xref: /linux/drivers/spi/spi-pl022.c (revision d63a42257065a5f8b992c9a687015822a6ae3c2e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4  *
5  * Copyright (C) 2008-2012 ST-Ericsson AB
6  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7  *
8  * Author: Linus Walleij <linus.walleij@stericsson.com>
9  *
10  * Initial version inspired by:
11  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12  * Initial adoption to PL022 by:
13  *      Sachin Verma <sachin.verma@st.com>
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/pinctrl/consumer.h>
36 
37 /*
38  * This macro is used to define some register default values.
39  * reg is masked with mask, the OR:ed with an (again masked)
40  * val shifted sb steps to the left.
41  */
42 #define SSP_WRITE_BITS(reg, val, mask, sb) \
43  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
44 
45 /*
46  * This macro is also used to define some default values.
47  * It will just shift val by sb steps to the left and mask
48  * the result with mask.
49  */
50 #define GEN_MASK_BITS(val, mask, sb) \
51  (((val)<<(sb)) & (mask))
52 
53 #define DRIVE_TX		0
54 #define DO_NOT_DRIVE_TX		1
55 
56 #define DO_NOT_QUEUE_DMA	0
57 #define QUEUE_DMA		1
58 
59 #define RX_TRANSFER		1
60 #define TX_TRANSFER		2
61 
62 /*
63  * Macros to access SSP Registers with their offsets
64  */
65 #define SSP_CR0(r)	(r + 0x000)
66 #define SSP_CR1(r)	(r + 0x004)
67 #define SSP_DR(r)	(r + 0x008)
68 #define SSP_SR(r)	(r + 0x00C)
69 #define SSP_CPSR(r)	(r + 0x010)
70 #define SSP_IMSC(r)	(r + 0x014)
71 #define SSP_RIS(r)	(r + 0x018)
72 #define SSP_MIS(r)	(r + 0x01C)
73 #define SSP_ICR(r)	(r + 0x020)
74 #define SSP_DMACR(r)	(r + 0x024)
75 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
76 #define SSP_ITCR(r)	(r + 0x080)
77 #define SSP_ITIP(r)	(r + 0x084)
78 #define SSP_ITOP(r)	(r + 0x088)
79 #define SSP_TDR(r)	(r + 0x08C)
80 
81 #define SSP_PID0(r)	(r + 0xFE0)
82 #define SSP_PID1(r)	(r + 0xFE4)
83 #define SSP_PID2(r)	(r + 0xFE8)
84 #define SSP_PID3(r)	(r + 0xFEC)
85 
86 #define SSP_CID0(r)	(r + 0xFF0)
87 #define SSP_CID1(r)	(r + 0xFF4)
88 #define SSP_CID2(r)	(r + 0xFF8)
89 #define SSP_CID3(r)	(r + 0xFFC)
90 
91 /*
92  * SSP Control Register 0  - SSP_CR0
93  */
94 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
95 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
96 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
97 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
98 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
99 
100 /*
101  * The ST version of this block moves som bits
102  * in SSP_CR0 and extends it to 32 bits
103  */
104 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
105 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
106 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
107 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
108 
109 /*
110  * SSP Control Register 0  - SSP_CR1
111  */
112 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
113 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
114 #define SSP_CR1_MASK_MS		(0x1UL << 2)
115 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
116 
117 /*
118  * The ST version of this block adds some bits
119  * in SSP_CR1
120  */
121 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
122 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
123 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
124 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
125 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
126 /* This one is only in the PL023 variant */
127 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
128 
129 /*
130  * SSP Status Register - SSP_SR
131  */
132 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
133 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
134 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
135 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
136 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
137 
138 /*
139  * SSP Clock Prescale Register  - SSP_CPSR
140  */
141 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
142 
143 /*
144  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
145  */
146 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
147 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
148 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
149 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
150 
151 /*
152  * SSP Raw Interrupt Status Register - SSP_RIS
153  */
154 /* Receive Overrun Raw Interrupt status */
155 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
156 /* Receive Timeout Raw Interrupt status */
157 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
158 /* Receive FIFO Raw Interrupt status */
159 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
160 /* Transmit FIFO Raw Interrupt status */
