1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * SPI_PPC4XX SPI controller driver. 4 * 5 * Copyright (C) 2007 Gary Jennejohn <garyj@denx.de> 6 * Copyright 2008 Stefan Roese <sr@denx.de>, DENX Software Engineering 7 * Copyright 2009 Harris Corporation, Steven A. Falco <sfalco@harris.com> 8 * 9 * Based in part on drivers/spi/spi_s3c24xx.c 10 * 11 * Copyright (c) 2006 Ben Dooks 12 * Copyright (c) 2006 Simtec Electronics 13 * Ben Dooks <ben@simtec.co.uk> 14 */ 15 16 /* 17 * The PPC4xx SPI controller has no FIFO so each sent/received byte will 18 * generate an interrupt to the CPU. This can cause high CPU utilization. 19 * This driver allows platforms to reduce the interrupt load on the CPU 20 * during SPI transfers by setting max_speed_hz via the device tree. 21 */ 22 23 #include <linux/module.h> 24 #include <linux/sched.h> 25 #include <linux/slab.h> 26 #include <linux/errno.h> 27 #include <linux/wait.h> 28 #include <linux/of_address.h> 29 #include <linux/of_irq.h> 30 #include <linux/of_platform.h> 31 #include <linux/interrupt.h> 32 #include <linux/delay.h> 33 34 #include <linux/spi/spi.h> 35 #include <linux/spi/spi_bitbang.h> 36 37 #include <asm/io.h> 38 #include <asm/dcr.h> 39 #include <asm/dcr-regs.h> 40 41 /* bits in mode register - bit 0 is MSb */ 42 43 /* 44 * SPI_PPC4XX_MODE_SCP = 0 means "data latched on trailing edge of clock" 45 * SPI_PPC4XX_MODE_SCP = 1 means "data latched on leading edge of clock" 46 * Note: This is the inverse of CPHA. 47 */ 48 #define SPI_PPC4XX_MODE_SCP (0x80 >> 3) 49 50 /* SPI_PPC4XX_MODE_SPE = 1 means "port enabled" */ 51 #define SPI_PPC4XX_MODE_SPE (0x80 >> 4) 52 53 /* 54 * SPI_PPC4XX_MODE_RD = 0 means "MSB first" - this is the normal mode 55 * SPI_PPC4XX_MODE_RD = 1 means "LSB first" - this is bit-reversed mode 56 * Note: This is identical to SPI_LSB_FIRST. 57 */ 58 #define SPI_PPC4XX_MODE_RD (0x80 >> 5) 59 60 /* 61 * SPI_PPC4XX_MODE_CI = 0 means "clock idles low" 62 * SPI_PPC4XX_MODE_CI = 1 means "clock idles high" 63 * Note: This is identical to CPOL. 64 */ 65 #define SPI_PPC4XX_MODE_CI (0x80 >> 6) 66 67 /* 68 * SPI_PPC4XX_MODE_IL = 0 means "loopback disable" 69 * SPI_PPC4XX_MODE_IL = 1 means "loopback enable" 70 */ 71 #define SPI_PPC4XX_MODE_IL (0x80 >> 7) 72 73 /* bits in control register */ 74 /* starts a transfer when set */ 75 #define SPI_PPC4XX_CR_STR (0x80 >> 7) 76 77 /* bits in status register */ 78 /* port is busy with a transfer */ 79 #define SPI_PPC4XX_SR_BSY (0x80 >> 6) 80 /* RxD ready */ 81 #define SPI_PPC4XX_SR_RBR (0x80 >> 7) 82 83 /* clock settings (SCP and CI) for various SPI modes */ 84 #define SPI_CLK_MODE0 (SPI_PPC4XX_MODE_SCP | 0) 85 #define SPI_CLK_MODE1 (0 | 0) 86 #define SPI_CLK_MODE2 (SPI_PPC4XX_MODE_SCP | SPI_PPC4XX_MODE_CI) 87 #define SPI_CLK_MODE3 (0 | SPI_PPC4XX_MODE_CI) 88 89 #define DRIVER_NAME "spi_ppc4xx_of" 90 91 struct spi_ppc4xx_regs { 92 u8 mode; 93 u8 rxd; 94 u8 txd; 95 u8 cr; 96 u8 sr; 97 u8 dummy; 98 /* 99 * Clock divisor modulus register 100 * This uses the following formula: 101 * SCPClkOut = OPBCLK/(4(CDM + 1)) 102 * or 103 * CDM = (OPBCLK/4*SCPClkOut) - 1 104 * bit 0 is the MSb! 105 */ 106 u8 cdm; 107 }; 108 109 /* SPI Controller driver's private data. */ 110 struct ppc4xx_spi { 111 /* bitbang has to be first */ 112 struct spi_bitbang bitbang; 113 struct completion done; 114 115 u64 