xref: /linux/drivers/spi/spi-ppc4xx.c (revision 57985788158a5a6b77612e531b9d89bcad06e47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * SPI_PPC4XX SPI controller driver.
4  *
5  * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de>
6  * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering
7  * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com>
8  *
9  * Based in part on drivers/spi/spi_s3c24xx.c
10  *
11  * Copyright (c) 2006 Ben Dooks
12  * Copyright (c) 2006 Simtec Electronics
13  *	Ben Dooks <ben@simtec.co.uk>
14  */
15 
16 /*
17  * The PPC4xx SPI controller has no FIFO so each sent/received byte will
18  * generate an interrupt to the CPU. This can cause high CPU utilization.
19  * This driver allows platforms to reduce the interrupt load on the CPU
20  * during SPI transfers by setting max_speed_hz via the device tree.
21  */
22 
23 #include <linux/module.h>
24 #include <linux/sched.h>
25 #include <linux/slab.h>
26 #include <linux/errno.h>
27 #include <linux/wait.h>
28 #include <linux/of_address.h>
29 #include <linux/of_irq.h>
30 #include <linux/of_platform.h>
31 #include <linux/interrupt.h>
32 #include <linux/delay.h>
33 
34 #include <linux/spi/spi.h>
35 #include <linux/spi/spi_bitbang.h>
36 
37 #include <asm/io.h>
38 #include <asm/dcr.h>
39 #include <asm/dcr-regs.h>
40 
41 /* bits in mode register - bit 0 is MSb */
42 
43 /*
44  * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock"
45  * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock"
46  * Note: This is the inverse of CPHA.
47  */
48 #define SPI_PPC4XX_MODE_SCP	(0x80 >> 3)
49 
50 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */
51 #define SPI_PPC4XX_MODE_SPE	(0x80 >> 4)
52 
53 /*
54  * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode
55  * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode
56  * Note: This is identical to SPI_LSB_FIRST.
57  */
58 #define SPI_PPC4XX_MODE_RD	(0x80 >> 5)
59 
60 /*
61  * SPI_PPC4XX_MODE_CI = 0 means "clock idles low"
62  * SPI_PPC4XX_MODE_CI = 1 means "clock idles high"
63  * Note: This is identical to CPOL.
64  */
65 #define SPI_PPC4XX_MODE_CI	(0x80 >> 6)
66 
67 /*
68  * SPI_PPC4XX_MODE_IL = 0 means "loopback disable"
69  * SPI_PPC4XX_MODE_IL = 1 means "loopback enable"
70  */
71 #define SPI_PPC4XX_MODE_IL	(0x80 >> 7)
72 
73 /* bits in control register */
74 /* starts a transfer when set */
75 #define SPI_PPC4XX_CR_STR	(0x80 >> 7)
76 
77 /* bits in status register */
78 /* port is busy with a transfer */
79 #define SPI_PPC4XX_SR_BSY	(0x80 >> 6)
80 /* RxD ready */
81 #define SPI_PPC4XX_SR_RBR	(0x80 >> 7)
82 
83 /* clock settings (SCP and CI) for various SPI modes */
84 #define SPI_CLK_MODE0	(SPI_PPC4XX_MODE_SCP | 0)
85 #define SPI_CLK_MODE1	(0 | 0)
86 #define SPI_CLK_MODE2	(SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI)
87 #define SPI_CLK_MODE3	(0 | SPI_PPC4XX_MODE_CI)
88 
89 #define DRIVER_NAME	"spi_ppc4xx_of"
90 
91 struct spi_ppc4xx_regs {
92 	u8 mode;
93 	u8 rxd;
94 	u8 txd;
95 	u8 cr;
96 	u8 sr;
97 	u8 dummy;
98 	/*
99 	 * Clock divisor modulus register
100 	 * This uses the following formula:
101 	 *    SCPClkOut = OPBCLK/(4(CDM + 1))
102 	 * or
103 	 *    CDM = (OPBCLK/4*SCPClkOut) - 1
104 	 * bit 0 is the MSb!
