xref: /linux/drivers/spi/spi-ppc4xx.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI_PPC4XX SPI controller driver.
4  *
5  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
6  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
7  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
8  *
9  * Based in part on drivers/spi/spi_s3c24xx.c
10  *
11  * Copyright (c) 2006 Ben Dooks
12  * Copyright (c) 2006 Simtec Electronics
13  *	Ben Dooks <ben@simtec.co.uk>
14  */
15 
16 /*
17  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
18  * generate an interrupt to the CPU. This can cause high CPU utilization.
19  * This driver allows platforms to reduce the interrupt load on the CPU
20  * during SPI transfers by setting max_speed_hz via the device tree.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/wait.h>
28 #include <linux/platform_device.h>
29 #include <linux/of_address.h>
30 #include <linux/of_irq.h>
31 #include <linux/of_platform.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 #include <linux/platform_device.h>
35 
36 #include <linux/spi/spi.h>
37 #include <linux/spi/spi_bitbang.h>
38 
39 #include <linux/io.h>
40 #include <asm/dcr.h>
41 #include <asm/dcr-regs.h>
42 
43 /* bits in mode register - bit 0 is MSb */
44 
45 /*
46  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
47  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
48  * Note: This is the inverse of CPHA.
49  */
50 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
51 
52 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
53 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
54 
55 /*
56  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
57  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
58  * Note: This is identical to SPI_LSB_FIRST.
59  */
60 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
61 
62 /*
63  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
64  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
65  * Note: This is identical to CPOL.
66  */
67 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
68 
69 /*
70  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
71  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
72  */
73 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
74 
75 /* bits in control register */
76 /* starts a transfer when set */
77 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
78 
79 /* bits in status register */
80 /* port is busy with a transfer */
81 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
82 /* RxD ready */
83 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
84 
85 /* clock settings (SCP and CI) for various SPI modes */
86 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
87 #define SPI_CLK_MODE1	(0 | 0)
88 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
89 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
90 
91 #define DRIVER_NAME	"spi_ppc4xx_of"
92 
93 struct spi_ppc4xx_regs {
94 	u8 mode;
95 	u8 rxd;
96 	u8 txd;
97 	u8 cr;
98 	u8 sr;
99 	u8 dummy;
100 	/*
101 	 * Clock divisor modulus register
102 	 * This uses the following formula:
103 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
104 	 * or
105 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
106 	 * bit 0 is the MSb!
107 	 */
108 	u8 cdm;
109 };
110 
111 /* SPI Controller driver's private data. */
112 struct ppc4xx_spi {
113 	/* bitbang has to be first */
114 	struct spi_bitbang bitbang;
115 	struct completion done;
116 
117 	u64 mapbase;
118 	u64 mapsize;
119 	int irqnum;
120 	/* need this to set the SPI clock */
121 	unsigned int opb_freq;
122 
123 	/* for transfers */
124 	int len;
125 	int count;
126 	/* data buffers */
127 	const unsigned char *tx;
128 	unsigned char *rx;
129 
130 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
131 	struct spi_controller *host;
132 	struct device *dev;
133 };
134 
135 /* need this so we can set the clock in the chipselect routine */
136 struct spi_ppc4xx_cs {
137 	u8 mode;
138 };
139 
140 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
141 {
142 	struct ppc4xx_spi *hw;
143 	u8 data;
144 
145 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
146 		t->tx_buf, t->rx_buf, t->len);
147 
148 	hw = spi_controller_get_devdata(spi->controller);
149 
150 	hw->tx = t->tx_buf;
151 	hw->rx = t->rx_buf;
152 	hw->len = t->len;
153 	hw->count = 0;
154 
155 	/* send the first byte */
156 	data = hw->tx ? hw->tx[0] : 0;
157 	out_8(&hw->regs->txd, data);
158 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
159 	wait_for_completion(&hw->done);
160 
161 	return hw->count;
162 }
163 
164 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
165 {
166 	struct ppc4xx_spi *hw = spi_controller_get_devdata(spi->controller);
167 	struct spi_ppc4xx_cs *cs = spi->controller_state;
168 	int scr;
169 	u8 cdm = 0;
170 	u32 speed;
171 
172 	/* Start with the generic configuration for this device. */
173 	speed = spi->max_speed_hz;
174 
175 	/*
176 	 * Modify the configuration if the transfer overrides it.  Do not allow
177 	 * the transfer to overwrite the generic configuration with zeros.