mapbase; 116 u64 mapsize; 117 int irqnum; 118 /* need this to set the SPI clock */ 119 unsigned int opb_freq; 120 121 /* for transfers */ 122 int len; 123 int count; 124 /* data buffers */ 125 const unsigned char *tx; 126 unsigned char *rx; 127 128 struct spi_ppc4xx_regs __iomem *regs; /* pointer to the registers */ 129 struct spi_master *master; 130 struct device *dev; 131 }; 132 133 /* need this so we can set the clock in the chipselect routine */ 134 struct spi_ppc4xx_cs { 135 u8 mode; 136 }; 137 138 static int spi_ppc4xx_txrx(struct spi_device *spi, struct spi_transfer *t) 139 { 140 struct ppc4xx_spi *hw; 141 u8 data; 142 143 dev_dbg(&spi->dev, "txrx: tx %p, rx %p, len %d\n", 144 t->tx_buf, t->rx_buf, t->len); 145 146 hw = spi_master_get_devdata(spi->master); 147 148 hw->tx = t->tx_buf; 149 hw->rx = t->rx_buf; 150 hw->len = t->len; 151 hw->count = 0; 152 153 /* send the first byte */ 154 data = hw->tx ? hw->tx[0] : 0; 155 out_8(&hw->regs->txd, data); 156 out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR); 157 wait_for_completion(&hw->done); 158 159 return hw->count; 160 } 161 162 static int spi_ppc4xx_setupxfer(struct spi_device *spi, struct spi_transfer *t) 163 { 164 struct ppc4xx_spi *hw = spi_master_get_devdata(spi->master); 165 struct spi_ppc4xx_cs *cs = spi->controller_state; 166 int scr; 167 u8 cdm = 0; 168 u32 speed; 169 u8 bits_per_word; 170 171 /* Start with the generic configuration for this device. */ 172 bits_per_word = spi->bits_per_word; 173 speed = spi->max_speed_hz; 174 175 /* 176 * Modify the configuration if the transfer overrides it. Do not allow 177 * the transfer to overwrite the generic configuration with zeros. 178 */ 179 if (t) { 180 if (t->bits_per_word) 181 bits_per_word = t->bits_per_word; 182 183 if (t->speed_hz) 184 speed = min(t->speed_hz, spi->max_speed_hz); 185 } 186 187 if (!speed || (speed > spi->max_speed_hz)) { 188 dev_err(&spi->dev, "invalid speed_hz (%d)\n", speed); 189 return -EINVAL; 190 } 191 192 /* Write new configuration */ 193 out_8(&hw->regs->mode, cs->mode); 194 195 /* Set the clock */ 196 /* opb_freq was already divided by 4 */ 197 scr = (hw->opb_freq / speed) - 1; 198 if (scr > 0) 199 cdm = min(scr, 0xff); 200 201 dev_dbg(&spi->dev, "setting pre-scaler to %d (hz %d)\n", cdm, speed); 202 203 if (in_8(&hw->regs->cdm) != cdm) 204 out_8(&hw->regs->cdm, cdm); 205 206 mutex_lock(&hw->bitbang.lock); 207 if (!hw->bitbang.busy) { 208 hw->bitbang.chipselect(spi, BITBANG_CS_INACTIVE); 209 /* Need to ndelay here? */ 210 } 211 mutex_unlock(&hw->bitbang.lock); 212 213 return 0; 214 } 215 216 static int spi_ppc4xx_setup(struct spi_device *spi) 217 { 218 struct spi_ppc4xx_cs *cs = spi->controller_state; 219 220 if (!spi->max_speed_hz) { 221 dev_err(&spi->dev, "invalid max_speed_hz (must be non-zero)\n"); 222 return -EINVAL; 223 } 224 225 if (cs == NULL) { 226 cs = kzalloc(sizeof *cs, GFP_KERNEL); 227 if (!cs) 228 return -ENOMEM; 229 spi->controller_state = cs; 230 } 231 232 /* 233 * We set all bits of the SPI0_MODE register, so, 234 * no need to read-modify-write 235 */ 236 cs->mode = SPI_PPC4XX_MODE_SPE; 237 238 switch (spi->mode & (SPI_CPHA | SPI_CPOL)) { 239 case SPI_MODE_0: 240 cs->mode |= SPI_CLK_MODE0; 241 break; 242 case SPI_MODE_1: 243 cs->mode |= SPI_CLK_MODE1; 244 break; 245 case SPI_MODE_2: 246 cs->mode |= SPI_CLK_MODE2; 