.reg_capabilities = -1,
135 		.rx_threshold = 64,
136 		.tx_threshold_lo = 160,
137 		.tx_threshold_hi = 224,
138 		.cs_sel_shift = 2,
139 		.cs_sel_mask = 1 << 2,
140 		.cs_num = 2,
141 	},
142 	{	/* LPSS_SPT_SSP */
143 		.offset = 0x200,
144 		.reg_general = -1,
145 		.reg_ssp = 0x20,
146 		.reg_cs_ctrl = 0x24,
147 		.reg_capabilities = -1,
148 		.rx_threshold = 1,
149 		.tx_threshold_lo = 32,
150 		.tx_threshold_hi = 56,
151 	},
152 	{	/* LPSS_BXT_SSP */
153 		.offset = 0x200,
154 		.reg_general = -1,
155 		.reg_ssp = 0x20,
156 		.reg_cs_ctrl = 0x24,
157 		.reg_capabilities = 0xfc,
158 		.rx_threshold = 1,
159 		.tx_threshold_lo = 16,
160 		.tx_threshold_hi = 48,
161 		.cs_sel_shift = 8,
162 		.cs_sel_mask = 3 << 8,
163 		.cs_clk_stays_gated = true,
164 	},
165 	{	/* LPSS_CNL_SSP */
166 		.offset = 0x200,
167 		.reg_general = -1,
168 		.reg_ssp = 0x20,
169 		.reg_cs_ctrl = 0x24,
170 		.reg_capabilities = 0xfc,
171 		.rx_threshold = 1,
172 		.tx_threshold_lo = 32,
173 		.tx_threshold_hi = 56,
174 		.cs_sel_shift = 8,
175 		.cs_sel_mask = 3 << 8,
176 		.cs_clk_stays_gated = true,
177 	},
178 };
179 
180 static inline const struct lpss_config
181 *lpss_get_config(const struct driver_data *drv_data)
182 {
183 	return &lpss_platforms[drv_data->ssp_type - LPSS_LPT_SSP];
184 }
185 
186 static bool is_lpss_ssp(const struct driver_data *drv_data)
187 {
188 	switch (drv_data->ssp_type) {
189 	case LPSS_LPT_SSP:
190 	case LPSS_BYT_SSP:
191 	case LPSS_BSW_SSP:
192 	case LPSS_SPT_SSP:
193 	case LPSS_BXT_SSP:
194 	case LPSS_CNL_SSP:
195 		return true;
196 	default:
197 		return false;
198 	}
199 }
200 
201 static bool is_quark_x1000_ssp(const struct driver_data *drv_data)
202 {
203 	return drv_data->ssp_type == QUARK_X1000_SSP;
204 }
205 
206 static bool is_mmp2_ssp(const struct driver_data *drv_data)
207 {
208 	return drv_data->ssp_type == MMP2_SSP;
209 }
210 
211 static bool is_mrfld_ssp(const struct driver_data *drv_data)
212 {
213 	return drv_data->ssp_type == MRFLD_SSP;
214 }
215 
216 static void pxa2xx_spi_update(const struct driver_data *drv_data, u32 reg, u32 mask, u32 value)
217 {
218 	if ((pxa2xx_spi_read(drv_data, reg) & mask) != value)
219 		pxa2xx_spi_write(drv_data, reg, value & mask);
220 }
221 
222 static u32 pxa2xx_spi_get_ssrc1_change_mask(const struct driver_data *drv_data)
223 {
224 	switch (drv_data->ssp_type) {
225 	case QUARK_X1000_SSP:
226 		return QUARK_X1000_SSCR1_CHANGE_MASK;
227 	case CE4100_SSP:
228 		return CE4100_SSCR1_CHANGE_MASK;
229 	default:
230 		return SSCR1_CHANGE_MASK;
231 	}
232 }
233 
234 static u32
235 pxa2xx_spi_get_rx_default_thre(const struct driver_data *drv_data)
236 {
237 	switch (drv_data->ssp_type) {
238 	case QUARK_X1000_SSP:
239 		return RX_THRESH_QUARK_X1000_DFLT;
240 	case CE4100_SSP:
241 		return RX_THRESH_CE4100_DFLT;
242 	default:
243 		return RX_THRESH_DFLT;
244 	}
245 }
246 
247 static bool pxa2xx_spi_txfifo_full(const struct driver_data *drv_data)
248 {
249 	u32 mask;
250 
251 	switch (drv_data->ssp_type) {
252 	case QUARK_X1000_SSP:
253 		mask = QUARK_X1000_SSSR_TFL_MASK;
254 		break;
255 	case CE4100_SSP:
256 		mask = CE4100_SSSR_TFL_MASK;
257 		break;
258 	default:
259 		mask = SSSR_TFL_MASK;
260 		break;
261 	}
262 
263 	return read_SSSR_bits(drv_data, mask) == mask;
264 }
265 
266 static void pxa2xx_spi_clear_rx_thre(const struct driver_data *drv_data,
267 				     u32 *sccr1_reg)
268 {
269 	u32 mask;
270 
271 	switch (drv_data->ssp_type) {
272 	case QUARK_X1000_SSP:
273 		mask = QUARK_X1000_SSCR1_RFT;
274 		break;
275 	case CE4100_SSP:
276 		mask = CE4100_SSCR1_RFT;
277 		break;
278 	default:
279 		mask = SSCR1_RFT;
280 		break;
281 	}
282 	*sccr1_reg &= ~mask;
283 }
284 
285 static void pxa2xx_spi_set_rx_thre(const struct driver_data *drv_data,
286 				   u32 *sccr1_reg, u32 threshold)
287 {
288 	switch (drv_data->ssp_type) {
289 	case QUARK_X1000_SSP:
290 		*sccr1_reg |= QUARK_X1000_SSCR1_RxTresh(threshold);
291 		break;
292 	case CE4100_SSP:
293 		*sccr1_reg |= CE4100_SSCR1_RxTresh(threshold);
294 		break;
295 	default:
296 		*sccr1_reg |= SSCR1_RxTresh(threshold);
297 		break;
298 	}
299 }
300 
301 static u32 pxa2xx_configure_sscr0(const struct driver_data *drv_data,
302 				  u32 clk_div, u8 bits)
303 {
304 	switch (drv_data->ssp_type) {
305 	case QUARK_X1000_SSP:
306 		return clk_div
307 			| QUARK_X1000_SSCR0_Motorola
308 			| QUARK_X1000_SSCR0_DataSize(bits > 32 ? 8 : bits);
309 	default:
310 		return clk_div
311 			| SSCR0_Motorola
312 			| SSCR0_DataSize(bits > 16 ? bits - 16 : bits)
313 			| (bits > 16 ? SSCR0_EDSS : 0);
314 	}
315 }
316 
317 /*
318  * Read and write LPSS SSP private registers. Caller must first check that
319  * is_lpss_ssp() returns true before these can be called.
320  */
321 static u32 __lpss_ssp_read_priv(struct driver_data *drv_data, unsigned offset)
322 {
323 	WARN_ON(!drv_data->lpss_base);
324 	return readl(drv_data->lpss_base + offset);
325 }
326 
327 static void __lpss_ssp_write_priv(struct driver_data *drv_data,
328 				  unsigned offset, u32 value)
329 {
330 	WARN_ON(!drv_data->lpss_base);
331 	writel(value, drv_data->lpss_base + offset);
332 }
333 
334 /*
335  * lpss_ssp_setup - perform LPSS SSP specific setup
336  * @drv_data: pointer to the driver private data
337  *
338  * Perform LPSS SSP specific setup. This function must be called first if
339  * one is going to use LPSS SSP private registers.
