xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 				     enum dma_data_direction dir)
25 {
26 	int i, nents, len = drv_data->len;
27 	struct scatterlist *sg;
28 	struct device *dmadev;
29 	struct sg_table *sgt;
30 	void *buf, *pbuf;
31 
32 	if (dir == DMA_TO_DEVICE) {
33 		dmadev = drv_data->tx_chan->device->dev;
34 		sgt = &drv_data->tx_sgt;
35 		buf = drv_data->tx;
36 		drv_data->tx_map_len = len;
37 	} else {
38 		dmadev = drv_data->rx_chan->device->dev;
39 		sgt = &drv_data->rx_sgt;
40 		buf = drv_data->rx;
41 		drv_data->rx_map_len = len;
42 	}
43 
44 	nents = DIV_ROUND_UP(len, SZ_2K);
45 	if (nents != sgt->nents) {
46 		int ret;
47 
48 		sg_free_table(sgt);
49 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50 		if (ret)
51 			return ret;
52 	}
53 
54 	pbuf = buf;
55 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56 		size_t bytes = min_t(size_t, len, SZ_2K);
57 
58 		if (buf)
59 			sg_set_buf(sg, pbuf, bytes);
60 		else
61 			sg_set_buf(sg, drv_data->dummy, bytes);
62 
63 		pbuf += bytes;
64 		len -= bytes;
65 	}
66 
67 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68 	if (!nents)
69 		return -ENOMEM;
70 
71 	return nents;
72 }
73 
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75 					enum dma_data_direction dir)
76 {
77 	struct device *dmadev;
78 	struct sg_table *sgt;
79 
80 	if (dir == DMA_TO_DEVICE) {
81 		dmadev = drv_data->tx_chan->device->dev;
82 		sgt = &drv_data->tx_sgt;
83 	} else {
84 		dmadev = drv_data->rx_chan->device->dev;
85 		sgt = &drv_data->rx_sgt;
86 	}
87 
88 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89 }
90 
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92 {
93 	if (!drv_data->dma_mapped)
94 		return;
95 
96 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98 
99 	drv_data->dma_mapped = 0;
100 }
101 
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103 					     bool error)
104 {
105 	struct spi_message *msg = drv_data->cur_msg;
106 
107 	/*
108 	 * It is possible that one CPU is handling ROR interrupt and other
109 	 * just gets DMA completion. Calling pump_transfers() twice for the
110 	 * same transfer leads to problems thus we prevent concurrent calls
111 	 * by using ->dma_running.
112 	 */
113 	if (atomic_dec_and_test(&drv_data->dma_running)) {
114 		void __iomem *reg = drv_data->ioaddr;
115 
116 		/*
117 		 * If the other CPU is still handling the ROR interrupt we
118 		 * might not know about the error yet. So we re-check the
119 		 * ROR bit here before we clear the status register.
120 		 */
121 		if (!error) {
122 			u32 status = read_SSSR(reg) & drv_data->mask_sr;
123 			error = status & SSSR_ROR;
124 		}
125 
126 		/* Clear status & disable interrupts */
127 		write_SSCR1(read_SSCR1(reg) & ~drv_data->dma_cr1, reg);
128 		write_SSSR_CS(drv_data, drv_data->clear_sr);
129 		if (!pxa25x_ssp_comp(drv_data))
130 			write_SSTO(0, reg);
131 
132 		if (!error) {
133 			pxa2xx_spi_unmap_dma_buffers(drv_data);
134 
135 			drv_data->tx += drv_data->tx_map_len;
136 			drv_data->rx += drv_data->rx_map_len;
137 
138 			msg->actual_length += drv_data->len;
139 			msg->state = pxa2xx_spi_next_transfer(drv_data);
140 		} else {
141 			/* In case we got an error we disable the SSP now */
142 			write_SSCR0(read_SSCR0(reg) & ~SSCR0_SSE, reg);
143 
144 			msg->state = ERROR_STATE;
145 		}
146 
147 		tasklet_schedule(&drv_data->pump_transfers);
148 	}
149 }
150 
151 static void pxa2xx_spi_dma_callback(void *data)
152 {
153 	pxa2xx_spi_dma_transfer_complete(data, false);
154 }
155 
156 static struct dma_async_tx_descriptor *
157 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
158 			   enum dma_transfer_direction dir)
159 {
160 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
161 	struct chip_data *chip = drv_data->cur_chip;
162 	enum dma_slave_buswidth width;
163 	struct dma_slave_config cfg;
164 	struct dma_chan *chan;
165 	struct sg_table *sgt;
166 	int nents, ret;
167 
168 	switch (drv_data->n_bytes) {
169 	case 1:
170 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
171 		break;
172 	case 2:
173 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
174 		break;
175 	default:
176 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
177 		break;
178 	}
179 
180 	memset(&cfg, 0, sizeof(cfg));
181 	cfg.direction = dir;
182 
183 	if (dir == DMA_MEM_TO_DEV) {
184 		cfg.dst_addr = drv_data->ssdr_physical;
185 		cfg.dst_addr_width = width;
186 		cfg.dst_maxburst = chip->dma_burst_size;
187 		cfg.slave_id = pdata->tx_slave_id;
188 
189 		sgt = &drv_data->tx_sgt;
190 		nents = drv_data->tx_nents;
191 		chan = drv_data->tx_chan;
192 	} else {
193 		cfg.src_addr = drv_data->ssdr_physical;
194 		cfg.src_addr_width = width;
195 		cfg.src_maxburst = chip->dma_burst_size;
196 		cfg.slave_id = pdata->rx_slave_id;
197 
198 		sgt = &drv_data->rx_sgt;
199 		nents = drv_data->rx_nents;
