xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision e5c86679d5e864947a52fb31e45a425dea3e7fa9)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
24 					     bool error)
25 {
26 	struct spi_message *msg = drv_data->master->cur_msg;
27 
28 	/*
29 	 * It is possible that one CPU is handling ROR interrupt and other
30 	 * just gets DMA completion. Calling pump_transfers() twice for the
31 	 * same transfer leads to problems thus we prevent concurrent calls
32 	 * by using ->dma_running.
33 	 */
34 	if (atomic_dec_and_test(&drv_data->dma_running)) {
35 		/*
36 		 * If the other CPU is still handling the ROR interrupt we
37 		 * might not know about the error yet. So we re-check the
38 		 * ROR bit here before we clear the status register.
39 		 */
40 		if (!error) {
41 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
42 				     & drv_data->mask_sr;
43 			error = status & SSSR_ROR;
44 		}
45 
46 		/* Clear status & disable interrupts */
47 		pxa2xx_spi_write(drv_data, SSCR1,
48 				 pxa2xx_spi_read(drv_data, SSCR1)
49 				 & ~drv_data->dma_cr1);
50 		write_SSSR_CS(drv_data, drv_data->clear_sr);
51 		if (!pxa25x_ssp_comp(drv_data))
52 			pxa2xx_spi_write(drv_data, SSTO, 0);
53 
54 		if (!error) {
55 			msg->actual_length += drv_data->len;
56 			msg->state = pxa2xx_spi_next_transfer(drv_data);
57 		} else {
58 			/* In case we got an error we disable the SSP now */
59 			pxa2xx_spi_write(drv_data, SSCR0,
60 					 pxa2xx_spi_read(drv_data, SSCR0)
61 					 & ~SSCR0_SSE);
62 
63 			msg->state = ERROR_STATE;
64 		}
65 
66 		tasklet_schedule(&drv_data->pump_transfers);
67 	}
68 }
69 
70 static void pxa2xx_spi_dma_callback(void *data)
71 {
72 	pxa2xx_spi_dma_transfer_complete(data, false);
73 }
74 
75 static struct dma_async_tx_descriptor *
76 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
77 			   enum dma_transfer_direction dir)
78 {
79 	struct chip_data *chip =
80 		spi_get_ctldata(drv_data->master->cur_msg->spi);
81 	struct spi_transfer *xfer = drv_data->cur_transfer;
82 	enum dma_slave_buswidth width;
83 	struct dma_slave_config cfg;
84 	struct dma_chan *chan;
85 	struct sg_table *sgt;
86 	int ret;
87 
88 	switch (drv_data->n_bytes) {
89 	case 1:
90 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
91 		break;
92 	case 2:
93 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
94 		break;
95 	default:
96 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
97 		break;
98 	}
99 
100 	memset(&cfg, 0, sizeof(cfg));
101 	cfg.direction = dir;
102 
103 	if (dir == DMA_MEM_TO_DEV) {
104 		cfg.dst_addr = drv_data->ssdr_physical;
105 		cfg.dst_addr_width = width;
106 		cfg.dst_maxburst = chip->dma_burst_size;
107 
108 		sgt = &xfer->tx_sg;
109 		chan = drv_data->master->dma_tx;
110 	} else {
111 		cfg.src_addr = drv_data->ssdr_physical;
112 		cfg.src_addr_width = width;
113 		cfg.src_maxburst = chip->dma_burst_size;
114 
115 		sgt = &xfer->rx_sg;
116 		chan = drv_data->master->dma_rx;
117 	}
118 
119 	ret = dmaengine_slave_config(chan, &cfg);
120 	if (ret) {
121 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
122 		return NULL;
123 	}
124 
125 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
126 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
127 }
128 
129 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
130 {
131 	u32 status;
132 
133 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
134 	if (status & SSSR_ROR) {
135 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
136 
137 		dmaengine_terminate_async(drv_data->master->dma_rx);
138 		dmaengine_terminate_async(drv_data->master->dma_tx);
139 
140 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
141 		return IRQ_HANDLED;
142 	}
143 
144 	return IRQ_NONE;
145 }
146 
147 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
148 {
149 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
150 	int err;
151 
152 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
153 	if (!tx_desc) {
154 		dev_err(&drv_data->pdev->dev,
155 			"failed to get DMA TX descriptor\n");
156 		err = -EBUSY;
157 		goto err_tx;
158 	}
159 
160 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
161 	if (!rx_desc) {
162 		dev_err(&drv_data->pdev->dev,
163 			"failed to get DMA RX descriptor\n");
164 		err = -EBUSY;
165 		goto err_rx;
166 	}
167 
168 	/* We are ready when RX completes */
169 	rx_desc->callback = pxa2xx_spi_dma_callback;
170 	rx_desc->callback_param = drv_data;
171 
172 	dmaengine_submit(rx_desc);
173 	dmaengine_submit(tx_desc);
174 	return 0;
175 
176 err_rx:
177 	dmaengine_terminate_async(drv_data->master->dma_tx);
178 err_tx:
179 	return err;
180 }
181 
182 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
183 {
184 	dma_async_issue_pending(drv_data->master->dma_rx);
185 	dma_async_issue_pending(drv_data->master->dma_tx);
186 
187 	atomic_set(&drv_data->dma_running, 1);
188 }
189 
190 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
191 {
192 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
193 	struct device *dev = &drv_data->pdev->dev;
194 	struct spi_master *master = drv_data->master;
195 	dma_cap_mask_t mask;
196 
197 	dma_cap_zero(mask);
198 	dma_cap_set(DMA_SLAVE, mask);
199 
200 	master->dma_tx = dma_request_slave_channel_compat(mask,
201 				pdata->dma_filter, pdata->tx_param, dev, "tx");
202 	if (!master->dma_tx)
203 		return -ENODEV;
204 
205 	master->dma_rx = dma_request_slave_channel_compat(mask,
206 				pdata->dma_filter, pdata->rx_param, dev, "rx");
207 	if (!master->dma_rx) {
208 		dma_release_channel(master->dma_tx);
209 		master->dma_tx = NULL;
210 		return -ENODEV;
211 	}
212 
213 	return 0;
214 }
215 
216 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
217 {
218 	struct spi_master *master = drv_data->master;
219 
220 	if (master->dma_rx) {
221 		dmaengine_terminate_sync(master->dma_rx);
222 		dma_release_channel(master->dma_rx);
223 		master->dma_rx = NULL;
224 	}
225 	if (master->dma_tx) {
226 		dmaengine_terminate_sync(master->dma_tx);
227 		dma_release_channel(master->dma_tx);
228 		master->dma_tx = NULL;
229 	}
230 }
231 
232 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
233 					   struct spi_device *spi,
234 					   u8 bits_per_word, u32 *burst_code,
235 					   u32 *threshold)
236 {
237 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
238 
239 	/*
240 	 * If the DMA burst size is given in chip_info we use that,
241 	 * otherwise we use the default. Also we use the default FIFO
242 	 * thresholds for now.
243 	 */
244 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
245 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
246 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
247 
248 	return 0;
249 }
250