340  */
341 static void lpss_ssp_setup(struct driver_data *drv_data)
342 {
343 	const struct lpss_config *config;
344 	u32 value;
345 
346 	config = lpss_get_config(drv_data);
347 	drv_data->lpss_base = drv_data->ssp->mmio_base + config->offset;
348 
349 	/* Enable software chip select control */
350 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
351 	value &= ~(LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH);
352 	value |= LPSS_CS_CONTROL_SW_MODE | LPSS_CS_CONTROL_CS_HIGH;
353 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
354 
355 	/* Enable multiblock DMA transfers */
356 	if (drv_data->controller_info->enable_dma) {
357 		__lpss_ssp_write_priv(drv_data, config->reg_ssp, 1);
358 
359 		if (config->reg_general >= 0) {
360 			value = __lpss_ssp_read_priv(drv_data,
361 						     config->reg_general);
362 			value |= LPSS_GENERAL_REG_RXTO_HOLDOFF_DISABLE;
363 			__lpss_ssp_write_priv(drv_data,
364 					      config->reg_general, value);
365 		}
366 	}
367 }
368 
369 static void lpss_ssp_select_cs(struct spi_device *spi,
370 			       const struct lpss_config *config)
371 {
372 	struct driver_data *drv_data =
373 		spi_controller_get_devdata(spi->controller);
374 	u32 value, cs;
375 
376 	if (!config->cs_sel_mask)
377 		return;
378 
379 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
380 
381 	cs = spi_get_chipselect(spi, 0);
382 	cs <<= config->cs_sel_shift;
383 	if (cs != (value & config->cs_sel_mask)) {
384 		/*
385 		 * When switching another chip select output active the
386 		 * output must be selected first and wait 2 ssp_clk cycles
387 		 * before changing state to active. Otherwise a short
388 		 * glitch will occur on the previous chip select since
389 		 * output select is latched but state control is not.
390 		 */
391 		value &= ~config->cs_sel_mask;
392 		value |= cs;
393 		__lpss_ssp_write_priv(drv_data,
394 				      config->reg_cs_ctrl, value);
395 		ndelay(1000000000 /
396 		       (drv_data->controller->max_speed_hz / 2));
397 	}
398 }
399 
400 static void lpss_ssp_cs_control(struct spi_device *spi, bool enable)
401 {
402 	struct driver_data *drv_data =
403 		spi_controller_get_devdata(spi->controller);
404 	const struct lpss_config *config;
405 	u32 value;
406 
407 	config = lpss_get_config(drv_data);
408 
409 	if (enable)
410 		lpss_ssp_select_cs(spi, config);
411 
412 	value = __lpss_ssp_read_priv(drv_data, config->reg_cs_ctrl);
413 	if (enable)
414 		value &= ~LPSS_CS_CONTROL_CS_HIGH;
415 	else
416 		value |= LPSS_CS_CONTROL_CS_HIGH;
417 	__lpss_ssp_write_priv(drv_data, config->reg_cs_ctrl, value);
418 	if (config->cs_clk_stays_gated) {
419 		u32 clkgate;
420 
421 		/*
422 		 * Changing CS alone when dynamic clock gating is on won't
423 		 * actually flip CS at that time. This ruins SPI transfers
424 		 * that specify delays, or have no data. Toggle the clock mode
425 		 * to force on briefly to poke the CS pin to move.
426 		 */
427 		clkgate = __lpss_ssp_read_priv(drv_data, LPSS_PRIV_CLOCK_GATE);
428 		value = (clkgate & ~LPSS_PRIV_CLOCK_GATE_CLK_CTL_MASK) |
429 			LPSS_PRIV_CLOCK_GATE_CLK_CTL_FORCE_ON;
430 
431 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, value);
432 		__lpss_ssp_write_priv(drv_data, LPSS_PRIV_CLOCK_GATE, clkgate);
433 	}
434 }
435 
436 static void cs_assert(struct spi_device *spi)
437 {
438 	struct driver_data *drv_data =
439 		spi_controller_get_devdata(spi->controller);
440 
441 	if (drv_data->ssp_type == CE4100_SSP) {
442 		pxa2xx_spi_write(drv_data, SSSR, spi_get_chipselect(spi, 0));
443 		return;
444 	}
445 
446 	if (is_lpss_ssp(drv_data))
447 		lpss_ssp_cs_control(spi, true);
448 }
449 
450 static void cs_deassert(struct spi_device *spi)
451 {
452 	struct driver_data *drv_data =
453 		spi_controller_get_devdata(spi->controller);
454 	unsigned long timeout;
455 
456 	if (drv_data->ssp_type == CE4100_SSP)
457 		return;
458 
459 	/* Wait until SSP becomes idle before deasserting the CS */
460 	timeout = jiffies + msecs_to_jiffies(10);
461 	while (pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY &&
462 	       !time_after(jiffies, timeout))
463 		cpu_relax();
464 
465 	if (is_lpss_ssp(drv_data))
466 		lpss_ssp_cs_control(spi, false);
467 }
468 
469 static void pxa2xx_spi_set_cs(struct spi_device *spi, bool level)
470 {
471 	if (level)
472 		cs_deassert(spi);
473 	else
474 		cs_assert(spi);
475 }
476 
477 int pxa2xx_spi_flush(struct driver_data *drv_data)
478 {
479 	unsigned long limit = loops_per_jiffy << 1;
480 
481 	do {
482 		while (read_SSSR_bits(drv_data, SSSR_RNE))
483 			pxa2xx_spi_read(drv_data, SSDR);
484 	} while ((pxa2xx_spi_read(drv_data, SSSR) & SSSR_BSY) && --limit);
485 	write_SSSR_CS(drv_data, SSSR_ROR);
486 
487 	return limit;
488 }
489 
490 static void pxa2xx_spi_off(struct driver_data *drv_data)
491 {
492 	/* On MMP, disabling SSE seems to corrupt the Rx FIFO */
493 	if (is_mmp2_ssp(drv_data))
494 		return;
495 
496 	pxa_ssp_disable(drv_data->ssp);
497 }
498 
499 static int null_writer(struct driver_data *drv_data)
500 {
501 	u8 n_bytes = drv_data->n_bytes;
502 
503 	if (pxa2xx_spi_txfifo_full(drv_data)
504 		|| (drv_data->tx == drv_data->tx_end))
505 		return 0;
506 
507 	pxa2xx_spi_write(drv_data, SSDR, 0);
508 	drv_data->tx += n_bytes;
509 
510 	return 1;
511 }
512 
513 static int null_reader(struct driver_data *drv_data)
514 {
515 	u8 n_bytes = drv_data->n_bytes;
516 
517 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
518 		pxa2xx_spi_read(drv_data, SSDR);
519 		drv_data->rx += n_bytes;
520 	}
521 
522 	return drv_data->rx == drv_data->rx_end;
523 }
524 
525 static int u8_writer(struct driver_data *drv_data)
526 {
527 	if (pxa2xx_spi_txfifo_full(drv_data)
528 		|| (drv_data->tx == drv_data->tx_end))
529 		return 0;
530 
531 	pxa2xx_spi_write(drv_data, SSDR, *(u8 *)(drv_data->tx));
532 	++drv_data->tx;
533 
534 	return 1;
535 }
536 
537 static int u8_reader(struct driver_data *drv_data)
538 {
539 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
540 		*(u8 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
541 		++drv_data->rx;
542 	}
543 
544 	return drv_data->rx == drv_data->rx_end;
545 }
546 
547 static int u16_writer(struct driver_data *drv_data)
548 {
549 	if (pxa2xx_spi_txfifo_full(drv_data)
550 		|| (drv_data->tx == drv_data->tx_end))
551 		return 0;
552 
553 	pxa2xx_spi_write(drv_data, SSDR, *(u16 *)(drv_data->tx));
554 	drv_data->tx += 2;
555 
556 	return 1;
557 }
558 
559 static int u16_reader(struct driver_data *drv_data)
560 {
561 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
562 		*(u16 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