105 	 */
106 	u8 cdm;
107 };
108 
109 /* SPI Controller driver's private data. */
110 struct ppc4xx_spi {
111 	/* bitbang has to be first */
112 	struct spi_bitbang bitbang;
113 	struct completion done;
114 
115 	u64 mapbase;
116 	u64 mapsize;
117 	int irqnum;
118 	/* need this to set the SPI clock */
119 	unsigned int opb_freq;
120 
121 	/* for transfers */
122 	int len;
123 	int count;
124 	/* data buffers */
125 	const unsigned char *tx;
126 	unsigned char *rx;
127 
128 	struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */
129 	struct spi_master *master;
130 	struct device *dev;
131 };
132 
133 /* need this so we can set the clock in the chipselect routine */
134 struct spi_ppc4xx_cs {
135 	u8 mode;
136 };
137 
138 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t)
139 {
140 	struct ppc4xx_spi *hw;
141 	u8 data;
142 
143 	dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n",
144 		t->tx_buf, t->rx_buf, t->len);
145 
146 	hw = spi_master_get_devdata(spi->master);
147 
148 	hw->tx = t->tx_buf;
149 	hw->rx = t->rx_buf;
150 	hw->len = t->len;
151 	hw->count = 0;
152 
153 	/* send the first byte */
154 	data = hw->tx ? hw->tx[0] : 0;
155 	out_8(&hw->regs->txd, data);
156 	out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
157 	wait_for_completion(&hw->done);
158 
159 	return hw->count;
160 }
161 
162 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t)
163 {
164 	struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master);
165 	struct spi_ppc4xx_cs *cs = spi->controller_state;
166 	int scr;
167 	u8 cdm = 0;
168 	u32 speed;
169 	u8 bits_per_word;
170 
171 	/* Start with the generic configuration for this device. */
172 	bits_per_word = spi->bits_per_word;
173 	speed = spi->max_speed_hz;
174 
175 	/*
176 	 * Modify the configuration if the transfer overrides it.  Do not allow
177 	 * the transfer to overwrite the generic configuration with zeros.
178 	 */
179 	if (t) {
180 		if (t->bits_per_word)
181 			bits_per_word = t->bits_per_word;
182 
183 		if (t->speed_hz)
184 			speed = min(t->speed_hz, spi->max_speed_hz);
185 	}
186 
187 	if (!speed || (speed > spi->max_speed_hz)) {
188 		dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed);
189 		return -EINVAL;
190 	}
191 
192 	/* Write new configuration */
193 	out_8(&hw->regs->mode, cs->mode);
194 
195 	/* Set the clock */
196 	/* opb_freq was already divided by 4 */
197 	scr = (hw->opb_freq / speed) - 1;
198 	if (scr > 0)
199 		cdm = min(scr, 0xff);
200 
201 	dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed);
202 
203 	if (in_8(&hw->regs->cdm) != cdm)
204 		out_8(&hw->regs->cdm, cdm);
205 
206 	mutex_lock(&hw->bitbang.lock);
207 	if (!hw->bitbang.busy) {
208 		hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE);
209 		/* Need to ndelay here? */
210 	}
211 	mutex_unlock(&hw->bitbang.lock);
212 
213 	return 0;
214 }
215 
216 static int spi_ppc4xx_setup(struct spi_device *spi)
217 {
218 	struct spi_ppc4xx_cs *cs = spi->controller_state;
219 
220 	if (!spi->max_speed_hz) {
221 		dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n");
222 		return -EINVAL;
223 	}
224 
225 	if (cs == NULL) {
226 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
227 		if (!cs)
228 			return -ENOMEM;
229 		spi->controller_state = cs;
230 	}
231 
232 	/*
233 	 * We set all bits of the SPI0_MODE register, so,
234 	 * no need to read-modify-write
235 	 */
236 	cs->mode = SPI_PPC4XX_MODE_SPE;
237 
238 	switch (spi->mode & (SPI_CPHA | SPI_CPOL)) {
239 	case SPI_MODE_0:
240 		cs->mode |= SPI_CLK_MODE0;
241 		break;
242 	case SPI_MODE_1:
243 		cs->mode |= SPI_CLK_MODE1;
244 		break;
245 	case SPI_MODE_2:
246 		cs->mode |= SPI_CLK_MODE2;
247 		break;
248 	case SPI_MODE_3:
249 		cs->mode |= SPI_CLK_MODE3;
250 		break;
251 	}
252 
253 	if (spi->mode & SPI_LSB_FIRST)
254 		cs->mode |= SPI_PPC4XX_MODE_RD;
255 
256 	return 0;
257 }
258 
259 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id)
260 {
261 	struct ppc4xx_spi *hw;
262 	u8 status;
263 	u8 data;
264 	unsigned int count;
265 
266 	hw = (struct ppc4xx_spi *)dev_id;
267 
268 	status = in_8(&hw->regs->sr);
269 	if (!status)
270 		return IRQ_NONE;
271 
272 	/*
273 	 * BSY de-asserts one cycle after the transfer is complete.  The
274 	 * interrupt is asserted after the transfer is complete.  The exact
275 	 * relationship is not documented, hence this code.