247 break; 248 case SPI_MODE_3: 249 cs->mode |= SPI_CLK_MODE3; 250 break; 251 } 252 253 if (spi->mode & SPI_LSB_FIRST) 254 cs->mode |= SPI_PPC4XX_MODE_RD; 255 256 return 0; 257 } 258 259 static irqreturn_t spi_ppc4xx_int(int irq, void *dev_id) 260 { 261 struct ppc4xx_spi *hw; 262 u8 status; 263 u8 data; 264 unsigned int count; 265 266 hw = (struct ppc4xx_spi *)dev_id; 267 268 status = in_8(&hw->regs->sr); 269 if (!status) 270 return IRQ_NONE; 271 272 /* 273 * BSY de-asserts one cycle after the transfer is complete. The 274 * interrupt is asserted after the transfer is complete. The exact 275 * relationship is not documented, hence this code. 276 */ 277 278 if (unlikely(status & SPI_PPC4XX_SR_BSY)) { 279 u8 lstatus; 280 int cnt = 0; 281 282 dev_dbg(hw->dev, "got interrupt but spi still busy?\n"); 283 do { 284 ndelay(10); 285 lstatus = in_8(&hw->regs->sr); 286 } while (++cnt < 100 && lstatus & SPI_PPC4XX_SR_BSY); 287 288 if (cnt >= 100) { 289 dev_err(hw->dev, "busywait: too many loops!\n"); 290 complete(&hw->done); 291 return IRQ_HANDLED; 292 } else { 293 /* status is always 1 (RBR) here */ 294 status = in_8(&hw->regs->sr); 295 dev_dbg(hw->dev, "loops %d status %x\n", cnt, status); 296 } 297 } 298 299 count = hw->count; 300 hw->count++; 301 302 /* RBR triggered this interrupt. Therefore, data must be ready. */ 303 data = in_8(&hw->regs->rxd); 304 if (hw->rx) 305 hw->rx[count] = data; 306 307 count++; 308 309 if (count < hw->len) { 310 data = hw->tx ? hw->tx[count] : 0; 311 out_8(&hw->regs->txd, data); 312 out_8(&hw->regs->cr, SPI_PPC4XX_CR_STR); 313 } else { 314 complete(&hw->done); 315 } 316 317 return IRQ_HANDLED; 318 } 319 320 static void spi_ppc4xx_cleanup(struct spi_device *spi) 321 { 322 kfree(spi->controller_state); 323 } 324 325 static void spi_ppc4xx_enable(struct ppc4xx_spi *hw) 326 { 327 /* 328 * On all 4xx PPC's the SPI bus is shared/multiplexed with 329 * the 2nd I2C bus. We need to enable the the SPI bus before 330 * using it. 331 */ 332 333 /* need to clear bit 14 to enable SPC */ 334 dcri_clrset(SDR0, SDR0_PFC1, 0x80000000 >> 14, 0); 335 } 336 337 /* 338 * platform_device layer stuff... 339 */ 340 static int spi_ppc4xx_of_probe(struct platform_device *op) 341 { 342 struct ppc4xx_spi *hw; 343 struct spi_master *master; 344 struct spi_bitbang *bbp; 345 struct resource resource; 346 struct device_node *np = op->dev.of_node; 347 struct device *dev = &op->dev; 348 struct device_node *opbnp; 349 int ret; 350 const unsigned int *clk; 351 352 master = spi_alloc_master(dev, sizeof *hw); 353 if (master == NULL) 354 return -ENOMEM; 355 master->dev.of_node = np; 356 platform_set_drvdata(op, master); 357 hw = spi_master_get_devdata(master); 358 hw->master = master; 359 hw->dev = dev; 360 361 init_completion(&hw->done); 362 363 /* Setup the state for the bitbang driver */ 364 bbp = &hw->bitbang; 365 bbp->master = hw->master; 366 bbp->setup_transfer = spi_ppc4xx_setupxfer; 367 bbp->txrx_bufs = spi_ppc4xx_txrx; 368 bbp->use_dma = 0; 369 bbp->master->setup = spi_ppc4xx_setup; 370 bbp->master->cleanup = spi_ppc4xx_cleanup; 371 bbp->master->bits_per_word_mask = SPI_BPW_MASK(8); 372 bbp->master->use_gpio_descriptors = true; 373 /* 374 * The SPI core will count the number of GPIO descriptors to figure 375 * out the number of chip selects available on the platform. 