563 		drv_data->rx += 2;
564 	}
565 
566 	return drv_data->rx == drv_data->rx_end;
567 }
568 
569 static int u32_writer(struct driver_data *drv_data)
570 {
571 	if (pxa2xx_spi_txfifo_full(drv_data)
572 		|| (drv_data->tx == drv_data->tx_end))
573 		return 0;
574 
575 	pxa2xx_spi_write(drv_data, SSDR, *(u32 *)(drv_data->tx));
576 	drv_data->tx += 4;
577 
578 	return 1;
579 }
580 
581 static int u32_reader(struct driver_data *drv_data)
582 {
583 	while (read_SSSR_bits(drv_data, SSSR_RNE) && drv_data->rx < drv_data->rx_end) {
584 		*(u32 *)(drv_data->rx) = pxa2xx_spi_read(drv_data, SSDR);
585 		drv_data->rx += 4;
586 	}
587 
588 	return drv_data->rx == drv_data->rx_end;
589 }
590 
591 static void reset_sccr1(struct driver_data *drv_data)
592 {
593 	u32 mask = drv_data->int_cr1 | drv_data->dma_cr1, threshold;
594 	struct chip_data *chip;
595 
596 	if (drv_data->controller->cur_msg) {
597 		chip = spi_get_ctldata(drv_data->controller->cur_msg->spi);
598 		threshold = chip->threshold;
599 	} else {
600 		threshold = 0;
601 	}
602 
603 	switch (drv_data->ssp_type) {
604 	case QUARK_X1000_SSP:
605 		mask |= QUARK_X1000_SSCR1_RFT;
606 		break;
607 	case CE4100_SSP:
608 		mask |= CE4100_SSCR1_RFT;
609 		break;
610 	default:
611 		mask |= SSCR1_RFT;
612 		break;
613 	}
614 
615 	pxa2xx_spi_update(drv_data, SSCR1, mask, threshold);
616 }
617 
618 static void int_stop_and_reset(struct driver_data *drv_data)
619 {
620 	/* Clear and disable interrupts */
621 	write_SSSR_CS(drv_data, drv_data->clear_sr);
622 	reset_sccr1(drv_data);
623 	if (pxa25x_ssp_comp(drv_data))
624 		return;
625 
626 	pxa2xx_spi_write(drv_data, SSTO, 0);
627 }
628 
629 static void int_error_stop(struct driver_data *drv_data, const char *msg, int err)
630 {
631 	int_stop_and_reset(drv_data);
632 	pxa2xx_spi_flush(drv_data);
633 	pxa2xx_spi_off(drv_data);
634 
635 	dev_err(drv_data->ssp->dev, "%s\n", msg);
636 
637 	drv_data->controller->cur_msg->status = err;
638 	spi_finalize_current_transfer(drv_data->controller);
639 }
640 
641 static void int_transfer_complete(struct driver_data *drv_data)
642 {
643 	int_stop_and_reset(drv_data);
644 
645 	spi_finalize_current_transfer(drv_data->controller);
646 }
647 
648 static irqreturn_t interrupt_transfer(struct driver_data *drv_data)
649 {
650 	u32 irq_status;
651 
652 	irq_status = read_SSSR_bits(drv_data, drv_data->mask_sr);
653 	if (!(pxa2xx_spi_read(drv_data, SSCR1) & SSCR1_TIE))
654 		irq_status &= ~SSSR_TFS;
655 
656 	if (irq_status & SSSR_ROR) {
657 		int_error_stop(drv_data, "interrupt_transfer: FIFO overrun", -EIO);
658 		return IRQ_HANDLED;
659 	}
660 
661 	if (irq_status & SSSR_TUR) {
662 		int_error_stop(drv_data, "interrupt_transfer: FIFO underrun", -EIO);
663 		return IRQ_HANDLED;
664 	}
665 
666 	if (irq_status & SSSR_TINT) {
667 		pxa2xx_spi_write(drv_data, SSSR, SSSR_TINT);
668 		if (drv_data->read(drv_data)) {
669 			int_transfer_complete(drv_data);
670 			return IRQ_HANDLED;
671 		}
672 	}
673 
674 	/* Drain Rx FIFO, Fill Tx FIFO and prevent overruns */
675 	do {
676 		if (drv_data->read(drv_data)) {
677 			int_transfer_complete(drv_data);
678 			return IRQ_HANDLED;
679 		}
680 	} while (drv_data->write(drv_data));
681 
682 	if (drv_data->read(drv_data)) {
683 		int_transfer_complete(drv_data);
684 		return IRQ_HANDLED;
685 	}
686 
687 	if (drv_data->tx == drv_data->tx_end) {
688 		u32 bytes_left;
689 		u32 sccr1_reg;
690 
691 		sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
692 		sccr1_reg &= ~SSCR1_TIE;
693 
694 		/*
695 		 * PXA25x_SSP has no timeout, set up Rx threshold for
696 		 * the remaining Rx bytes.
697 		 */
698 		if (pxa25x_ssp_comp(drv_data)) {
699 			u32 rx_thre;
700 
701 			pxa2xx_spi_clear_rx_thre(drv_data, &sccr1_reg);
702 
703 			bytes_left = drv_data->rx_end - drv_data->rx;
704 			switch (drv_data->n_bytes) {
705 			case 4:
706 				bytes_left >>= 2;
707 				break;
708 			case 2:
709 				bytes_left >>= 1;
710 				break;
711 			}
712 
713 			rx_thre = pxa2xx_spi_get_rx_default_thre(drv_data);
714 			if (rx_thre > bytes_left)
715 				rx_thre = bytes_left;
716 
717 			pxa2xx_spi_set_rx_thre(drv_data, &sccr1_reg, rx_thre);
718 		}
719 		pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
720 	}
721 
722 	/* We did something */
723 	return IRQ_HANDLED;
724 }
725 
726 static void handle_bad_msg(struct driver_data *drv_data)
727 {
728 	int_stop_and_reset(drv_data);
729 	pxa2xx_spi_off(drv_data);
730 
731 	dev_err(drv_data->ssp->dev, "bad message state in interrupt handler\n");
732 }
733 
734 static irqreturn_t ssp_int(int irq, void *dev_id)
735 {
736 	struct driver_data *drv_data = dev_id;
737 	u32 sccr1_reg;
738 	u32 mask = drv_data->mask_sr;
739 	u32 status;
740 
741 	/*
742 	 * The IRQ might be shared with other peripherals so we must first
743 	 * check that are we RPM suspended or not. If we are we assume that
744 	 * the IRQ was not for us (we shouldn't be RPM suspended when the
745 	 * interrupt is enabled).
746 	 */
747 	if (pm_runtime_suspended(drv_data->ssp->dev))
748 		return IRQ_NONE;
749 
750 	/*
751 	 * If the device is not yet in RPM suspended state and we get an
752 	 * interrupt that is meant for another device, check if status bits
753 	 * are all set to one. That means that the device is already
754 	 * powered off.
755 	 */
756 	status = pxa2xx_spi_read(drv_data, SSSR);
757 	if (status == ~0)
758 		return IRQ_NONE;
759 
760 	sccr1_reg = pxa2xx_spi_read(drv_data, SSCR1);
761 
762 	/* Ignore possible writes if we don't need to write */
763 	if (!(sccr1_reg & SSCR1_TIE))
764 		mask &= ~SSSR_TFS;
765 
766 	/* Ignore RX timeout interrupt if it is disabled */
767 	if (!(sccr1_reg & SSCR1_TINTE))
768 		mask &= ~SSSR_TINT;
769 
770 	if (!(status & mask))
771 		return IRQ_NONE;
772 
773 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg & ~drv_data->int_cr1);
774 	pxa2xx_spi_write(drv_data, SSCR1, sccr1_reg);
775 
776 	if (!drv_data->controller->cur_msg) {
777 		handle_bad_msg(drv_data);
778 		/* Never fail */
779 		return IRQ_HANDLED;
780 	}
781 
782 	return drv_data->transfer_handler(drv_data);
783 }
784 
785 /*
786  * The Quark SPI has an additional 24 bit register (DDS_CLK_RATE) to multiply
787  * input frequency by fractions of 2^24. It also has a divider by 5.
788  *
789  * There are formulas to get baud rate value for given input frequency and
790  * divider parameters, such as DDS_CLK_RATE and SCR:
791  *
792  * Fsys = 200MHz
793  *
794  * Fssp = Fsys * DDS_CLK_RATE / 2^24			(1)
795  * Baud rate = Fsclk = Fssp / (2 * (SCR + 1))		(2)
796  *
797  * DDS_CLK_RATE either 2^n or 2^n / 5.
