xref: /linux/drivers/spi/spi-pxa2xx-dma.c (revision 071bf69a0220253a44acb8b2a27f7a262b9a46bf)
1 /*
2  * PXA2xx SPI DMA engine support.
3  *
4  * Copyright (C) 2013, Intel Corporation
5  * Author: Mika Westerberg <mika.westerberg@linux.intel.com>
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 as
9  * published by the Free Software Foundation.
10  */
11 
12 #include <linux/device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmaengine.h>
15 #include <linux/pxa2xx_ssp.h>
16 #include <linux/scatterlist.h>
17 #include <linux/sizes.h>
18 #include <linux/spi/spi.h>
19 #include <linux/spi/pxa2xx_spi.h>
20 
21 #include "spi-pxa2xx.h"
22 
23 static void pxa2xx_spi_dma_transfer_complete(struct driver_data *drv_data,
24 					     bool error)
25 {
26 	struct spi_message *msg = drv_data->cur_msg;
27 
28 	/*
29 	 * It is possible that one CPU is handling ROR interrupt and other
30 	 * just gets DMA completion. Calling pump_transfers() twice for the
31 	 * same transfer leads to problems thus we prevent concurrent calls
32 	 * by using ->dma_running.
33 	 */
34 	if (atomic_dec_and_test(&drv_data->dma_running)) {
35 		/*
36 		 * If the other CPU is still handling the ROR interrupt we
37 		 * might not know about the error yet. So we re-check the
38 		 * ROR bit here before we clear the status register.
39 		 */
40 		if (!error) {
41 			u32 status = pxa2xx_spi_read(drv_data, SSSR)
42 				     & drv_data->mask_sr;
43 			error = status & SSSR_ROR;
44 		}
45 
46 		/* Clear status & disable interrupts */
47 		pxa2xx_spi_write(drv_data, SSCR1,
48 				 pxa2xx_spi_read(drv_data, SSCR1)
49 				 & ~drv_data->dma_cr1);
50 		write_SSSR_CS(drv_data, drv_data->clear_sr);
51 		if (!pxa25x_ssp_comp(drv_data))
52 			pxa2xx_spi_write(drv_data, SSTO, 0);
53 
54 		if (!error) {
55 			msg->actual_length += drv_data->len;
56 			msg->state = pxa2xx_spi_next_transfer(drv_data);
57 		} else {
58 			/* In case we got an error we disable the SSP now */
59 			pxa2xx_spi_write(drv_data, SSCR0,
60 					 pxa2xx_spi_read(drv_data, SSCR0)
61 					 & ~SSCR0_SSE);
62 
63 			msg->state = ERROR_STATE;
64 		}
65 
66 		tasklet_schedule(&drv_data->pump_transfers);
67 	}
68 }
69 
70 static void pxa2xx_spi_dma_callback(void *data)
71 {
72 	pxa2xx_spi_dma_transfer_complete(data, false);
73 }
74 
75 static struct dma_async_tx_descriptor *
76 pxa2xx_spi_dma_prepare_one(struct driver_data *drv_data,
77 			   enum dma_transfer_direction dir)
78 {
79 	struct chip_data *chip = drv_data->cur_chip;
80 	struct spi_transfer *xfer = drv_data->cur_transfer;
81 	enum dma_slave_buswidth width;
82 	struct dma_slave_config cfg;
83 	struct dma_chan *chan;
84 	struct sg_table *sgt;
85 	int ret;
86 
87 	switch (drv_data->n_bytes) {
88 	case 1:
89 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
90 		break;
91 	case 2:
92 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
93 		break;
94 	default:
95 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
96 		break;
97 	}
98 
99 	memset(&cfg, 0, sizeof(cfg));
100 	cfg.direction = dir;
101 
102 	if (dir == DMA_MEM_TO_DEV) {
103 		cfg.dst_addr = drv_data->ssdr_physical;
104 		cfg.dst_addr_width = width;
105 		cfg.dst_maxburst = chip->dma_burst_size;
106 
107 		sgt = &xfer->tx_sg;
108 		chan = drv_data->master->dma_tx;
109 	} else {
110 		cfg.src_addr = drv_data->ssdr_physical;
111 		cfg.src_addr_width = width;
112 		cfg.src_maxburst = chip->dma_burst_size;
113 
114 		sgt = &xfer->rx_sg;
115 		chan = drv_data->master->dma_rx;
116 	}
117 
118 	ret = dmaengine_slave_config(chan, &cfg);
119 	if (ret) {
120 		dev_warn(&drv_data->pdev->dev, "DMA slave config failed\n");
121 		return NULL;
122 	}
123 