376 */ 377 bbp->master->num_chipselect = 0; 378 379 /* the spi->mode bits understood by this driver: */ 380 bbp->master->mode_bits = 381 SPI_CPHA | SPI_CPOL | SPI_CS_HIGH | SPI_LSB_FIRST; 382 383 /* Get the clock for the OPB */ 384 opbnp = of_find_compatible_node(NULL, NULL, "ibm,opb"); 385 if (opbnp == NULL) { 386 dev_err(dev, "OPB: cannot find node\n"); 387 ret = -ENODEV; 388 goto free_master; 389 } 390 /* Get the clock (Hz) for the OPB */ 391 clk = of_get_property(opbnp, "clock-frequency", NULL); 392 if (clk == NULL) { 393 dev_err(dev, "OPB: no clock-frequency property set\n"); 394 of_node_put(opbnp); 395 ret = -ENODEV; 396 goto free_master; 397 } 398 hw->opb_freq = *clk; 399 hw->opb_freq >>= 2; 400 of_node_put(opbnp); 401 402 ret = of_address_to_resource(np, 0, &resource); 403 if (ret) { 404 dev_err(dev, "error while parsing device node resource\n"); 405 goto free_master; 406 } 407 hw->mapbase = resource.start; 408 hw->mapsize = resource_size(&resource); 409 410 /* Sanity check */ 411 if (hw->mapsize < sizeof(struct spi_ppc4xx_regs)) { 412 dev_err(dev, "too small to map registers\n"); 413 ret = -EINVAL; 414 goto free_master; 415 } 416 417 /* Request IRQ */ 418 hw->irqnum = irq_of_parse_and_map(np, 0); 419 ret = request_irq(hw->irqnum, spi_ppc4xx_int, 420 0, "spi_ppc4xx_of", (void *)hw); 421 if (ret) { 422 dev_err(dev, "unable to allocate interrupt\n"); 423 goto free_master; 424 } 425 426 if (!request_mem_region(hw->mapbase, hw->mapsize, DRIVER_NAME)) { 427 dev_err(dev, "resource unavailable\n"); 428 ret = -EBUSY; 429 goto request_mem_error; 430 } 431 432 hw->regs = ioremap(hw->mapbase, sizeof(struct spi_ppc4xx_regs)); 433 434 if (!hw->regs) { 435 dev_err(dev, "unable to memory map registers\n"); 436 ret = -ENXIO; 437 goto map_io_error; 438 } 439 440 spi_ppc4xx_enable(hw); 441 442 /* Finally register our spi controller */ 443 dev->dma_mask = 0; 444 ret = spi_bitbang_start(bbp); 445 if (ret) { 446 dev_err(dev, "failed to register SPI master\n"); 447 goto unmap_regs; 448 } 449 450 dev_info(dev, "driver initialized\n"); 451 452 return 0; 453 454 unmap_regs: 455 iounmap(hw->regs); 456 map_io_error: 457 release_mem_region(hw->mapbase, hw->mapsize); 458 request_mem_error: 459 free_irq(hw->irqnum, hw); 460 free_master: 461 spi_master_put(master); 462 463 dev_err(dev, "initialization failed\n"); 464 return ret; 465 } 466 467 static int spi_ppc4xx_of_remove(struct platform_device *op) 468 { 469 struct spi_master *master = platform_get_drvdata(op); 470 struct ppc4xx_spi *hw = spi_master_get_devdata(master); 471 472 spi_bitbang_stop(&hw->bitbang); 473 release_mem_region(hw->mapbase, hw->mapsize); 474 free_irq(hw->irqnum, hw); 475 iounmap(hw->regs); 476 spi_master_put(master); 477 return 0; 478 } 479 480 static const struct of_device_id spi_ppc4xx_of_match[] = { 481 { .compatible = "ibm,ppc4xx-spi", }, 482 {}, 483 }; 484 485 MODULE_DEVICE_TABLE(of, spi_ppc4xx_of_match); 486 487 static struct platform_driver spi_ppc4xx_of_driver = { 488 .probe = spi_ppc4xx_of_probe, 489 .remove = spi_ppc4xx_of_remove, 490 .driver = { 491 .name = DRIVER_NAME, 492 .of_match_table = spi_ppc4xx_of_match, 493 }, 494 }; 495 module_platform_driver(spi_ppc4xx_of_driver); 496 497 MODULE_AUTHOR("Gary Jennejohn & Stefan Roese"); 498 MODULE_DESCRIPTION("Simple PPC4xx SPI Driver"); 499 MODULE_LICENSE("GPL"); 500