798  * SCR is in range 0 .. 255
799  *
800  * Divisor = 5^i * 2^j * 2 * k
801  *       i = [0, 1]      i = 1 iff j = 0 or j > 3
802  *       j = [0, 23]     j = 0 iff i = 1
803  *       k = [1, 256]
804  * Special case: j = 0, i = 1: Divisor = 2 / 5
805  *
806  * Accordingly to the specification the recommended values for DDS_CLK_RATE
807  * are:
808  *	Case 1:		2^n, n = [0, 23]
809  *	Case 2:		2^24 * 2 / 5 (0x666666)
810  *	Case 3:		less than or equal to 2^24 / 5 / 16 (0x33333)
811  *
812  * In all cases the lowest possible value is better.
813  *
814  * The function calculates parameters for all cases and chooses the one closest
815  * to the asked baud rate.
816  */
817 static unsigned int quark_x1000_get_clk_div(int rate, u32 *dds)
818 {
819 	unsigned long xtal = 200000000;
820 	unsigned long fref = xtal / 2;		/* mandatory division by 2,
821 						   see (2) */
822 						/* case 3 */
823 	unsigned long fref1 = fref / 2;		/* case 1 */
824 	unsigned long fref2 = fref * 2 / 5;	/* case 2 */
825 	unsigned long scale;
826 	unsigned long q, q1, q2;
827 	long r, r1, r2;
828 	u32 mul;
829 
830 	/* Case 1 */
831 
832 	/* Set initial value for DDS_CLK_RATE */
833 	mul = (1 << 24) >> 1;
834 
835 	/* Calculate initial quot */
836 	q1 = DIV_ROUND_UP(fref1, rate);
837 
838 	/* Scale q1 if it's too big */
839 	if (q1 > 256) {
840 		/* Scale q1 to range [1, 512] */
841 		scale = fls_long(q1 - 1);
842 		if (scale > 9) {
843 			q1 >>= scale - 9;
844 			mul >>= scale - 9;
845 		}
846 
847 		/* Round the result if we have a remainder */
848 		q1 += q1 & 1;
849 	}
850 
851 	/* Decrease DDS_CLK_RATE as much as we can without loss in precision */
852 	scale = __ffs(q1);
853 	q1 >>= scale;
854 	mul >>= scale;
855 
856 	/* Get the remainder */
857 	r1 = abs(fref1 / (1 << (24 - fls_long(mul))) / q1 - rate);
858 
859 	/* Case 2 */
860 
861 	q2 = DIV_ROUND_UP(fref2, rate);
862 	r2 = abs(fref2 / q2 - rate);
863 
864 	/*
865 	 * Choose the best between two: less remainder we have the better. We
866 	 * can't go case 2 if q2 is greater than 256 since SCR register can
867 	 * hold only values 0 .. 255.
868 	 */
869 	if (r2 >= r1 || q2 > 256) {
870 		/* case 1 is better */
871 		r = r1;
872 		q = q1;
873 	} else {
874 		/* case 2 is better */
875 		r = r2;
876 		q = q2;
877 		mul = (1 << 24) * 2 / 5;
878 	}
879 
880 	/* Check case 3 only if the divisor is big enough */
881 	if (fref / rate >= 80) {
882 		u64 fssp;
883 		u32 m;
884 
885 		/* Calculate initial quot */
886 		q1 = DIV_ROUND_UP(fref, rate);
887 		m = (1 << 24) / q1;
888 
889 		/* Get the remainder */
890 		fssp = (u64)fref * m;
891 		do_div(fssp, 1 << 24);
892 		r1 = abs(fssp - rate);
893 
894 		/* Choose this one if it suits better */
895 		if (r1 < r) {
896 			/* case 3 is better */
897 			q = 1;
898 			mul = m;
899 		}
900 	}
901 
902 	*dds = mul;
903 	return q - 1;
904 }
905 
906 static unsigned int ssp_get_clk_div(struct driver_data *drv_data, int rate)
907 {
908 	unsigned long ssp_clk = drv_data->controller->max_speed_hz;
909 	const struct ssp_device *ssp = drv_data->ssp;
910 
911 	rate = min_t(int, ssp_clk, rate);
912 
913 	/*
914 	 * Calculate the divisor for the SCR (Serial Clock Rate), avoiding
915 	 * that the SSP transmission rate can be greater than the device rate.
916 	 */
917 	if (ssp->type == PXA25x_SSP || ssp->type == CE4100_SSP)
918 		return (DIV_ROUND_UP(ssp_clk, 2 * rate) - 1) & 0xff;
919 	else
920 		return (DIV_ROUND_UP(ssp_clk, rate) - 1)  & 0xfff;
921 }
922 
923 static unsigned int pxa2xx_ssp_get_clk_div(struct driver_data *drv_data,
924 					   int rate)
925 {
926 	struct chip_data *chip =
927 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
928 	unsigned int clk_div;
929 
930 	switch (drv_data->ssp_type) {
931 	case QUARK_X1000_SSP:
932 		clk_div = quark_x1000_get_clk_div(rate, &chip->dds_rate);
933 		break;
934 	default:
935 		clk_div = ssp_get_clk_div(drv_data, rate);
936 		break;
937 	}
938 	return clk_div << 8;
939 }
940 
941 static bool pxa2xx_spi_can_dma(struct spi_controller *controller,
942 			       struct spi_device *spi,
943 			       struct spi_transfer *xfer)
944 {
945 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
946 
947 	return drv_data->controller_info->enable_dma &&
948 	       xfer->len <= MAX_DMA_LEN &&
949 	       xfer->len >= drv_data->controller_info->dma_burst_size;
950 }
951 
952 static int pxa2xx_spi_transfer_one(struct spi_controller *controller,
953 				   struct spi_device *spi,
954 				   struct spi_transfer *transfer)
955 {
956 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
957 	struct chip_data *chip = spi_get_ctldata(spi);
958 	u32 change_mask = pxa2xx_spi_get_ssrc1_change_mask(drv_data);
959 	u32 dma_thresh;
960 	u32 clk_div;
961 	u8 bits;
962 	u32 speed;
963 	u32 cr0;
964 	u32 cr1;
965 	int err;
966 	int dma_mapped;
967 
968 	/* Check if we can DMA this transfer */
969 	if (transfer->len > MAX_DMA_LEN && drv_data->controller_info->enable_dma) {
970 		/* Warn ... we force this to PIO mode */
971 		dev_warn_ratelimited(&spi->dev,
972 				     "DMA disabled for transfer length %u greater than %d\n",
973 				     transfer->len, MAX_DMA_LEN);
974 	}
975 
976 	/* Setup the transfer state based on the type of transfer */
977 	if (pxa2xx_spi_flush(drv_data) == 0) {
978 		dev_err(&spi->dev, "Flush failed\n");
979 		return -EIO;
980 	}
981 	drv_data->tx = (void *)transfer->tx_buf;