178 	 */
179 	if (t) {
180 		if (t->speed_hz)
181 			speed = min(t->speed_hz, spi->max_speed_hz);
182 	}
183 
184 	if (!speed || (speed > spi->max_speed_hz)) {
185 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
186 		return -EINVAL;
187 	}
188 
189 	/* Write new configuration */
190 	out_8(&hw->regs->mode, cs->mode);
191 
192 	/* Set the clock */
193 	/* opb_freq was already divided by 4 */
194 	scr = (hw->opb_freq / speed) - 1;
195 	if (scr > 0)
196 		cdm = min(scr, 0xff);
197 
198 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
199 
200 	if (in_8(&hw->regs->cdm) != cdm)
201 		out_8(&hw->regs->cdm, cdm);
202 
203 	mutex_lock(&hw->bitbang.lock);
204 	if (!hw->bitbang.busy) {
205 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
206 		/* Need to ndelay here? */
207 	}
208 	mutex_unlock(&hw->bitbang.lock);
209 
210 	return 0;
211 }
212 
213 static int spi_ppc4xx_setup(struct spi_device *spi)
214 {
215 	struct spi_ppc4xx_cs *cs = spi->controller_state;
216 
217 	if (!spi->max_speed_hz) {
218 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
219 		return -EINVAL;
220 	}
221 
222 	if (cs == NULL) {
223 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
224 		if (!cs)
225 			return -ENOMEM;
226 		spi->controller_state = cs;
227 	}
228 
229 	/*
230 	 * We set all bits of the SPI0_MODE register, so,
231 	 * no need to read-modify-write
232 	 */
233 	cs->mode = SPI_PPC4XX_MODE_SPE;
234 
235 	switch (spi->mode & SPI_MODE_X_MASK) {
236 	case SPI_MODE_0:
237 		cs->mode |= SPI_CLK_MODE0;
238 		break;
239 	case SPI_MODE_1:
240 		cs->mode |= SPI_CLK_MODE1;
241 		break;
242 	case SPI_MODE_2:
243 		cs->mode |= SPI_CLK_MODE2;
244 		break;
245 	case SPI_MODE_3:
246 		cs->mode |= SPI_CLK_MODE3;
247 		break;
248 	}
249 
250 	if (spi->mode & SPI_LSB_FIRST)
251 		cs->mode |= SPI_PPC4XX_MODE_RD;
252 
253 	return 0;
254 }
255 
256 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
257 {
258 	struct ppc4xx_spi *hw;
259 	u8 status;
260 	u8 data;
261 	unsigned int count;
262 
263 	hw = (struct ppc4xx_spi *)dev_id;
264 
265 	status = in_8(&hw->regs->sr);
266 	if (!status)
267 		return IRQ_NONE;
268 
269 	/*
270 	 * BSY de-asserts one cycle after the transfer is complete.  The
271 	 * interrupt is asserted after the transfer is complete.  The exact
272 	 * relationship is not documented, hence this code.
273 	 */
274 
275 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
276 		u8 lstatus;
277 		int cnt = 0;
278 
279 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
280 		do {
281 			ndelay(10);
282 			lstatus = in_8(&hw->regs->sr);
283 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
284 
285 		if (cnt >= 100) {
286 			dev_err(hw->dev, "busywait: too many loops!\n");
287 			complete(&hw->done);
288 			return IRQ_HANDLED;
289 		} else {
290 			/* status is always 1 (RBR) here */
291 			status = in_8(&hw->regs->sr);
292 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
293 		}
294 	}
295 
296 	count = hw->count;
297 	hw->count++;
298 
299 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
300 	data = in_8(&hw->regs->rxd);
301 	if (hw->rx)
302 		hw->rx[count] = data;
303 
304 	count++;
305 
306 	if (count < hw->len) {
307 		data = hw->tx ? hw->tx[count] : 0;
308 		out_8(&hw->regs->txd, data);
309 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
310 	} else {
311 		complete(&hw->done);
312 	}
313 
314 	return IRQ_HANDLED;
315 }
316 
317 static void spi_ppc4xx_cleanup(struct spi_device *spi)
318 {
319 	kfree(spi->controller_state);
320 }
321 
322 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
323 {
324 	/*
325 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
326 	 * the 2nd I2C bus. We need to enable the SPI bus before
327 	 * using it.
328 	 */
329 
330 	/* need to clear bit 14 to enable SPC */
331 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
332 }
333 
334 /*
335  * platform_device layer stuff...
