xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 				     enum dma_data_direction dir)
25 {
26 	int i, nents, len = drv_data->len;
27 	struct scatterlist *sg;
28 	struct device *dmadev;
29 	struct sg_table *sgt;
30 	void *buf, *pbuf;
31 
32 	if (dir == DMA_TO_DEVICE) {
33 		dmadev = drv_data->tx_chan->device->dev;
34 		sgt = &drv_data->tx_sgt;
35 		buf = drv_data->tx;
36 		drv_data->tx_map_len = len;
37 	} else {
38 		dmadev = drv_data->rx_chan->device->dev;
39 		sgt = &drv_data->rx_sgt;
40 		buf = drv_data->rx;
41 		drv_data->rx_map_len = len;
42 	}
43 
44 	nents = DIV_ROUND_UP(len, SZ_2K);
45 	if (nents != sgt->nents) {
46 		int ret;
47 
48 		sg_free_table(sgt);
49 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50 		if (ret)
51 			return ret;
52 	}
53 
54 	pbuf = buf;
55 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56 		size_t bytes = min_t(size_t, len, SZ_2K);
57 
58 		if (buf)
59 			sg_set_buf(sg, pbuf, bytes);
60 		else
61 			sg_set_buf(sg, drv_data->dummy, bytes);
62 
63 		pbuf += bytes;
64 		len -= bytes;
65 	}
66 
67 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68 	if (!nents)
69 		return -ENOMEM;
70 
71 	return nents;
72 }
73 
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75 					enum dma_data_direction dir)
76 {
77 	struct device *dmadev;
78 	struct sg_table *sgt;
79 
80 	if (dir == DMA_TO_DEVICE) {
81 		dmadev = drv_data->tx_chan->device->dev;
82 		sgt = &drv_data->tx_sgt;
83 	} else {
84 		dmadev = drv_data->rx_chan->device->dev;
85 		sgt = &drv_data->rx_sgt;
86 	}
87 
88 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89 }
90 
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92 {
93 	if (!drv_data->dma_mapped)
94 		return;
95 
96 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98 
99 	drv_data->dma_mapped = 0;
100 }
101 
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103 					     bool error)
104 {
105 	struct spi_message *msg = drv_data->cur_msg;
106 
107 	/*
108 	 * It is possible that one CPU is handling ROR interrupt and other
109 	 * just gets DMA completion. Calling pump_transfers() twice for the
110 	 * same transfer leads to problems thus we prevent concurrent calls
111 	 * by using ->dma_running.
112 	 */
113 	if (atomic_dec_and_test(&drv_data->dma_running)) {
114 		void __iomem *reg = drv_data->ioaddr;
115 
116 		/*
117 		 * If the other CPU is still handling the ROR interrupt we
118 		 * might not know about the error yet. So we re-check the
119 		 * ROR bit here before we clear the status register.
120 		 */
121 		if (!error) {
122 			u32 status = read_SSSR(reg) & drv_data->mask_sr;
123 			error = status & SSSR_ROR;
124 		}
125 
126 		/* Clear status & disable interrupts */
127 		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
128 		write_SSSR_CS(drv_data, drv_data->clear_sr);
129 		if (!pxa25x_ssp_comp(drv_data))
130 			write_SSTO(0, reg);
131 
132 		if (!error) {
133 			pxa2xx_spi_unmap_dma_buffers(drv_data);
134 
135 			drv_data->tx += drv_data->tx_map_len;
136 			drv_data->rx += drv_data->rx_map_len;
137 
138 			msg->actual_length += drv_data->len;
139 			msg->state = pxa2xx_spi_next_transfer(drv_data);
140 		} else {
141 			/* In case we got an error we disable the SSP now */
142 			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
143 
144 			msg->state = ERROR_STATE;
145 		}
146 
147 		tasklet_schedule(&drv_data->pump_transfers);
148 	}
149 }
150 
151 static void pxa2xx_spi_dma_callback(void *data)
152 {
153 	pxa2xx_spi_dma_transfer_complete(data, false);
154 }
155 
156 static struct dma_async_tx_descriptor *
157 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
158 			   enum dma_transfer_direction dir)
159 {
160 	struct chip_data *chip = drv_data->cur_chip;
161 	enum dma_slave_buswidth width;
162 	struct dma_slave_config cfg;
163 	struct dma_chan *chan;
164 	struct sg_table *sgt;
165 	int nents, ret;
166 
167 	switch (drv_data->n_bytes) {
168 	case 1:
169 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
170 		break;
171 	case 2:
172 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
173 		break;
174 	default:
175 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
176 		break;
177 	}
178 
179 	memset(&cfg, 0, sizeof(cfg));
180 	cfg.direction = dir;
181 
182 	if (dir == DMA_MEM_TO_DEV) {
183 		cfg.dst_addr = drv_data->ssdr_physical;
184 		cfg.dst_addr_width = width;
185 		cfg.dst_maxburst = chip->dma_burst_size;
186 
187 		sgt = &drv_data->tx_sgt;
188 		nents = drv_data->tx_nents;
189 		chan = drv_data->tx_chan;
190 	} else {
191 		cfg.src_addr = drv_data->ssdr_physical;
192 		cfg.src_addr_width = width;
193 		cfg.src_maxburst = chip->dma_burst_size;
194 
195 		sgt = &drv_data->rx_sgt;