982 	drv_data->tx_end = drv_data->tx + transfer->len;
983 	drv_data->rx = transfer->rx_buf;
984 	drv_data->rx_end = drv_data->rx + transfer->len;
985 
986 	/* Change speed and bit per word on a per transfer */
987 	bits = transfer->bits_per_word;
988 	speed = transfer->speed_hz;
989 
990 	clk_div = pxa2xx_ssp_get_clk_div(drv_data, speed);
991 
992 	if (bits <= 8) {
993 		drv_data->n_bytes = 1;
994 		drv_data->read = drv_data->rx ? u8_reader : null_reader;
995 		drv_data->write = drv_data->tx ? u8_writer : null_writer;
996 	} else if (bits <= 16) {
997 		drv_data->n_bytes = 2;
998 		drv_data->read = drv_data->rx ? u16_reader : null_reader;
999 		drv_data->write = drv_data->tx ? u16_writer : null_writer;
1000 	} else if (bits <= 32) {
1001 		drv_data->n_bytes = 4;
1002 		drv_data->read = drv_data->rx ? u32_reader : null_reader;
1003 		drv_data->write = drv_data->tx ? u32_writer : null_writer;
1004 	}
1005 
1006 	dma_thresh = SSCR1_RxTresh(RX_THRESH_DFLT) | SSCR1_TxTresh(TX_THRESH_DFLT);
1007 	dma_mapped = controller->can_dma &&
1008 		     controller->can_dma(controller, spi, transfer) &&
1009 		     controller->cur_msg_mapped;
1010 	if (dma_mapped) {
1011 
1012 		/* Ensure we have the correct interrupt handler */
1013 		drv_data->transfer_handler = pxa2xx_spi_dma_transfer;
1014 
1015 		err = pxa2xx_spi_dma_prepare(drv_data, transfer);
1016 		if (err)
1017 			return err;
1018 
1019 		/* Clear status and start DMA engine */
1020 		cr1 = chip->cr1 | dma_thresh | drv_data->dma_cr1;
1021 		pxa2xx_spi_write(drv_data, SSSR, drv_data->clear_sr);
1022 
1023 		pxa2xx_spi_dma_start(drv_data);
1024 	} else {
1025 		/* Ensure we have the correct interrupt handler	*/
1026 		drv_data->transfer_handler = interrupt_transfer;
1027 
1028 		/* Clear status  */
1029 		cr1 = chip->cr1 | chip->threshold | drv_data->int_cr1;
1030 		write_SSSR_CS(drv_data, drv_data->clear_sr);
1031 	}
1032 
1033 	/* NOTE:  PXA25x_SSP _could_ use external clocking ... */
1034 	cr0 = pxa2xx_configure_sscr0(drv_data, clk_div, bits);
1035 	if (!pxa25x_ssp_comp(drv_data))
1036 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1037 			controller->max_speed_hz
1038 				/ (1 + ((cr0 & SSCR0_SCR(0xfff)) >> 8)),
1039 			dma_mapped ? "DMA" : "PIO");
1040 	else
1041 		dev_dbg(&spi->dev, "%u Hz actual, %s\n",
1042 			controller->max_speed_hz / 2
1043 				/ (1 + ((cr0 & SSCR0_SCR(0x0ff)) >> 8)),
1044 			dma_mapped ? "DMA" : "PIO");
1045 
1046 	if (is_lpss_ssp(drv_data)) {
1047 		pxa2xx_spi_update(drv_data, SSIRF, GENMASK(7, 0), chip->lpss_rx_threshold);
1048 		pxa2xx_spi_update(drv_data, SSITF, GENMASK(15, 0), chip->lpss_tx_threshold);
1049 	}
1050 
1051 	if (is_mrfld_ssp(drv_data)) {
1052 		u32 mask = SFIFOTT_RFT | SFIFOTT_TFT;
1053 		u32 thresh = 0;
1054 
1055 		thresh |= SFIFOTT_RxThresh(chip->lpss_rx_threshold);
1056 		thresh |= SFIFOTT_TxThresh(chip->lpss_tx_threshold);
1057 
1058 		pxa2xx_spi_update(drv_data, SFIFOTT, mask, thresh);
1059 	}
1060 
1061 	if (is_quark_x1000_ssp(drv_data))
1062 		pxa2xx_spi_update(drv_data, DDS_RATE, GENMASK(23, 0), chip->dds_rate);
1063 
1064 	/* Stop the SSP */
1065 	if (!is_mmp2_ssp(drv_data))
1066 		pxa_ssp_disable(drv_data->ssp);
1067 
1068 	if (!pxa25x_ssp_comp(drv_data))
1069 		pxa2xx_spi_write(drv_data, SSTO, TIMOUT_DFLT);
1070 
1071 	/* First set CR1 without interrupt and service enables */
1072 	pxa2xx_spi_update(drv_data, SSCR1, change_mask, cr1);
1073 
1074 	/* See if we need to reload the configuration registers */
1075 	pxa2xx_spi_update(drv_data, SSCR0, GENMASK(31, 0), cr0);
1076 
1077 	/* Restart the SSP */
1078 	pxa_ssp_enable(drv_data->ssp);
1079 
1080 	if (is_mmp2_ssp(drv_data)) {
1081 		u8 tx_level = read_SSSR_bits(drv_data, SSSR_TFL_MASK) >> 8;
1082 
1083 		if (tx_level) {
1084 			/* On MMP2, flipping SSE doesn't to empty Tx FIFO. */
1085 			dev_warn(&spi->dev, "%u bytes of garbage in Tx FIFO!\n", tx_level);
1086 			if (tx_level > transfer->len)
1087 				tx_level = transfer->len;
1088 			drv_data->tx += tx_level;
1089 		}
1090 	}
1091 
1092 	if (spi_controller_is_target(controller)) {
1093 		while (drv_data->write(drv_data))
1094 			;
1095 		if (drv_data->gpiod_ready) {
1096 			gpiod_set_value(drv_data->gpiod_ready, 1);
1097 			udelay(1);
1098 			gpiod_set_value(drv_data->gpiod_ready, 0);
1099 		}
1100 	}
1101 
1102 	/*
1103 	 * Release the data by enabling service requests and interrupts,
1104 	 * without changing any mode bits.
1105 	 */
1106 	pxa2xx_spi_write(drv_data, SSCR1, cr1);
1107 
1108 	return 1;
1109 }
1110 
1111 static int pxa2xx_spi_target_abort(struct spi_controller *controller)
1112 {
1113 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1114 
1115 	int_error_stop(drv_data, "transfer aborted", -EINTR);
1116 
1117 	return 0;
1118 }
1119 
1120 static void pxa2xx_spi_handle_err(struct spi_controller *controller,
1121 				 struct spi_message *msg)
1122 {
1123 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1124 
1125 	int_stop_and_reset(drv_data);
1126 
1127 	/* Disable the SSP */
1128 	pxa2xx_spi_off(drv_data);
1129 
1130 	/*
1131 	 * Stop the DMA if running. Note DMA callback handler may have unset
1132 	 * the dma_running already, which is fine as stopping is not needed
1133 	 * then but we shouldn't rely this flag for anything else than
1134 	 * stopping. For instance to differentiate between PIO and DMA
1135 	 * transfers.
