xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision 2ba9268dd603d23e17643437b2246acb6844953b)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static int pxa2xx_spi_map_dma_buffer(struct driver_data *drv_data,
24 				     enum dma_data_direction dir)
25 {
26 	int i, nents, len = drv_data->len;
27 	struct scatterlist *sg;
28 	struct device *dmadev;
29 	struct sg_table *sgt;
30 	void *buf, *pbuf;
31 
32 	if (dir == DMA_TO_DEVICE) {
33 		dmadev = drv_data->tx_chan->device->dev;
34 		sgt = &drv_data->tx_sgt;
35 		buf = drv_data->tx;
36 		drv_data->tx_map_len = len;
37 	} else {
38 		dmadev = drv_data->rx_chan->device->dev;
39 		sgt = &drv_data->rx_sgt;
40 		buf = drv_data->rx;
41 		drv_data->rx_map_len = len;
42 	}
43 
44 	nents = DIV_ROUND_UP(len, SZ_2K);
45 	if (nents != sgt->nents) {
46 		int ret;
47 
48 		sg_free_table(sgt);
49 		ret = sg_alloc_table(sgt, nents, GFP_ATOMIC);
50 		if (ret)
51 			return ret;
52 	}
53 
54 	pbuf = buf;
55 	for_each_sg(sgt->sgl, sg, sgt->nents, i) {
56 		size_t bytes = min_t(size_t, len, SZ_2K);
57 
58 		if (buf)
59 			sg_set_buf(sg, pbuf, bytes);
60 		else
61 			sg_set_buf(sg, drv_data->dummy, bytes);
62 
63 		pbuf += bytes;
64 		len -= bytes;
65 	}
66 
67 	nents = dma_map_sg(dmadev, sgt->sgl, sgt->nents, dir);
68 	if (!nents)
69 		return -ENOMEM;
70 
71 	return nents;
72 }
73 
74 static void pxa2xx_spi_unmap_dma_buffer(struct driver_data *drv_data,
75 					enum dma_data_direction dir)
76 {
77 	struct device *dmadev;
78 	struct sg_table *sgt;
79 
80 	if (dir == DMA_TO_DEVICE) {
81 		dmadev = drv_data->tx_chan->device->dev;
82 		sgt = &drv_data->tx_sgt;
83 	} else {
84 		dmadev = drv_data->rx_chan->device->dev;
85 		sgt = &drv_data->rx_sgt;
86 	}
87 
88 	dma_unmap_sg(dmadev, sgt->sgl, sgt->nents, dir);
89 }
90 
91 static void pxa2xx_spi_unmap_dma_buffers(struct driver_data *drv_data)
92 {
93 	if (!drv_data->dma_mapped)
94 		return;
95 
96 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_FROM_DEVICE);
97 	pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
98 
99 	drv_data->dma_mapped = 0;
100 }
101 
102 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
103 					     bool error)
104 {
105 	struct spi_message *msg = drv_data->cur_msg;
106 
107 	/*
108 	 * It is possible that one CPU is handling ROR interrupt and other
109 	 * just gets DMA completion. Calling pump_transfers() twice for the
110 	 * same transfer leads to problems thus we prevent concurrent calls
111 	 * by using ->dma_running.
112 	 */
113 	if (atomic_dec_and_test(&drv_data->dma_running)) {
114 		/*
115 		 * If the other CPU is still handling the ROR interrupt we
116 		 * might not know about the error yet. So we re-check the
117 		 * ROR bit here before we clear the status register.
