xref: /linux/drivers/spi/spi-ppc4xx.c (revision 6fdcba32711044c35c0e1b094cbd8f3f0b4472c9)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI_PPC4XX SPI controller driver.
4  *
5  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
6  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
7  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
8  *
9  * Based in part on drivers/spi/spi_s3c24xx.c
10  *
11  * Copyright (c) 2006 Ben Dooks
12  * Copyright (c) 2006 Simtec Electronics
13  *	Ben Dooks <ben@simtec.co.uk>
14  */
15 
16 /*
17  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
18  * generate an interrupt to the CPU. This can cause high CPU utilization.
19  * This driver allows platforms to reduce the interrupt load on the CPU
20  * during SPI transfers by setting max_speed_hz via the device tree.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/wait.h>
28 #include <linux/of_address.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_platform.h>
31 #include <linux/of_gpio.h>
32 #include <linux/interrupt.h>
33 #include <linux/delay.h>
34 
35 #include <linux/gpio.h>
36 #include <linux/spi/spi.h>
37 #include <linux/spi/spi_bitbang.h>
38 
39 #include <asm/io.h>
40 #include <asm/dcr.h>
41 #include <asm/dcr-regs.h>
42 
43 /* bits in mode register - bit 0 is MSb */
44 
45 /*
46  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
47  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
48  * Note: This is the inverse of CPHA.
49  */
50 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
51 
52 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
53 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
54 
55 /*
56  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
57  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
58  * Note: This is identical to SPI_LSB_FIRST.
59  */
60 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
61 
62 /*
63  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
64  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
65  * Note: This is identical to CPOL.
66  */
67 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
68 
69 /*
70  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
71  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
72  */
73 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
74 
75 /* bits in control register */
76 /* starts a transfer when set */
77 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
78 
79 /* bits in status register */
80 /* port is busy with a transfer */
81 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
82 /* RxD ready */
83 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
84 
85 /* clock settings (SCP and CI) for various SPI modes */
86 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
87 #define SPI_CLK_MODE1	(0 | 0)
88 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
89 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
90 
91 #define DRIVER_NAME	"spi_ppc4xx_of"
92 
93 struct spi_ppc4xx_regs {
94 	u8 mode;
95 	u8 rxd;
96 	u8 txd;
97 	u8 cr;
98 	u8 sr;
99 	u8 dummy;
100 	/*
101 	 * Clock divisor modulus register
102 	 * This uses the following formula:
103 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
104 	 * or
105 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
106 	 * bit 0 is the MSb!
107 	 */
108 	u8 cdm;
109 };
110 
111 /* SPI Controller driver's private data. */
112 struct ppc4xx_spi {
113 	/* bitbang has to be first */
114 	struct spi_bitbang bitbang;
115 	struct completion done;
116 
117 	u64 mapbase;
118 	u64 mapsize;
119 	int irqnum;
120 	/* need this to set the SPI clock */
121 	unsigned int opb_freq;
122 
123 	/* for transfers */
124 	int len;
125 	int count;
126 	/* data buffers */
127 	const unsigned char *tx;
128 	unsigned char *rx;
129 
130 	int *gpios;
131 
132 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
133 	struct spi_master *master;
134 	struct device *dev;
135 };
136 
137 /* need this so we can set the clock in the chipselect routine */
138 struct spi_ppc4xx_cs {
139 	u8 mode;
140 };
141 
142 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
143 {
144 	struct ppc4xx_spi *hw;
145 	u8 data;
146 
147 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
148 		t->tx_buf, t->rx_buf, t->len);
149 
150 	hw = spi_master_get_devdata(spi->master);
151 
152 	hw->tx = t->tx_buf;
153 	hw->rx = t->rx_buf;
154 	hw->len = t->len;
155 	hw->count = 0;
156 
157 	/* send the first byte */
158 	data = hw->tx ? hw->tx[0] : 0;
159 	out_8(&hw->regs->txd, data);
160 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
161 	wait_for_completion(&hw->done);
162 
163 	return hw->count;
164 }
165 
166 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
167 {
168 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
169 	struct spi_ppc4xx_cs *cs = spi->controller_state;
170 	int scr;
171 	u8 cdm = 0;
172 	u32 speed;
173 	u8 bits_per_word;
174 
175 	/* Start with the generic configuration for this device. */
176 	bits_per_word = spi->bits_per_word;
177 	speed = spi->max_speed_hz;
178 
179 	/*
180 	 * Modify the configuration if the transfer overrides it.  Do not allow
181 	 * the transfer to overwrite the generic configuration with zeros.