1136 	 */
1137 	if (atomic_read(&drv_data->dma_running))
1138 		pxa2xx_spi_dma_stop(drv_data);
1139 }
1140 
1141 static int pxa2xx_spi_unprepare_transfer(struct spi_controller *controller)
1142 {
1143 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1144 
1145 	/* Disable the SSP now */
1146 	pxa2xx_spi_off(drv_data);
1147 
1148 	return 0;
1149 }
1150 
1151 static int setup(struct spi_device *spi)
1152 {
1153 	struct chip_data *chip;
1154 	const struct lpss_config *config;
1155 	struct driver_data *drv_data =
1156 		spi_controller_get_devdata(spi->controller);
1157 	uint tx_thres, tx_hi_thres, rx_thres;
1158 
1159 	switch (drv_data->ssp_type) {
1160 	case QUARK_X1000_SSP:
1161 		tx_thres = TX_THRESH_QUARK_X1000_DFLT;
1162 		tx_hi_thres = 0;
1163 		rx_thres = RX_THRESH_QUARK_X1000_DFLT;
1164 		break;
1165 	case MRFLD_SSP:
1166 		tx_thres = TX_THRESH_MRFLD_DFLT;
1167 		tx_hi_thres = 0;
1168 		rx_thres = RX_THRESH_MRFLD_DFLT;
1169 		break;
1170 	case CE4100_SSP:
1171 		tx_thres = TX_THRESH_CE4100_DFLT;
1172 		tx_hi_thres = 0;
1173 		rx_thres = RX_THRESH_CE4100_DFLT;
1174 		break;
1175 	case LPSS_LPT_SSP:
1176 	case LPSS_BYT_SSP:
1177 	case LPSS_BSW_SSP:
1178 	case LPSS_SPT_SSP:
1179 	case LPSS_BXT_SSP:
1180 	case LPSS_CNL_SSP:
1181 		config = lpss_get_config(drv_data);
1182 		tx_thres = config->tx_threshold_lo;
1183 		tx_hi_thres = config->tx_threshold_hi;
1184 		rx_thres = config->rx_threshold;
1185 		break;
1186 	default:
1187 		tx_hi_thres = 0;
1188 		if (spi_controller_is_target(drv_data->controller)) {
1189 			tx_thres = 1;
1190 			rx_thres = 2;
1191 		} else {
1192 			tx_thres = TX_THRESH_DFLT;
1193 			rx_thres = RX_THRESH_DFLT;
1194 		}
1195 		break;
1196 	}
1197 
1198 	if (drv_data->ssp_type == CE4100_SSP) {
1199 		if (spi_get_chipselect(spi, 0) > 4) {
1200 			dev_err(&spi->dev, "failed setup: cs number must not be > 4.\n");
1201 			return -EINVAL;
1202 		}
1203 	}
1204 
1205 	/* Only allocate on the first setup */
1206 	chip = spi_get_ctldata(spi);
1207 	if (!chip) {
1208 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1209 		if (!chip)
1210 			return -ENOMEM;
1211 	}
1212 
1213 	chip->cr1 = 0;
1214 	if (spi_controller_is_target(drv_data->controller)) {
1215 		chip->cr1 |= SSCR1_SCFR;
1216 		chip->cr1 |= SSCR1_SCLKDIR;
1217 		chip->cr1 |= SSCR1_SFRMDIR;
1218 		chip->cr1 |= SSCR1_SPH;
1219 	}
1220 
1221 	if (is_lpss_ssp(drv_data)) {
1222 		chip->lpss_rx_threshold = SSIRF_RxThresh(rx_thres);
1223 		chip->lpss_tx_threshold = SSITF_TxLoThresh(tx_thres) |
1224 					  SSITF_TxHiThresh(tx_hi_thres);
1225 	}
1226 
1227 	if (is_mrfld_ssp(drv_data)) {
1228 		chip->lpss_rx_threshold = rx_thres;
1229 		chip->lpss_tx_threshold = tx_thres;
1230 	}
1231 
1232 	switch (drv_data->ssp_type) {
1233 	case QUARK_X1000_SSP:
1234 		chip->threshold = (QUARK_X1000_SSCR1_RxTresh(rx_thres)
1235 				   & QUARK_X1000_SSCR1_RFT)
1236 				   | (QUARK_X1000_SSCR1_TxTresh(tx_thres)
1237 				   & QUARK_X1000_SSCR1_TFT);
1238 		break;
1239 	case CE4100_SSP:
1240 		chip->threshold = (CE4100_SSCR1_RxTresh(rx_thres) & CE4100_SSCR1_RFT) |
1241 			(CE4100_SSCR1_TxTresh(tx_thres) & CE4100_SSCR1_TFT);
1242 		break;
1243 	default:
1244 		chip->threshold = (SSCR1_RxTresh(rx_thres) & SSCR1_RFT) |
1245 			(SSCR1_TxTresh(tx_thres) & SSCR1_TFT);
1246 		break;
1247 	}
1248 
1249 	chip->cr1 &= ~(SSCR1_SPO | SSCR1_SPH);
1250 	chip->cr1 |= ((spi->mode & SPI_CPHA) ? SSCR1_SPH : 0) |
1251 		     ((spi->mode & SPI_CPOL) ? SSCR1_SPO : 0);
1252 
1253 	if (spi->mode & SPI_LOOP)
1254 		chip->cr1 |= SSCR1_LBM;
1255 
1256 	spi_set_ctldata(spi, chip);
1257 
1258 	return 0;
1259 }
1260 
1261 static void cleanup(struct spi_device *spi)
1262 {
1263 	struct chip_data *chip = spi_get_ctldata(spi);
1264 
1265 	kfree(chip);
1266 }
1267 
1268 static bool pxa2xx_spi_idma_filter(struct dma_chan *chan, void *param)
1269 {
1270 	return param == chan->device->dev;
1271 }
1272 
1273 static int
1274 pxa2xx_spi_init_ssp(struct platform_device *pdev, struct ssp_device *ssp, enum pxa_ssp_type type)
1275 {
1276 	struct device *dev = &pdev->dev;
1277 	struct resource *res;
1278 	int status;
1279 	u64 uid;
1280 
1281 	ssp->mmio_base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
1282 	if (IS_ERR(ssp->mmio_base))
1283 		return PTR_ERR(ssp->mmio_base);
1284 
1285 	ssp->phys_base = res->start;
1286 
1287 	ssp->clk = devm_clk_get(dev, NULL);
1288 	if (IS_ERR(ssp->clk))
1289 		return PTR_ERR(ssp->clk);
1290 
1291 	ssp->irq = platform_get_irq(pdev, 0);
1292 	if (ssp->irq < 0)
1293 		return ssp->irq;
1294 
1295 	ssp->type = type;
1296 	ssp->dev = dev;
1297 
1298 	status = acpi_dev_uid_to_integer(ACPI_COMPANION(dev), &uid);
1299 	if (status)
1300 		ssp->port_id = -1;
1301 	else
1302 		ssp->port_id = uid;
1303 
1304 	return 0;
1305 }
1306 
1307 static struct pxa2xx_spi_controller *
1308 pxa2xx_spi_init_pdata(struct platform_device *pdev)
1309 {
1310 	struct pxa2xx_spi_controller *pdata;
1311 	struct device *dev = &pdev->dev;
1312 	struct device *parent = dev->parent;
1313 	enum pxa_ssp_type type = SSP_UNDEFINED;
1314 	struct ssp_device *ssp = NULL;
1315 	const void *match;
1316 	bool is_lpss_priv;
1317 	u32 num_cs = 1;
1318 	int status;
1319 
1320 	is_lpss_priv = platform_get_resource_byname(pdev, IORESOURCE_MEM, "lpss_priv");
1321 
1322 	match = device_get_match_data(dev);
1323 	if (match)
1324 		type = (uintptr_t)match;
1325 	else if (is_lpss_priv) {
1326 		u32 value;
1327 
1328 		status = device_property_read_u32(dev, "intel,spi-pxa2xx-type", &value);
1329 		if (status)
1330 			return ERR_PTR(status);
1331 
1332 		type = (enum pxa_ssp_type)value;
1333 	} else {
1334 		ssp = pxa_ssp_request(pdev->id, pdev->name);
1335 		if (ssp) {
1336 			type = ssp->type;
1337 			pxa_ssp_free(ssp);
1338 		}
1339 	}
1340 
1341 	/* Validate the SSP type correctness */
1342 	if (!(type > SSP_UNDEFINED && type < SSP_MAX))
1343 		return ERR_PTR(-EINVAL);
1344 
1345 	pdata = devm_kzalloc(dev, sizeof(*pdata), GFP_KERNEL);
1346 	if (!pdata)
1347 		return ERR_PTR(-ENOMEM);
1348 
1349 	/* Platforms with iDMA 64-bit */
1350 	if (is_lpss_priv) {
1351 		pdata->tx_param = parent;
1352 		pdata->rx_param = parent;
1353 		pdata->dma_filter = pxa2xx_spi_idma_filter;
1354 	}
1355 
1356 	/* Read number of chip select pins, if provided */
1357 	device_property_read_u32(dev, "num-cs", &num_cs);
1358 
1359 	pdata->num_chipselect = num_cs;
1360 	pdata->is_target = device_property_read_bool(dev, "spi-slave");
1361 	pdata->enable_dma = true;
1362 	pdata->dma_burst_size = 1;
1363 
1364 	/* If SSP has been already enumerated, use it */
1365 	if (ssp)
1366 		return pdata;
1367 
1368 	status = pxa2xx_spi_init_ssp(pdev, &pdata->ssp, type);
1369 	if (status)
1370 		return ERR_PTR(status);
1371 
1372 	return pdata;
1373 }
1374 
1375 static int pxa2xx_spi_fw_translate_cs(struct spi_controller *controller,
1376 				      unsigned int cs)
1377 {
1378 	struct driver_data *drv_data = spi_controller_get_devdata(controller);
1379 
1380 	if (has_acpi_companion(drv_data->ssp->dev)) {
1381 		switch (drv_data->ssp_type) {
1382 		/*
1383 		 * For Atoms the ACPI DeviceSelection used by the Windows
1384 		 * driver starts from 1 instead of 0 so translate it here
1385 		 * to match what Linux expects.