196 		nents = drv_data->rx_nents;
197 		chan = drv_data->rx_chan;
198 	}
199 
200 	ret = dmaengine_slave_config(chan, &cfg);
201 	if (ret) {
202 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
203 		return NULL;
204 	}
205 
206 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
207 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
208 }
209 
210 bool pxa2xx_spi_dma_is_possible(size_t len)
211 {
212 	return len <= MAX_DMA_LEN;
213 }
214 
215 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
216 {
217 	const struct chip_data *chip = drv_data->cur_chip;
218 	int ret;
219 
220 	if (!chip->enable_dma)
221 		return 0;
222 
223 	/* Don't bother with DMA if we can't do even a single burst */
224 	if (drv_data->len < chip->dma_burst_size)
225 		return 0;
226 
227 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
228 	if (ret <= 0) {
229 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
230 		return 0;
231 	}
232 
233 	drv_data->tx_nents = ret;
234 
235 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
236 	if (ret <= 0) {
237 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
238 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
239 		return 0;
240 	}
241 
242 	drv_data->rx_nents = ret;
243 	return 1;
244 }
245 
246 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
247 {
248 	u32 status;
249 
250 	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
251 	if (status & SSSR_ROR) {
252 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
253 
254 		dmaengine_terminate_all(drv_data->rx_chan);
255 		dmaengine_terminate_all(drv_data->tx_chan);
256 
257 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
258 		return IRQ_HANDLED;
259 	}
260 
261 	return IRQ_NONE;
262 }
263 
264 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
265 {
266 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
267 
268 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
269 	if (!tx_desc) {
270 		dev_err(&drv_data->pdev->dev,
271 			"failed to get DMA TX descriptor\n");
272 		return -EBUSY;
273 	}
274 
275 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
276 	if (!rx_desc) {
277 		dev_err(&drv_data->pdev->dev,
278 			"failed to get DMA RX descriptor\n");
279 		return -EBUSY;
280 	}
281 
282 	/* We are ready when RX completes */
283 	rx_desc->callback = pxa2xx_spi_dma_callback;
284 	rx_desc->callback_param = drv_data;
285 
286 	dmaengine_submit(rx_desc);
287 	dmaengine_submit(tx_desc);
288 	return 0;
289 }
290 
291 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
292 {
293 	dma_async_issue_pending(drv_data->rx_chan);
294 	dma_async_issue_pending(drv_data->tx_chan);
295 
296 	atomic_set(&drv_data->dma_running, 1);
297 }
298 
299 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
300 {
301 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
302 	struct device *dev = &drv_data->pdev->dev;
303 	dma_cap_mask_t mask;
304 
305 	dma_cap_zero(mask);
306 	dma_cap_set(DMA_SLAVE, mask);
307 
308 	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
309 	if (!drv_data->dummy)
310 		return -ENOMEM;
311 
312 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
313 				pdata->dma_filter, pdata->tx_param, dev, "tx");
314 	if (!drv_data->tx_chan)
315 		return -ENODEV;
316 
317 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
318 				pdata->dma_filter, pdata->rx_param, dev, "rx");
319 	if (!drv_data->rx_chan) {
320 		dma_release_channel(drv_data->tx_chan);
321 		drv_data->tx_chan = NULL;
322 		return -ENODEV;
323 	}
324 
325 	return 0;
326 }
327 
328 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
329 {
330 	if (drv_data->rx_chan) {
331 		dmaengine_terminate_all(drv_data->rx_chan);
332 		dma_release_channel(drv_data->rx_chan);
333 		sg_free_table(&drv_data->rx_sgt);
334 		drv_data->rx_chan = NULL;
335 	}
336 	if (drv_data->tx_chan) {
337 		dmaengine_terminate_all(drv_data->tx_chan);
338 		dma_release_channel(drv_data->tx_chan);
339 		sg_free_table(&drv_data->tx_sgt);
340 		drv_data->tx_chan = NULL;
341 	}
342 }
343 
344 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
345 {
346 }
347 
348 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
349 					   struct spi_device *spi,
350 					   u8 bits_per_word, u32 *burst_code,
351 					   u32 *threshold)
352 {
353 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
354 
355 	/*
356 	 * If the DMA burst size is given in chip_info we use that,
357 	 * otherwise we use the default. Also we use the default FIFO
358 	 * thresholds for now.
359 	 */
360 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
361 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
362 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
363 
364 	return 0;
365 }
366