276 	 */
277 
278 	if (unlikely(status & SPI_PPC4XX_SR_BSY)) {
279 		u8 lstatus;
280 		int cnt = 0;
281 
282 		dev_dbg(hw->dev, "got interrupt but spi still busy?\n");
283 		do {
284 			ndelay(10);
285 			lstatus = in_8(&hw->regs->sr);
286 		} while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY);
287 
288 		if (cnt >= 100) {
289 			dev_err(hw->dev, "busywait: too many loops!\n");
290 			complete(&hw->done);
291 			return IRQ_HANDLED;
292 		} else {
293 			/* status is always 1 (RBR) here */
294 			status = in_8(&hw->regs->sr);
295 			dev_dbg(hw->dev, "loops %d status %x\n", cnt, status);
296 		}
297 	}
298 
299 	count = hw->count;
300 	hw->count++;
301 
302 	/* RBR triggered this interrupt.  Therefore, data must be ready. */
303 	data = in_8(&hw->regs->rxd);
304 	if (hw->rx)
305 		hw->rx[count] = data;
306 
307 	count++;
308 
309 	if (count < hw->len) {
310 		data = hw->tx ? hw->tx[count] : 0;
311 		out_8(&hw->regs->txd, data);
312 		out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR);
313 	} else {
314 		complete(&hw->done);
315 	}
316 
317 	return IRQ_HANDLED;
318 }
319 
320 static void spi_ppc4xx_cleanup(struct spi_device *spi)
321 {
322 	kfree(spi->controller_state);
323 }
324 
325 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw)
326 {
327 	/*
328 	 * On all 4xx PPC's the SPI bus is shared/multiplexed with
329 	 * the 2nd I2C bus. We need to enable the the SPI bus before
330 	 * using it.
331 	 */
332 
333 	/* need to clear bit 14 to enable SPC */
334 	dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0);
335 }
336 
337 /*
338  * platform_device layer stuff...
339  */
340 static int spi_ppc4xx_of_probe(struct platform_device *op)
341 {
342 	struct ppc4xx_spi *hw;
343 	struct spi_master *master;
344 	struct spi_bitbang *bbp;
345 	struct resource resource;
346 	struct device_node *np = op->dev.of_node;
347 	struct device *dev = &op->dev;
348 	struct device_node *opbnp;
349 	int ret;
350 	const unsigned int *clk;
351 
352 	master = spi_alloc_master(dev, sizeof *hw);
353 	if (master == NULL)
354 		return -ENOMEM;
355 	master->dev.of_node = np;
356 	platform_set_drvdata(op, master);
357 	hw = spi_master_get_devdata(master);
358 	hw->master = master;
359 	hw->dev = dev;
360 
361 	init_completion(&hw->done);
362 
363 	/* Setup the state for the bitbang driver */
364 	bbp = &hw->bitbang;
365 	bbp->master = hw->master;
366 	bbp->setup_transfer = spi_ppc4xx_setupxfer;
367 	bbp->txrx_bufs = spi_ppc4xx_txrx;
368 	bbp->use_dma = 0;
369 	bbp->master->setup = spi_ppc4xx_setup;
370 	bbp->master->cleanup = spi_ppc4xx_cleanup;
371 	bbp->master->bits_per_word_mask = SPI_BPW_MASK(8);
372 	bbp->master->use_gpio_descriptors = true;
373 	/*
374 	 * The SPI core will count the number of GPIO descriptors to figure
375 	 * out the number of chip selects available on the platform.