1386 		 */
1387 		case LPSS_BYT_SSP:
1388 		case LPSS_BSW_SSP:
1389 			return cs - 1;
1390 
1391 		default:
1392 			break;
1393 		}
1394 	}
1395 
1396 	return cs;
1397 }
1398 
1399 static size_t pxa2xx_spi_max_dma_transfer_size(struct spi_device *spi)
1400 {
1401 	return MAX_DMA_LEN;
1402 }
1403 
1404 static int pxa2xx_spi_probe(struct platform_device *pdev)
1405 {
1406 	struct device *dev = &pdev->dev;
1407 	struct pxa2xx_spi_controller *platform_info;
1408 	struct spi_controller *controller;
1409 	struct driver_data *drv_data;
1410 	struct ssp_device *ssp;
1411 	const struct lpss_config *config;
1412 	int status;
1413 	u32 tmp;
1414 
1415 	platform_info = dev_get_platdata(dev);
1416 	if (!platform_info) {
1417 		platform_info = pxa2xx_spi_init_pdata(pdev);
1418 		if (IS_ERR(platform_info))
1419 			return dev_err_probe(dev, PTR_ERR(platform_info), "missing platform data\n");
1420 	}
1421 	dev_dbg(dev, "DMA burst size set to %u\n", platform_info->dma_burst_size);
1422 
1423 	ssp = pxa_ssp_request(pdev->id, pdev->name);
1424 	if (!ssp)
1425 		ssp = &platform_info->ssp;
1426 
1427 	if (!ssp->mmio_base)
1428 		return dev_err_probe(dev, -ENODEV, "failed to get SSP\n");
1429 
1430 	if (platform_info->is_target)
1431 		controller = devm_spi_alloc_target(dev, sizeof(*drv_data));
1432 	else
1433 		controller = devm_spi_alloc_host(dev, sizeof(*drv_data));
1434 
1435 	if (!controller) {
1436 		status = dev_err_probe(dev, -ENOMEM, "cannot alloc spi_controller\n");
1437 		goto out_error_controller_alloc;
1438 	}
1439 	drv_data = spi_controller_get_devdata(controller);
1440 	drv_data->controller = controller;
1441 	drv_data->controller_info = platform_info;
1442 	drv_data->ssp = ssp;
1443 
1444 	device_set_node(&controller->dev, dev_fwnode(dev));
1445 
1446 	/* The spi->mode bits understood by this driver: */
1447 	controller->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1448 
1449 	controller->bus_num = ssp->port_id;
1450 	controller->dma_alignment = DMA_ALIGNMENT;
1451 	controller->cleanup = cleanup;
1452 	controller->setup = setup;
1453 	controller->set_cs = pxa2xx_spi_set_cs;
1454 	controller->transfer_one = pxa2xx_spi_transfer_one;
1455 	controller->target_abort = pxa2xx_spi_target_abort;
1456 	controller->handle_err = pxa2xx_spi_handle_err;
1457 	controller->unprepare_transfer_hardware = pxa2xx_spi_unprepare_transfer;
1458 	controller->fw_translate_cs = pxa2xx_spi_fw_translate_cs;
1459 	controller->auto_runtime_pm = true;
1460 	controller->flags = SPI_CONTROLLER_MUST_RX | SPI_CONTROLLER_MUST_TX;
1461 
1462 	drv_data->ssp_type = ssp->type;
1463 
1464 	if (pxa25x_ssp_comp(drv_data)) {
1465 		switch (drv_data->ssp_type) {
1466 		case QUARK_X1000_SSP:
1467 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1468 			break;
1469 		default:
1470 			controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 16);
1471 			break;
1472 		}
1473 
1474 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE;
1475 		drv_data->dma_cr1 = 0;
1476 		drv_data->clear_sr = SSSR_ROR;
1477 		drv_data->mask_sr = SSSR_RFS | SSSR_TFS | SSSR_ROR;
1478 	} else {
1479 		controller->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1480 		drv_data->int_cr1 = SSCR1_TIE | SSCR1_RIE | SSCR1_TINTE;
1481 		drv_data->dma_cr1 = DEFAULT_DMA_CR1;
1482 		drv_data->clear_sr = SSSR_ROR | SSSR_TINT;
1483 		drv_data->mask_sr = SSSR_TINT | SSSR_RFS | SSSR_TFS
1484 						| SSSR_ROR | SSSR_TUR;
1485 	}
1486 
1487 	status = request_irq(ssp->irq, ssp_int, IRQF_SHARED, dev_name(dev),
1488 			drv_data);
1489 	if (status < 0) {
1490 		dev_err_probe(dev, status, "cannot get IRQ %d\n", ssp->irq);
1491 		goto out_error_controller_alloc;
1492 	}
1493 
1494 	/* Setup DMA if requested */
1495 	if (platform_info->enable_dma) {
1496 		status = pxa2xx_spi_dma_setup(drv_data);
1497 		if (status) {
1498 			dev_warn(dev, "no DMA channels available, using PIO\n");
1499 			platform_info->enable_dma = false;
1500 		} else {
1501 			controller->can_dma = pxa2xx_spi_can_dma;
1502 			controller->max_dma_len = MAX_DMA_LEN;
1503 			controller->max_transfer_size =
1504 				pxa2xx_spi_max_dma_transfer_size;
1505 		}
1506 	}
1507 
1508 	/* Enable SOC clock */
1509 	status = clk_prepare_enable(ssp->clk);
1510 	if (status)
1511 		goto out_error_dma_irq_alloc;
1512 
1513 	controller->max_speed_hz = clk_get_rate(ssp->clk);
1514 	/*
1515 	 * Set minimum speed for all other platforms than Intel Quark which is
1516 	 * able do under 1 Hz transfers.