124 	return dmaengine_prep_slave_sg(chan, sgt->sgl, sgt->nents, dir,
125 				       DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
126 }
127 
128 irqreturn_t pxa2xx_spi_dma_transfer(struct driver_data *drv_data)
129 {
130 	u32 status;
131 
132 	status = pxa2xx_spi_read(drv_data, SSSR) & drv_data->mask_sr;
133 	if (status & SSSR_ROR) {
134 		dev_err(&drv_data->pdev->dev, "FIFO overrun\n");
135 
136 		dmaengine_terminate_async(drv_data->master->dma_rx);
137 		dmaengine_terminate_async(drv_data->master->dma_tx);
138 
139 		pxa2xx_spi_dma_transfer_complete(drv_data, true);
140 		return IRQ_HANDLED;
141 	}
142 
143 	return IRQ_NONE;
144 }
145 
146 int pxa2xx_spi_dma_prepare(struct driver_data *drv_data, u32 dma_burst)
147 {
148 	struct dma_async_tx_descriptor *tx_desc, *rx_desc;
149 	int err = 0;
150 
151 	tx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_MEM_TO_DEV);
152 	if (!tx_desc) {
153 		dev_err(&drv_data->pdev->dev,
154 			"failed to get DMA TX descriptor\n");
155 		err = -EBUSY;
156 		goto err_tx;
157 	}
158 
159 	rx_desc = pxa2xx_spi_dma_prepare_one(drv_data, DMA_DEV_TO_MEM);
160 	if (!rx_desc) {
161 		dev_err(&drv_data->pdev->dev,
162 			"failed to get DMA RX descriptor\n");
163 		err = -EBUSY;
164 		goto err_rx;
165 	}
166 
167 	/* We are ready when RX completes */
168 	rx_desc->callback = pxa2xx_spi_dma_callback;
169 	rx_desc->callback_param = drv_data;
170 
171 	dmaengine_submit(rx_desc);
172 	dmaengine_submit(tx_desc);
173 	return 0;
174 
175 err_rx:
176 	dmaengine_terminate_async(drv_data->master->dma_tx);
177 err_tx:
178 	return err;
179 }
180 
181 void pxa2xx_spi_dma_start(struct driver_data *drv_data)
182 {
183 	dma_async_issue_pending(drv_data->master->dma_rx);
184 	dma_async_issue_pending(drv_data->master->dma_tx);
185 
186 	atomic_set(&drv_data->dma_running, 1);
187 }
188 
189 int pxa2xx_spi_dma_setup(struct driver_data *drv_data)
190 {
191 	struct pxa2xx_spi_master *pdata = drv_data->master_info;
192 	struct device *dev = &drv_data->pdev->dev;
193 	struct spi_master *master = drv_data->master;
194 	dma_cap_mask_t mask;
195 
196 	dma_cap_zero(mask);
197 	dma_cap_set(DMA_SLAVE, mask);
198 
199 	master->dma_tx = dma_request_slave_channel_compat(mask,
200 				pdata->dma_filter, pdata->tx_param, dev, "tx");
201 	if (!master->dma_tx)
202 		return -ENODEV;
203 
204 	master->dma_rx = dma_request_slave_channel_compat(mask,
205 				pdata->dma_filter, pdata->rx_param, dev, "rx");
206 	if (!master->dma_rx) {
207 		dma_release_channel(master->dma_tx);
208 		master->dma_tx = NULL;
209 		return -ENODEV;
210 	}
211 
212 	return 0;
213 }
214 
215 void pxa2xx_spi_dma_release(struct driver_data *drv_data)
216 {
217 	struct spi_master *master = drv_data->master;
218 
219 	if (master->dma_rx) {
220 		dmaengine_terminate_sync(master->dma_rx);
221 		dma_release_channel(master->dma_rx);
222 		master->dma_rx = NULL;
223 	}
224 	if (master->dma_tx) {
225 		dmaengine_terminate_sync(master->dma_tx);
226 		dma_release_channel(master->dma_tx);
227 		master->dma_tx = NULL;
228 	}
229 }
230 
231 int pxa2xx_spi_set_dma_burst_and_threshold(struct chip_data *chip,
232 					   struct spi_device *spi,
233 					   u8 bits_per_word, u32 *burst_code,
234 					   u32 *threshold)
235 {
236 	struct pxa2xx_spi_chip *chip_info = spi->controller_data;
237 
238 	/*
239 	 * If the DMA burst size is given in chip_info we use that,
240 	 * otherwise we use the default. Also we use the default FIFO
241 	 * thresholds for now.
242 	 */
243 	*burst_code = chip_info ? chip_info->dma_burst_size : 1;
244 	*threshold = SSCR1_RxTresh(RX_THRESH_DFLT)
245 		   | SSCR1_TxTresh(TX_THRESH_DFLT);
246 
247 	return 0;
248 }
249