200 		chan = drv_data->rx_chan;
201 	}
202 
203 	ret = dmaengine_slave_config(chan, &cfg);
204 	if (ret) {
205 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206 		return NULL;
207 	}
208 
209 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
211 }
212 
213 static bool pxa2xx_spi_dma_filter(struct dma_chan *chan, void *param)
214 {
215 	const struct pxa2xx_spi_master *pdata = param;
216 
217 	return chan->chan_id == pdata->tx_chan_id ||
218 	       chan->chan_id == pdata->rx_chan_id;
219 }
220 
221 bool pxa2xx_spi_dma_is_possible(size_t len)
222 {
223 	return len <= MAX_DMA_LEN;
224 }
225 
226 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
227 {
228 	const struct chip_data *chip = drv_data->cur_chip;
229 	int ret;
230 
231 	if (!chip->enable_dma)
232 		return 0;
233 
234 	/* Don't bother with DMA if we can't do even a single burst */
235 	if (drv_data->len < chip->dma_burst_size)
236 		return 0;
237 
238 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
239 	if (ret <= 0) {
240 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
241 		return 0;
242 	}
243 
244 	drv_data->tx_nents = ret;
245 
246 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
247 	if (ret <= 0) {
248 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
249 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
250 		return 0;
251 	}
252 
253 	drv_data->rx_nents = ret;
254 	return 1;
255 }
256 
257 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
258 {
259 	u32 status;
260 
261 	status = read_SSSR(drv_data->ioaddr) & drv_data->mask_sr;
262 	if (status & SSSR_ROR) {
263 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
264 
265 		dmaengine_terminate_all(drv_data->rx_chan);
266 		dmaengine_terminate_all(drv_data->tx_chan);
267 
268 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
269 		return IRQ_HANDLED;
270 	}
271 
272 	return IRQ_NONE;
273 }
274 
275 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
276 {
277 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
278 
279 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
280 	if (!tx_desc) {
281 		dev_err(&drv_data->pdev->dev,
282 			"failed to get DMA TX descriptor\n");
283 		return -EBUSY;
284 	}
285 
286 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
287 	if (!rx_desc) {
288 		dev_err(&drv_data->pdev->dev,
289 			"failed to get DMA RX descriptor\n");
290 		return -EBUSY;
291 	}
292 
293 	/* We are ready when RX completes */
294 	rx_desc->callback = pxa2xx_spi_dma_callback;
295 	rx_desc->callback_param = drv_data;
296 
297 	dmaengine_submit(rx_desc);
298 	dmaengine_submit(tx_desc);
299 	return 0;
300 }
301 
302 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
303 {
304 	dma_async_issue_pending(drv_data->rx_chan);
305 	dma_async_issue_pending(drv_data->tx_chan);
306 
307 	atomic_set(&drv_data->dma_running, 1);
308 }
309 
310 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
311 {
312 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
313 	struct device *dev = &drv_data->pdev->dev;
314 	dma_cap_mask_t mask;
315 
316 	dma_cap_zero(mask);
317 	dma_cap_set(DMA_SLAVE, mask);
318 
319 	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
320 	if (!drv_data->dummy)
321 		return -ENOMEM;
322 
323 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
324 				pxa2xx_spi_dma_filter, pdata, dev, "tx");
325 	if (!drv_data->tx_chan)
326 		return -ENODEV;
327 
328 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
329 				pxa2xx_spi_dma_filter, pdata, dev, "rx");
330 	if (!drv_data->rx_chan) {
331 		dma_release_channel(drv_data->tx_chan);
332 		drv_data->tx_chan = NULL;
333 		return -ENODEV;
334 	}
335 
336 	return 0;
337 }
338 
339 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
340 {
341 	if (drv_data->rx_chan) {
342 		dmaengine_terminate_all(drv_data->rx_chan);
343 		dma_release_channel(drv_data->rx_chan);
344 		sg_free_table(&drv_data->rx_sgt);
345 		drv_data->rx_chan = NULL;
346 	}
347 	if (drv_data->tx_chan) {
348 		dmaengine_terminate_all(drv_data->tx_chan);
349 		dma_release_channel(drv_data->tx_chan);
350 		sg_free_table(&drv_data->tx_sgt);
351 		drv_data->tx_chan = NULL;
352 	}
353 }
354 
355 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
356 {
357 }
358 
359 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
360 					   struct spi_device *spi,
361 					   u8 bits_per_word, u32 *burst_code,
362 					   u32 *threshold)
363 {
364 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
365 
366 	/*
367 	 * If the DMA burst size is given in chip_info we use that,
368 	 * otherwise we use the default. Also we use the default FIFO
369 	 * thresholds for now.
370 	 */
371 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
372 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
373 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
374 
375 	return 0;
376 }
377