182 	 */
183 	if (t) {
184 		if (t->bits_per_word)
185 			bits_per_word = t->bits_per_word;
186 
187 		if (t->speed_hz)
188 			speed = min(t->speed_hz, spi->max_speed_hz);
189 	}
190 
191 	if (!speed || (speed > spi->max_speed_hz)) {
192 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
193 		return -EINVAL;
194 	}
195 
196 	/* Write new configuration */
197 	out_8(&hw->regs->mode, cs->mode);
198 
199 	/* Set the clock */
200 	/* opb_freq was already divided by 4 */
201 	scr = (hw->opb_freq / speed) - 1;
202 	if (scr > 0)
203 		cdm = min(scr, 0xff);
204 
205 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
206 
207 	if (in_8(&hw->regs->cdm) != cdm)
208 		out_8(&hw->regs->cdm, cdm);
209 
210 	mutex_lock(&hw->bitbang.lock);
211 	if (!hw->bitbang.busy) {
212 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
213 		/* Need to ndelay here? */
214 	}
215 	mutex_unlock(&hw->bitbang.lock);
216 
217 	return 0;
218 }
219 
220 static int spi_ppc4xx_setup(struct spi_device *spi)
221 {
222 	struct spi_ppc4xx_cs *cs = spi->controller_state;
223 
224 	if (!spi->max_speed_hz) {
225 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
226 		return -EINVAL;
227 	}
228 
229 	if (cs == NULL) {
230 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
231 		if (!cs)
232 			return -ENOMEM;
233 		spi->controller_state = cs;
234 	}
235 
236 	/*
237 	 * We set all bits of the SPI0_MODE register, so,
238 	 * no need to read-modify-write
239 	 */
240 	cs->mode = SPI_PPC4XX_MODE_SPE;
241 
242 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
243 	case SPI_MODE_0:
244 		cs->mode |= SPI_CLK_MODE0;
245 		break;
246 	case SPI_MODE_1:
247 		cs->mode |= SPI_CLK_MODE1;
248 		break;
249 	case SPI_MODE_2:
250 		cs->mode |= SPI_CLK_MODE2;
251 		break;
252 	case SPI_MODE_3:
253 		cs->mode |= SPI_CLK_MODE3;
254 		break;
255 	}
256 
257 	if (spi->mode & SPI_LSB_FIRST)
258 		cs->mode |= SPI_PPC4XX_MODE_RD;
259 
260 	return 0;
261 }
262 
263 static void spi_ppc4xx_chipsel(struct spi_device *spi, int value)
264 {
265 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
266 	unsigned int cs = spi->chip_select;
267 	unsigned int cspol;
268 
269 	/*
270 	 * If there are no chip selects at all, or if this is the special
271 	 * case of a non-existent (dummy) chip select, do nothing.
272 	 */
273 
274 	if (!hw->master->num_chipselect || hw->gpios[cs] == -EEXIST)
275 		return;
276 
277 	cspol = spi->mode & SPI_CS_HIGH ? 1 : 0;
278 	if (value == BITBANG_CS_INACTIVE)
279 		cspol = !cspol;
280 
281 	gpio_set_value(hw->gpios[cs], cspol);
282 }
283 
284 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
285 {
286 	struct ppc4xx_spi *hw;
287 	u8 status;
288 	u8 data;
289 	unsigned int count;
290 
291 	hw = (struct ppc4xx_spi *)dev_id;
292 
293 	status = in_8(&hw->regs->sr);
294 	if (!status)
295 		return IRQ_NONE;
296 
297 	/*
298 	 * BSY de-asserts one cycle after the transfer is complete.  The
299 	 * interrupt is asserted after the transfer is complete.  The exact
300 	 * relationship is not documented, hence this code.