118 		 */
119 		if (!error) {
120 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
121 				     & drv_data->mask_sr;
122 			error = status & SSSR_ROR;
123 		}
124 
125 		/* Clear status & disable interrupts */
126 		pxa2xx_spi_write(drv_data, SSCR1,
127 				 pxa2xx_spi_read(drv_data, SSCR1)
128 				 & ~drv_data->dma_cr1);
129 		write_SSSR_CS(drv_data, drv_data->clear_sr);
130 		if (!pxa25x_ssp_comp(drv_data))
131 			pxa2xx_spi_write(drv_data, SSTO, 0);
132 
133 		if (!error) {
134 			pxa2xx_spi_unmap_dma_buffers(drv_data);
135 
136 			drv_data->tx += drv_data->tx_map_len;
137 			drv_data->rx += drv_data->rx_map_len;
138 
139 			msg->actual_length += drv_data->len;
140 			msg->state = pxa2xx_spi_next_transfer(drv_data);
141 		} else {
142 			/* In case we got an error we disable the SSP now */
143 			pxa2xx_spi_write(drv_data, SSCR0,
144 					 pxa2xx_spi_read(drv_data, SSCR0)
145 					 & ~SSCR0_SSE);
146 
147 			msg->state = ERROR_STATE;
148 		}
149 
150 		tasklet_schedule(&drv_data->pump_transfers);
151 	}
152 }
153 
154 static void pxa2xx_spi_dma_callback(void *data)
155 {
156 	pxa2xx_spi_dma_transfer_complete(data, false);
157 }
158 
159 static struct dma_async_tx_descriptor *
160 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
161 			   enum dma_transfer_direction dir)
162 {
163 	struct chip_data *chip = drv_data->cur_chip;
164 	enum dma_slave_buswidth width;
165 	struct dma_slave_config cfg;
166 	struct dma_chan *chan;
167 	struct sg_table *sgt;
168 	int nents, ret;
169 
170 	switch (drv_data->n_bytes) {
171 	case 1:
172 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
173 		break;
174 	case 2:
175 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
176 		break;
177 	default:
178 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
179 		break;
180 	}
181 
182 	memset(&cfg, 0, sizeof(cfg));
183 	cfg.direction = dir;
184 
185 	if (dir == DMA_MEM_TO_DEV) {
186 		cfg.dst_addr = drv_data->ssdr_physical;
187 		cfg.dst_addr_width = width;
188 		cfg.dst_maxburst = chip->dma_burst_size;
189 
190 		sgt = &drv_data->tx_sgt;
191 		nents = drv_data->tx_nents;
192 		chan = drv_data->tx_chan;
193 	} else {
194 		cfg.src_addr = drv_data->ssdr_physical;
195 		cfg.src_addr_width = width;
196 		cfg.src_maxburst = chip->dma_burst_size;
197 
198 		sgt = &drv_data->rx_sgt;
199 		nents = drv_data->rx_nents;
200 		chan = drv_data->rx_chan;
201 	}
202 
203 	ret = dmaengine_slave_config(chan, &cfg);
204 	if (ret) {
205 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
206 		return NULL;
207 	}
208 
209 	return dmaengine_prep_slave_sg(chan, sgt->sgl, nents, dir,
210 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
211 }
212 
213 bool pxa2xx_spi_dma_is_possible(size_t len)
214 {
215 	return len <= MAX_DMA_LEN;
216 }
217 
218 int pxa2xx_spi_map_dma_buffers(struct driver_data *drv_data)
219 {
220 	const struct chip_data *chip = drv_data->cur_chip;
221 	int ret;
222 
223 	if (!chip->enable_dma)
224 		return 0;
225 
226 	/* Don't bother with DMA if we can't do even a single burst */
227 	if (drv_data->len < chip->dma_burst_size)
228 		return 0;
229 
230 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_TO_DEVICE);
231 	if (ret <= 0) {
232 		dev_warn(&drv_data->pdev->dev, "failed to DMA map TX\n");
233 		return 0;
234 	}
235 
236 	drv_data->tx_nents = ret;
237 
238 	ret = pxa2xx_spi_map_dma_buffer(drv_data, DMA_FROM_DEVICE);
239 	if (ret <= 0) {
240 		pxa2xx_spi_unmap_dma_buffer(drv_data, DMA_TO_DEVICE);
241 		dev_warn(&drv_data->pdev->dev, "failed to DMA map RX\n");
