xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision da1d9caf95def6f0320819cf941c9fd1069ba9e1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * PXA2xx SPI DMA engine support.
4  *
5  * Copyright (C) 2013, 2021 Intel Corporation
6  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
7  */
8 
9 #include <linux/device.h>
10 #include <linux/dma-mapping.h>
11 #include <linux/dmaengine.h>
12 #include <linux/scatterlist.h>
13 #include <linux/sizes.h>
14 
15 #include <linux/spi/pxa2xx_spi.h>
16 #include <linux/spi/spi.h>
17 
18 #include "spi-pxa2xx.h"
19 
20 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
21 					     bool error)
22 {
23 	struct spi_message *msg = drv_data->controller->cur_msg;
24 
25 	/*
26 	 * It is possible that one CPU is handling ROR interrupt and other
27 	 * just gets DMA completion. Calling pump_transfers() twice for the
28 	 * same transfer leads to problems thus we prevent concurrent calls
29 	 * by using dma_running.
30 	 */
31 	if (atomic_dec_and_test(&drv_data->dma_running)) {
32 		/*
33 		 * If the other CPU is still handling the ROR interrupt we
34 		 * might not know about the error yet. So we re-check the
35 		 * ROR bit here before we clear the status register.
36 		 */
37 		if (!error)
38 			error = read_SSSR_bits(drv_data, drv_data->mask_sr) & SSSR_ROR;
39 
40 		/* Clear status & disable interrupts */
41 		clear_SSCR1_bits(drv_data, drv_data->dma_cr1);
42 		write_SSSR_CS(drv_data, drv_data->clear_sr);
43 		if (!pxa25x_ssp_comp(drv_data))
44 			pxa2xx_spi_write(drv_data, SSTO, 0);
45 
46 		if (error) {
47 			/* In case we got an error we disable the SSP now */
48 			pxa_ssp_disable(drv_data->ssp);
49 			msg->status = -EIO;
50 		}
51 
52 		spi_finalize_current_transfer(drv_data->controller);
53 	}
54 }
55 
56 static void pxa2xx_spi_dma_callback(void *data)
57 {
58 	pxa2xx_spi_dma_transfer_complete(data, false);
59 }
60 
61 static struct dma_async_tx_descriptor *
62 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
63 			   enum dma_transfer_direction dir,
64 			   struct spi_transfer *xfer)
65 {
66 	struct chip_data *chip =
67 		spi_get_ctldata(drv_data->controller->cur_msg->spi);
68 	enum dma_slave_buswidth width;
69 	struct dma_slave_config cfg;
70 	struct dma_chan *chan;
71 	struct sg_table *sgt;
72 	int ret;
73 
74 	switch (drv_data->n_bytes) {
75 	case 1:
76 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
77 		break;
78 	case 2:
79 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
80 		break;
81 	default:
82 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
83 		break;
84 	}
85 
86 	memset(&cfg, 0, sizeof(cfg));
87 	cfg.direction = dir;
88 
89 	if (dir == DMA_MEM_TO_DEV) {
90 		cfg.dst_addr = drv_data->ssp->phys_base + SSDR;
91 		cfg.dst_addr_width = width;
92 		cfg.dst_maxburst = chip->dma_burst_size;
93 
94 		sgt = &xfer->tx_sg;
95 		chan = drv_data->controller->dma_tx;
96 	} else {
97 		cfg.src_addr = drv_data->ssp->phys_base + SSDR;
98 		cfg.src_addr_width = width;
99 		cfg.src_maxburst = chip->dma_burst_size;
100 
101 		sgt = &xfer->rx_sg;
102 		chan = drv_data->controller->dma_rx;
103 	}
104 
105 	ret = dmaengine_slave_config(chan, &cfg);
106 	if (ret) {
107 		dev_warn(drv_data->ssp->dev, "DMA slave config failed\n");
108 		return NULL;
109 	}
110 
111 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
112 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
113 }
114 
115 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
116 {
117 	u32 status;
118 
119 	status = read_SSSR_bits(drv_data, drv_data->mask_sr);
120 	if (status & SSSR_ROR) {
121 		dev_err(drv_data->ssp->dev, "FIFO overrun\n");
122 
123 		dmaengine_terminate_async(drv_data->controller->dma_rx);