301 	 */
302 
303 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
304 		u8 lstatus;
305 		int cnt = 0;
306 
307 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
308 		do {
309 			ndelay(10);
310 			lstatus = in_8(&hw->regs->sr);
311 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
312 
313 		if (cnt >= 100) {
314 			dev_err(hw->dev, "busywait: too many loops!\n");
315 			complete(&hw->done);
316 			return IRQ_HANDLED;
317 		} else {
318 			/* status is always 1 (RBR) here */
319 			status = in_8(&hw->regs->sr);
320 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
321 		}
322 	}
323 
324 	count = hw->count;
325 	hw->count++;
326 
327 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
328 	data = in_8(&hw->regs->rxd);
329 	if (hw->rx)
330 		hw->rx[count] = data;
331 
332 	count++;
333 
334 	if (count < hw->len) {
335 		data = hw->tx ? hw->tx[count] : 0;
336 		out_8(&hw->regs->txd, data);
337 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
338 	} else {
339 		complete(&hw->done);
340 	}
341 
342 	return IRQ_HANDLED;
343 }
344 
345 static void spi_ppc4xx_cleanup(struct spi_device *spi)
346 {
347 	kfree(spi->controller_state);
348 }
349 
350 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
351 {
352 	/*
353 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
354 	 * the 2nd I2C bus. We need to enable the the SPI bus before
355 	 * using it.
356 	 */
357 
358 	/* need to clear bit 14 to enable SPC */
359 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
360 }
361 
362 static void free_gpios(struct ppc4xx_spi *hw)
363 {
364 	if (hw->master->num_chipselect) {
365 		int i;
366 		for (i = 0; i < hw->master->num_chipselect; i++)
367 			if (gpio_is_valid(hw->gpios[i]))
368 				gpio_free(hw->gpios[i]);
369 
370 		kfree(hw->gpios);
371 		hw->gpios = NULL;
372 	}
373 }
374 
375 /*
376  * platform_device layer stuff...
377  */
378 static int spi_ppc4xx_of_probe(struct platform_device *op)
379 {
380 	struct ppc4xx_spi *hw;
381 	struct spi_master *master;
382 	struct spi_bitbang *bbp;
383 	struct resource resource;
384 	struct device_node *np = op->dev.of_node;
385 	struct device *dev = &op->dev;
386 	struct device_node *opbnp;
387 	int ret;
388 	int num_gpios;
389 	const unsigned int *clk;
390 
391 	master = spi_alloc_master(dev, sizeof *hw);
392 	if (master == NULL)
393 		return -ENOMEM;
394 	master->dev.of_node = np;
395 	platform_set_drvdata(op, master);
396 	hw = spi_master_get_devdata(master);
397 	hw->master = master;
398 	hw->dev = dev;
399 
400 	init_completion(&hw->done);
401 
402 	/*
403 	 * A count of zero implies a single SPI device without any chip-select.
404 	 * Note that of_gpio_count counts all gpios assigned to this spi master.
405 	 * This includes both "null" gpio's and real ones.
406 	 */
407 	num_gpios = of_gpio_count(np);
408 	if (num_gpios > 0) {
409 		int i;
410 
411 		hw->gpios = kcalloc(num_gpios, sizeof(*hw->gpios), GFP_KERNEL);
412 		if (!hw->gpios) {
413 			ret = -ENOMEM;
414 			goto free_master;
415 		}
416 
417 		for (i = 0; i < num_gpios; i++) {
418 			int gpio;
419 			enum of_gpio_flags flags;
420 
421 			gpio = of_get_gpio_flags(np, i, &flags);
422 			hw->gpios[i] = gpio;
423 
424 			if (gpio_is_valid(gpio)) {
425 				/* Real CS - set the initial state. */
426 				ret = gpio_request(gpio, np->name);
427 				if (ret < 0) {
428 					dev_err(dev,
429 						"can't request gpio #%d: %d\n",
430 						i, ret);
431 					goto free_gpios;
432 				}
433 
434 				gpio_direction_output(gpio,
435 						!!(flags & OF_GPIO_ACTIVE_LOW));
436 			} else if (gpio == -EEXIST) {
437 				; /* No CS, but that's OK. */
438 			} else {
439 				dev_err(dev, "invalid gpio #%d: %d\n", i, gpio);
440 				ret = -EINVAL;
441 				goto free_gpios;
442 			}
443 		}
444 	}
445 
446 	/* Setup the state for the bitbang driver */
447 	bbp = &hw->bitbang;
448 	bbp->master = hw->master;