376 	 */
377 	bbp->master->num_chipselect = 0;
378 
379 	/* the spi->mode bits understood by this driver: */
380 	bbp->master->mode_bits =
381 		SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST;
382 
383 	/* Get the clock for the OPB */
384 	opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb");
385 	if (opbnp == NULL) {
386 		dev_err(dev, "OPB: cannot find node\n");
387 		ret = -ENODEV;
388 		goto free_master;
389 	}
390 	/* Get the clock (Hz) for the OPB */
391 	clk = of_get_property(opbnp, "clock-frequency", NULL);
392 	if (clk == NULL) {
393 		dev_err(dev, "OPB: no clock-frequency property set\n");
394 		of_node_put(opbnp);
395 		ret = -ENODEV;
396 		goto free_master;
397 	}
398 	hw->opb_freq = *clk;
399 	hw->opb_freq >>= 2;
400 	of_node_put(opbnp);
401 
402 	ret = of_address_to_resource(np, 0, &resource);
403 	if (ret) {
404 		dev_err(dev, "error while parsing device node resource\n");
405 		goto free_master;
406 	}
407 	hw->mapbase = resource.start;
408 	hw->mapsize = resource_size(&resource);
409 
410 	/* Sanity check */
411 	if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) {
412 		dev_err(dev, "too small to map registers\n");
413 		ret = -EINVAL;
414 		goto free_master;
415 	}
416 
417 	/* Request IRQ */
418 	hw->irqnum = irq_of_parse_and_map(np, 0);
419 	ret = request_irq(hw->irqnum, spi_ppc4xx_int,
420 			  0, "spi_ppc4xx_of", (void *)hw);
421 	if (ret) {
422 		dev_err(dev, "unable to allocate interrupt\n");
423 		goto free_master;
424 	}
425 
426 	if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) {
427 		dev_err(dev, "resource unavailable\n");
428 		ret = -EBUSY;
429 		goto request_mem_error;
430 	}
431 
432 	hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs));
433 
434 	if (!hw->regs) {
435 		dev_err(dev, "unable to memory map registers\n");
436 		ret = -ENXIO;
437 		goto map_io_error;
438 	}
439 
440 	spi_ppc4xx_enable(hw);
441 
442 	/* Finally register our spi controller */
443 	dev->dma_mask = 0;
444 	ret = spi_bitbang_start(bbp);
445 	if (ret) {
446 		dev_err(dev, "failed to register SPI master\n");
447 		goto unmap_regs;
448 	}
449 
450 	dev_info(dev, "driver initialized\n");
451 
452 	return 0;
453 
454 unmap_regs:
455 	iounmap(hw->regs);
456 map_io_error:
457 	release_mem_region(hw->mapbase, hw->mapsize);
458 request_mem_error:
459 	free_irq(hw->irqnum, hw);
460 free_master:
461 	spi_master_put(master);
462 
463 	dev_err(dev, "initialization failed\n");
464 	return ret;
465 }
466 
467 static int spi_ppc4xx_of_remove(struct platform_device *op)
468 {
469 	struct spi_master *master = platform_get_drvdata(op);
470 	struct ppc4xx_spi *hw = spi_master_get_devdata(master);
471 
472 	spi_bitbang_stop(&hw->bitbang);
473 	release_mem_region(hw->mapbase, hw->mapsize);
474 	free_irq(hw->irqnum, hw);
475 	iounmap(hw->regs);
476 	spi_master_put(master);
477 	return 0;
478 }
479 
480 static const struct of_device_id spi_ppc4xx_of_match[] = {
481 	{ .compatible = "ibm,ppc4xx-spi", },
482 	{},
483 };
484 
485 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match);
486 
487 static struct platform_driver spi_ppc4xx_of_driver = {
488 	.probe = spi_ppc4xx_of_probe,
489 	.remove = spi_ppc4xx_of_remove,
490 	.driver = {
491 		.name = DRIVER_NAME,
492 		.of_match_table = spi_ppc4xx_of_match,
493 	},
494 };
495 module_platform_driver(spi_ppc4xx_of_driver);
496 
497 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese");
498 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver");
499 MODULE_LICENSE("GPL");
500