242 		return 0;
243 	}
244 
245 	drv_data->rx_nents = ret;
246 	return 1;
247 }
248 
249 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
250 {
251 	u32 status;
252 
253 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
254 	if (status & SSSR_ROR) {
255 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
256 
257 		dmaengine_terminate_all(drv_data->rx_chan);
258 		dmaengine_terminate_all(drv_data->tx_chan);
259 
260 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
261 		return IRQ_HANDLED;
262 	}
263 
264 	return IRQ_NONE;
265 }
266 
267 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
268 {
269 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
270 
271 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
272 	if (!tx_desc) {
273 		dev_err(&drv_data->pdev->dev,
274 			"failed to get DMA TX descriptor\n");
275 		return -EBUSY;
276 	}
277 
278 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
279 	if (!rx_desc) {
280 		dev_err(&drv_data->pdev->dev,
281 			"failed to get DMA RX descriptor\n");
282 		return -EBUSY;
283 	}
284 
285 	/* We are ready when RX completes */
286 	rx_desc->callback = pxa2xx_spi_dma_callback;
287 	rx_desc->callback_param = drv_data;
288 
289 	dmaengine_submit(rx_desc);
290 	dmaengine_submit(tx_desc);
291 	return 0;
292 }
293 
294 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
295 {
296 	dma_async_issue_pending(drv_data->rx_chan);
297 	dma_async_issue_pending(drv_data->tx_chan);
298 
299 	atomic_set(&drv_data->dma_running, 1);
300 }
301 
302 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
303 {
304 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
305 	struct device *dev = &drv_data->pdev->dev;
306 	dma_cap_mask_t mask;
307 
308 	dma_cap_zero(mask);
309 	dma_cap_set(DMA_SLAVE, mask);
310 
311 	drv_data->dummy = devm_kzalloc(dev, SZ_2K, GFP_KERNEL);
312 	if (!drv_data->dummy)
313 		return -ENOMEM;
314 
315 	drv_data->tx_chan = dma_request_slave_channel_compat(mask,
316 				pdata->dma_filter, pdata->tx_param, dev, "tx");
317 	if (!drv_data->tx_chan)
318 		return -ENODEV;
319 
320 	drv_data->rx_chan = dma_request_slave_channel_compat(mask,
321 				pdata->dma_filter, pdata->rx_param, dev, "rx");
322 	if (!drv_data->rx_chan) {
323 		dma_release_channel(drv_data->tx_chan);
324 		drv_data->tx_chan = NULL;
325 		return -ENODEV;
326 	}
327 
328 	return 0;
329 }
330 
331 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
332 {
333 	if (drv_data->rx_chan) {
334 		dmaengine_terminate_all(drv_data->rx_chan);
335 		dma_release_channel(drv_data->rx_chan);
336 		sg_free_table(&drv_data->rx_sgt);
337 		drv_data->rx_chan = NULL;
338 	}
339 	if (drv_data->tx_chan) {
340 		dmaengine_terminate_all(drv_data->tx_chan);
341 		dma_release_channel(drv_data->tx_chan);
342 		sg_free_table(&drv_data->tx_sgt);
343 		drv_data->tx_chan = NULL;
344 	}
345 }
346 
347 void pxa2xx_spi_dma_resume(struct driver_data *drv_data)
348 {
349 }
350 
351 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
352 					   struct spi_device *spi,
353 					   u8 bits_per_word, u32 *burst_code,
354 					   u32 *threshold)
355 {
356 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
357 
358 	/*
359 	 * If the DMA burst size is given in chip_info we use that,
360 	 * otherwise we use the default. Also we use the default FIFO
361 	 * thresholds for now.
362 	 */
363 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
364 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
365 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
366 
367 	return 0;
368 }
369