449 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
450 	bbp->chipselect = spi_ppc4xx_chipsel;
451 	bbp->txrx_bufs = spi_ppc4xx_txrx;
452 	bbp->use_dma = 0;
453 	bbp->master->setup = spi_ppc4xx_setup;
454 	bbp->master->cleanup = spi_ppc4xx_cleanup;
455 	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
456 
457 	/* the spi->mode bits understood by this driver: */
458 	bbp->master->mode_bits =
459 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
460 
461 	/* this many pins in all GPIO controllers */
462 	bbp->master->num_chipselect = num_gpios > 0 ? num_gpios : 0;
463 
464 	/* Get the clock for the OPB */
465 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
466 	if (opbnp == NULL) {
467 		dev_err(dev, "OPB: cannot find node\n");
468 		ret = -ENODEV;
469 		goto free_gpios;
470 	}
471 	/* Get the clock (Hz) for the OPB */
472 	clk = of_get_property(opbnp, "clock-frequency", NULL);
473 	if (clk == NULL) {
474 		dev_err(dev, "OPB: no clock-frequency property set\n");
475 		of_node_put(opbnp);
476 		ret = -ENODEV;
477 		goto free_gpios;
478 	}
479 	hw->opb_freq = *clk;
480 	hw->opb_freq >>= 2;
481 	of_node_put(opbnp);
482 
483 	ret = of_address_to_resource(np, 0, &resource);
484 	if (ret) {
485 		dev_err(dev, "error while parsing device node resource\n");
486 		goto free_gpios;
487 	}
488 	hw->mapbase = resource.start;
489 	hw->mapsize = resource_size(&resource);
490 
491 	/* Sanity check */
492 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
493 		dev_err(dev, "too small to map registers\n");
494 		ret = -EINVAL;
495 		goto free_gpios;
496 	}
497 
498 	/* Request IRQ */
499 	hw->irqnum = irq_of_parse_and_map(np, 0);
500 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
501 			  0, "spi_ppc4xx_of", (void *)hw);
502 	if (ret) {
503 		dev_err(dev, "unable to allocate interrupt\n");
504 		goto free_gpios;
505 	}
506 
507 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
508 		dev_err(dev, "resource unavailable\n");
509 		ret = -EBUSY;
510 		goto request_mem_error;
511 	}
512 
513 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
514 
515 	if (!hw->regs) {
516 		dev_err(dev, "unable to memory map registers\n");
517 		ret = -ENXIO;
518 		goto map_io_error;
519 	}
520 
521 	spi_ppc4xx_enable(hw);
522 
523 	/* Finally register our spi controller */
524 	dev->dma_mask = 0;
525 	ret = spi_bitbang_start(bbp);
526 	if (ret) {
527 		dev_err(dev, "failed to register SPI master\n");
528 		goto unmap_regs;
529 	}
530 
531 	dev_info(dev, "driver initialized\n");
532 
533 	return 0;
534 
535 unmap_regs:
536 	iounmap(hw->regs);
537 map_io_error:
538 	release_mem_region(hw->mapbase, hw->mapsize);
539 request_mem_error:
540 	free_irq(hw->irqnum, hw);
541 free_gpios:
542 	free_gpios(hw);
543 free_master:
544 	spi_master_put(master);
545 
546 	dev_err(dev, "initialization failed\n");
547 	return ret;
548 }
549 
550 static int spi_ppc4xx_of_remove(struct platform_device *op)
551 {
552 	struct spi_master *master = platform_get_drvdata(op);
553 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
554 
555 	spi_bitbang_stop(&hw->bitbang);
556 	release_mem_region(hw->mapbase, hw->mapsize);
557 	free_irq(hw->irqnum, hw);
558 	iounmap(hw->regs);
559 	free_gpios(hw);
560 	spi_master_put(master);
561 	return 0;
562 }
563 
564 static const struct of_device_id spi_ppc4xx_of_match[] = {
565 	{ .compatible = "ibm,ppc4xx-spi", },
566 	{},
567 };
568 
569 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
570 
571 static struct platform_driver spi_ppc4xx_of_driver = {
572 	.probe = spi_ppc4xx_of_probe,
573 	.remove = spi_ppc4xx_of_remove,
574 	.driver = {
575 		.name = DRIVER_NAME,
576 		.of_match_table = spi_ppc4xx_of_match,
577 	},
578 };
579 module_platform_driver(spi_ppc4xx_of_driver);
580 
581 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
582 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
583 MODULE_LICENSE("GPL");
584