124 		dmaengine_terminate_async(drv_data->controller->dma_tx);
125 
126 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
127 		return IRQ_HANDLED;
128 	}
129 
130 	return IRQ_NONE;
131 }
132 
133 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data,
134 			   struct spi_transfer *xfer)
135 {
136 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
137 	int err;
138 
139 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV, xfer);
140 	if (!tx_desc) {
141 		dev_err(drv_data->ssp->dev, "failed to get DMA TX descriptor\n");
142 		err = -EBUSY;
143 		goto err_tx;
144 	}
145 
146 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM, xfer);
147 	if (!rx_desc) {
148 		dev_err(drv_data->ssp->dev, "failed to get DMA RX descriptor\n");
149 		err = -EBUSY;
150 		goto err_rx;
151 	}
152 
153 	/* We are ready when RX completes */
154 	rx_desc->callback = pxa2xx_spi_dma_callback;
155 	rx_desc->callback_param = drv_data;
156 
157 	dmaengine_submit(rx_desc);
158 	dmaengine_submit(tx_desc);
159 	return 0;
160 
161 err_rx:
162 	dmaengine_terminate_async(drv_data->controller->dma_tx);
163 err_tx:
164 	return err;
165 }
166 
167 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
168 {
169 	dma_async_issue_pending(drv_data->controller->dma_rx);
170 	dma_async_issue_pending(drv_data->controller->dma_tx);
171 
172 	atomic_set(&drv_data->dma_running, 1);
173 }
174 
175 void pxa2xx_spi_dma_stop(struct driver_data *drv_data)
176 {
177 	atomic_set(&drv_data->dma_running, 0);
178 	dmaengine_terminate_sync(drv_data->controller->dma_rx);
179 	dmaengine_terminate_sync(drv_data->controller->dma_tx);
180 }
181 
182 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
183 {
184 	struct pxa2xx_spi_controller *pdata = drv_data->controller_info;
185 	struct spi_controller *controller = drv_data->controller;
186 	struct device *dev = drv_data->ssp->dev;
187 	dma_cap_mask_t mask;
188 
189 	dma_cap_zero(mask);
190 	dma_cap_set(DMA_SLAVE, mask);
191 
192 	controller->dma_tx = dma_request_slave_channel_compat(mask,
193 				pdata->dma_filter, pdata->tx_param, dev, "tx");
194 	if (!controller->dma_tx)
195 		return -ENODEV;
196 
197 	controller->dma_rx = dma_request_slave_channel_compat(mask,
198 				pdata->dma_filter, pdata->rx_param, dev, "rx");
199 	if (!controller->dma_rx) {
200 		dma_release_channel(controller->dma_tx);
201 		controller->dma_tx = NULL;
202 		return -ENODEV;
203 	}
204 
205 	return 0;
206 }
207 
208 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
209 {
210 	struct spi_controller *controller = drv_data->controller;
211 
212 	if (controller->dma_rx) {
213 		dmaengine_terminate_sync(controller->dma_rx);
214 		dma_release_channel(controller->dma_rx);
215 		controller->dma_rx = NULL;
216 	}
217 	if (controller->dma_tx) {
218 		dmaengine_terminate_sync(controller->dma_tx);
219 		dma_release_channel(controller->dma_tx);
220 		controller->dma_tx = NULL;
221 	}
222 }
223 
224 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
225 					   struct spi_device *spi,
226 					   u8 bits_per_word, u32 *burst_code,
227 					   u32 *threshold)
228 {
229 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
230 	struct driver_data *drv_data = spi_controller_get_devdata(spi->controller);
231 	u32 dma_burst_size = drv_data->controller_info->dma_burst_size;
232 
233 	/*
234 	 * If the DMA burst size is given in chip_info we use that,
235 	 * otherwise we use the default. Also we use the default FIFO
236 	 * thresholds for now.
237 	 */
238 	*burst_code = chip_info ? chip_info->dma_burst_size : dma_burst_size;
239 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
240 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
241 
242 	return 0;
243 }
244