336  */
337 static int spi_ppc4xx_of_probe(struct platform_device *op)
338 {
339 	struct ppc4xx_spi *hw;
340 	struct spi_controller *host;
341 	struct spi_bitbang *bbp;
342 	struct resource resource;
343 	struct device_node *np = op->dev.of_node;
344 	struct device *dev = &op->dev;
345 	struct device_node *opbnp;
346 	int ret;
347 	const unsigned int *clk;
348 
349 	host = spi_alloc_host(dev, sizeof(*hw));
350 	if (host == NULL)
351 		return -ENOMEM;
352 	host->dev.of_node = np;
353 	platform_set_drvdata(op, host);
354 	hw = spi_controller_get_devdata(host);
355 	hw->host = host;
356 	hw->dev = dev;
357 
358 	init_completion(&hw->done);
359 
360 	/* Setup the state for the bitbang driver */
361 	bbp = &hw->bitbang;
362 	bbp->ctlr = hw->host;
363 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
364 	bbp->txrx_bufs = spi_ppc4xx_txrx;
365 	bbp->use_dma = 0;
366 	bbp->ctlr->setup = spi_ppc4xx_setup;
367 	bbp->ctlr->cleanup = spi_ppc4xx_cleanup;
368 	bbp->ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
369 	bbp->ctlr->use_gpio_descriptors = true;
370 	/*
371 	 * The SPI core will count the number of GPIO descriptors to figure
372 	 * out the number of chip selects available on the platform.
373 	 */
374 	bbp->ctlr->num_chipselect = 0;
375 
376 	/* the spi->mode bits understood by this driver: */
377 	bbp->ctlr->mode_bits =
378 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
379 
380 	/* Get the clock for the OPB */
381 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
382 	if (opbnp == NULL) {
383 		dev_err(dev, "OPB: cannot find node\n");
384 		ret = -ENODEV;
385 		goto free_host;
386 	}
387 	/* Get the clock (Hz) for the OPB */
388 	clk = of_get_property(opbnp, "clock-frequency", NULL);
389 	if (clk == NULL) {
390 		dev_err(dev, "OPB: no clock-frequency property set\n");
391 		of_node_put(opbnp);
392 		ret = -ENODEV;
393 		goto free_host;
394 	}
395 	hw->opb_freq = *clk;
396 	hw->opb_freq >>= 2;
397 	of_node_put(opbnp);
398 
399 	ret = of_address_to_resource(np, 0, &resource);
400 	if (ret) {
401 		dev_err(dev, "error while parsing device node resource\n");
402 		goto free_host;
403 	}
404 	hw->mapbase = resource.start;
405 	hw->mapsize = resource_size(&resource);
406 
407 	/* Sanity check */
408 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
409 		dev_err(dev, "too small to map registers\n");
410 		ret = -EINVAL;
411 		goto free_host;
412 	}
413 
414 	/* Request IRQ */
415 	hw->irqnum = irq_of_parse_and_map(np, 0);
416 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
417 			  0, "spi_ppc4xx_of", (void *)hw);
418 	if (ret) {
419 		dev_err(dev, "unable to allocate interrupt\n");
420 		goto free_host;
421 	}
422 
423 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
424 		dev_err(dev, "resource unavailable\n");
425 		ret = -EBUSY;
426 		goto request_mem_error;
427 	}
428 
429 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
430 
431 	if (!hw->regs) {
432 		dev_err(dev, "unable to memory map registers\n");
433 		ret = -ENXIO;
434 		goto map_io_error;
435 	}
436 
437 	spi_ppc4xx_enable(hw);
438 
439 	/* Finally register our spi controller */
440 	dev->dma_mask = 0;
441 	ret = spi_bitbang_start(bbp);
442 	if (ret) {
443 		dev_err(dev, "failed to register SPI host\n");
444 		goto unmap_regs;
445 	}
446 
447 	dev_info(dev, "driver initialized\n");
448 
449 	return 0;
450 
451 unmap_regs:
452 	iounmap(hw->regs);
453 map_io_error:
454 	release_mem_region(hw->mapbase, hw->mapsize);
455 request_mem_error:
456 	free_irq(hw->irqnum, hw);
457 free_host:
458 	spi_controller_put(host);
459 
460 	dev_err(dev, "initialization failed\n");
461 	return ret;
462 }
463 
464 static void spi_ppc4xx_of_remove(struct platform_device *op)
465 {
466 	struct spi_controller *host = platform_get_drvdata(op);
467 	struct ppc4xx_spi *hw = spi_controller_get_devdata(host);
468 
469 	spi_bitbang_stop(&hw->bitbang);
470 	release_mem_region(hw->mapbase, hw->mapsize);
471 	free_irq(hw->irqnum, hw);
472 	iounmap(hw->regs);
473 	spi_controller_put(host);
474 }
475 
476 static const struct of_device_id spi_ppc4xx_of_match[] = {
477 	{ .compatible = "ibm,ppc4xx-spi", },
478 	{},
479 };
480 
481 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
482 
483 static struct platform_driver spi_ppc4xx_of_driver = {
484 	.probe = spi_ppc4xx_of_probe,
485 	.remove_new = spi_ppc4xx_of_remove,
486 	.driver = {
487 		.name = DRIVER_NAME,
488 		.of_match_table = spi_ppc4xx_of_match,
489 	},
490 };
491 module_platform_driver(spi_ppc4xx_of_driver);
492 
493 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
494 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
495 MODULE_LICENSE("GPL");
496