1517 	 */
1518 	if (!pxa25x_ssp_comp(drv_data))
1519 		controller->min_speed_hz =
1520 			DIV_ROUND_UP(controller->max_speed_hz, 4096);
1521 	else if (!is_quark_x1000_ssp(drv_data))
1522 		controller->min_speed_hz =
1523 			DIV_ROUND_UP(controller->max_speed_hz, 512);
1524 
1525 	pxa_ssp_disable(ssp);
1526 
1527 	/* Load default SSP configuration */
1528 	switch (drv_data->ssp_type) {
1529 	case QUARK_X1000_SSP:
1530 		tmp = QUARK_X1000_SSCR1_RxTresh(RX_THRESH_QUARK_X1000_DFLT) |
1531 		      QUARK_X1000_SSCR1_TxTresh(TX_THRESH_QUARK_X1000_DFLT);
1532 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1533 
1534 		/* Using the Motorola SPI protocol and use 8 bit frame */
1535 		tmp = QUARK_X1000_SSCR0_Motorola | QUARK_X1000_SSCR0_DataSize(8);
1536 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1537 		break;
1538 	case CE4100_SSP:
1539 		tmp = CE4100_SSCR1_RxTresh(RX_THRESH_CE4100_DFLT) |
1540 		      CE4100_SSCR1_TxTresh(TX_THRESH_CE4100_DFLT);
1541 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1542 		tmp = SSCR0_SCR(2) | SSCR0_Motorola | SSCR0_DataSize(8);
1543 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1544 		break;
1545 	default:
1546 
1547 		if (spi_controller_is_target(controller)) {
1548 			tmp = SSCR1_SCFR |
1549 			      SSCR1_SCLKDIR |
1550 			      SSCR1_SFRMDIR |
1551 			      SSCR1_RxTresh(2) |
1552 			      SSCR1_TxTresh(1) |
1553 			      SSCR1_SPH;
1554 		} else {
1555 			tmp = SSCR1_RxTresh(RX_THRESH_DFLT) |
1556 			      SSCR1_TxTresh(TX_THRESH_DFLT);
1557 		}
1558 		pxa2xx_spi_write(drv_data, SSCR1, tmp);
1559 		tmp = SSCR0_Motorola | SSCR0_DataSize(8);
1560 		if (!spi_controller_is_target(controller))
1561 			tmp |= SSCR0_SCR(2);
1562 		pxa2xx_spi_write(drv_data, SSCR0, tmp);
1563 		break;
1564 	}
1565 
1566 	if (!pxa25x_ssp_comp(drv_data))
1567 		pxa2xx_spi_write(drv_data, SSTO, 0);
1568 
1569 	if (!is_quark_x1000_ssp(drv_data))
1570 		pxa2xx_spi_write(drv_data, SSPSP, 0);
1571 
1572 	if (is_lpss_ssp(drv_data)) {
1573 		lpss_ssp_setup(drv_data);
1574 		config = lpss_get_config(drv_data);
1575 		if (config->reg_capabilities >= 0) {
1576 			tmp = __lpss_ssp_read_priv(drv_data,
1577 						   config->reg_capabilities);
1578 			tmp &= LPSS_CAPS_CS_EN_MASK;
1579 			tmp >>= LPSS_CAPS_CS_EN_SHIFT;
1580 			platform_info->num_chipselect = ffz(tmp);
1581 		} else if (config->cs_num) {
1582 			platform_info->num_chipselect = config->cs_num;
1583 		}
1584 	}
1585 	controller->num_chipselect = platform_info->num_chipselect;
1586 	controller->use_gpio_descriptors = true;
1587 
1588 	if (platform_info->is_target) {
1589 		drv_data->gpiod_ready = devm_gpiod_get_optional(dev,
1590 						"ready", GPIOD_OUT_LOW);
1591 		if (IS_ERR(drv_data->gpiod_ready)) {
1592 			status = PTR_ERR(drv_data->gpiod_ready);
1593 			goto out_error_clock_enabled;
1594 		}
1595 	}
1596 
1597 	pm_runtime_set_autosuspend_delay(&pdev->dev, 50);
1598 	pm_runtime_use_autosuspend(&pdev->dev);
1599 	pm_runtime_set_active(&pdev->dev);
1600 	pm_runtime_enable(&pdev->dev);
1601 
1602 	/* Register with the SPI framework */
1603 	platform_set_drvdata(pdev, drv_data);
1604 	status = spi_register_controller(controller);
1605 	if (status) {
1606 		dev_err_probe(dev, status, "problem registering SPI controller\n");
1607 		goto out_error_pm_runtime_enabled;
1608 	}
1609 
1610 	return status;
1611 
1612 out_error_pm_runtime_enabled:
1613 	pm_runtime_disable(&pdev->dev);
1614 
1615 out_error_clock_enabled:
1616 	clk_disable_unprepare(ssp->clk);
1617 
1618 out_error_dma_irq_alloc:
1619 	pxa2xx_spi_dma_release(drv_data);
1620 	free_irq(ssp->irq, drv_data);
1621 
1622 out_error_controller_alloc:
1623 	pxa_ssp_free(ssp);
1624 	return status;
1625 }
1626 
1627 static void pxa2xx_spi_remove(struct platform_device *pdev)
1628 {
1629 	struct driver_data *drv_data = platform_get_drvdata(pdev);
1630 	struct ssp_device *ssp = drv_data->ssp;
1631 
1632 	pm_runtime_get_sync(&pdev->dev);
1633 
1634 	spi_unregister_controller(drv_data->controller);
1635 
1636 	/* Disable the SSP at the peripheral and SOC level */
1637 	pxa_ssp_disable(ssp);
1638 	clk_disable_unprepare(ssp->clk);
1639 
1640 	/* Release DMA */
1641 	if (drv_data->controller_info->enable_dma)
1642 		pxa2xx_spi_dma_release(drv_data);
1643 
1644 	pm_runtime_put_noidle(&pdev->dev);
1645 	pm_runtime_disable(&pdev->dev);
1646 
1647 	/* Release IRQ */
1648 	free_irq(ssp->irq, drv_data);
1649 
1650 	/* Release SSP */
1651 	pxa_ssp_free(ssp);
1652 }
1653 
1654 static int pxa2xx_spi_suspend(struct device *dev)
1655 {
1656 	struct driver_data *drv_data = dev_get_drvdata(dev);
1657 	struct ssp_device *ssp = drv_data->ssp;
1658 	int status;
1659 
1660 	status = spi_controller_suspend(drv_data->controller);
1661 	if (status)
1662 		return status;
1663 
1664 	pxa_ssp_disable(ssp);
1665 
1666 	if (!pm_runtime_suspended(dev))
1667 		clk_disable_unprepare(ssp->clk);
1668 
1669 	return 0;
1670 }
1671 
1672 static int pxa2xx_spi_resume(struct device *dev)
1673 {
1674 	struct driver_data *drv_data = dev_get_drvdata(dev);
1675 	struct ssp_device *ssp = drv_data->ssp;
1676 	int status;
1677 
1678 	/* Enable the SSP clock */
1679 	if (!pm_runtime_suspended(dev)) {
1680 		status = clk_prepare_enable(ssp->clk);
1681 		if (status)
1682 			return status;
1683 	}
1684 
1685 	/* Start the queue running */
1686 	return spi_controller_resume(drv_data->controller);
1687 }
1688 
1689 static int pxa2xx_spi_runtime_suspend(struct device *dev)
1690 {
1691 	struct driver_data *drv_data = dev_get_drvdata(dev);
1692 
1693 	clk_disable_unprepare(drv_data->ssp->clk);
1694 	return 0;
1695 }
1696 
1697 static int pxa2xx_spi_runtime_resume(struct device *dev)
1698 {
1699 	struct driver_data *drv_data = dev_get_drvdata(dev);
1700 
1701 	return clk_prepare_enable(drv_data->ssp->clk);
1702 }
1703 
1704 static const struct dev_pm_ops pxa2xx_spi_pm_ops = {
1705 	SYSTEM_SLEEP_PM_OPS(pxa2xx_spi_suspend, pxa2xx_spi_resume)
1706 	RUNTIME_PM_OPS(pxa2xx_spi_runtime_suspend, pxa2xx_spi_runtime_resume, NULL)
1707 };
1708 
1709 static const struct acpi_device_id pxa2xx_spi_acpi_match[] = {
1710 	{ "80860F0E", LPSS_BYT_SSP },
1711 	{ "8086228E", LPSS_BSW_SSP },
1712 	{ "INT33C0", LPSS_LPT_SSP },
1713 	{ "INT33C1", LPSS_LPT_SSP },
1714 	{ "INT3430", LPSS_LPT_SSP },
1715 	{ "INT3431", LPSS_LPT_SSP },
1716 	{}
1717 };
1718 MODULE_DEVICE_TABLE(acpi, pxa2xx_spi_acpi_match);
1719 
1720 static const struct of_device_id pxa2xx_spi_of_match[] = {
1721 	{ .compatible = "marvell,mmp2-ssp", .data = (void *)MMP2_SSP },
1722 	{}
1723 };
1724 MODULE_DEVICE_TABLE(of, pxa2xx_spi_of_match);
1725 
1726 static struct platform_driver driver = {
1727 	.driver = {
1728 		.name	= "pxa2xx-spi",
1729 		.pm	= pm_ptr(&pxa2xx_spi_pm_ops),
1730 		.acpi_match_table = pxa2xx_spi_acpi_match,
1731 		.of_match_table = pxa2xx_spi_of_match,
1732 	},
1733 	.probe = pxa2xx_spi_probe,
1734 	.remove_new = pxa2xx_spi_remove,
1735 };
1736 
1737 static int __init pxa2xx_spi_init(void)
1738 {
1739 	return platform_driver_register(&driver);
1740 }
1741 subsys_initcall(pxa2xx_spi_init);
1742 
1743 static void __exit pxa2xx_spi_exit(void)
1744 {
1745 	platform_driver_unregister(&driver);
1746 }
1747 module_exit(pxa2xx_spi_exit);
1748 
1749 MODULE_SOFTDEP("pre: dw_dmac");
1750