161 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
162 
163 /*
164  * SSP Masked Interrupt Status Register - SSP_MIS
165  */
166 /* Receive Overrun Masked Interrupt status */
167 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
168 /* Receive Timeout Masked Interrupt status */
169 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
170 /* Receive FIFO Masked Interrupt status */
171 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
172 /* Transmit FIFO Masked Interrupt status */
173 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
174 
175 /*
176  * SSP Interrupt Clear Register - SSP_ICR
177  */
178 /* Receive Overrun Raw Clear Interrupt bit */
179 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
180 /* Receive Timeout Clear Interrupt bit */
181 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
182 
183 /*
184  * SSP DMA Control Register - SSP_DMACR
185  */
186 /* Receive DMA Enable bit */
187 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
188 /* Transmit DMA Enable bit */
189 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
190 
191 /*
192  * SSP Chip Select Control Register - SSP_CSR
193  * (vendor extension)
194  */
195 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
196 
197 /*
198  * SSP Integration Test control Register - SSP_ITCR
199  */
200 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
201 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
202 
203 /*
204  * SSP Integration Test Input Register - SSP_ITIP
205  */
206 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
207 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
208 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
209 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
210 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
211 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
212 
213 /*
214  * SSP Integration Test output Register - SSP_ITOP
215  */
216 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
217 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
218 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
219 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
220 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
221 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
222 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
223 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
224 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
225 #define ITOP_MASK_INTR			 (0x1UL << 9)
226 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
227 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
228 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
229 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
230 
231 /*
232  * SSP Test Data Register - SSP_TDR
233  */
234 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
235 
236 /*
237  * Message State
238  * we use the spi_message.state (void *) pointer to
239  * hold a single state value, that's why all this
240  * (void *) casting is done here.
241  */
242 #define STATE_START			((void *) 0)
243 #define STATE_RUNNING			((void *) 1)
244 #define STATE_DONE			((void *) 2)
245 #define STATE_ERROR			((void *) -1)
246 #define STATE_TIMEOUT			((void *) -2)
247 
248 /*
249  * SSP State - Whether Enabled or Disabled
250  */
251 #define SSP_DISABLED			(0)
252 #define SSP_ENABLED			(1)
253 
254 /*
255  * SSP DMA State - Whether DMA Enabled or Disabled
256  */
257 #define SSP_DMA_DISABLED		(0)
258 #define SSP_DMA_ENABLED			(1)
259 
260 /*
261  * SSP Clock Defaults
262  */
263 #define SSP_DEFAULT_CLKRATE 0x2
264 #define SSP_DEFAULT_PRESCALE 0x40
265 
266 /*
267  * SSP Clock Parameter ranges
268  */
269 #define CPSDVR_MIN 0x02
270 #define CPSDVR_MAX 0xFE
271 #define SCR_MIN 0x00
272 #define SCR_MAX 0xFF
273 
274 /*
275  * SSP Interrupt related Macros
276  */
277 #define DEFAULT_SSP_REG_IMSC  0x0UL
278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
279 #define ENABLE_ALL_INTERRUPTS ( \
280 	SSP_IMSC_MASK_RORIM | \
281 	SSP_IMSC_MASK_RTIM | \
282 	SSP_IMSC_MASK_RXIM | \
283 	SSP_IMSC_MASK_TXIM \
284 )
285 
286 #define CLEAR_ALL_INTERRUPTS  0x3
287 
288 #define SPI_POLLING_TIMEOUT 1000
289 
290 /*
291  * The type of reading going on this chip
292  */
293 enum ssp_reading {
294 	READING_NULL,
295 	READING_U8,
296 	READING_U16,
297 	READING_U32
298 };
299 
300 /*
301  * The type of writing going on this chip
302  */
303 enum ssp_writing {
304 	WRITING_NULL,
305 	WRITING_U8,
306 	WRITING_U16,
307 	WRITING_U32
308 };
309 
310 /**
311  * struct vendor_data - vendor-specific config parameters
312  * for PL022 derivates
313  * @fifodepth: depth of FIFOs (both)
314  * @max_bpw: maximum number of bits per word
315  * @unidir: supports unidirection transfers
316  * @extended_cr: 32 bit wide control register 0 with extra
317  * features and extra features in CR1 as found in the ST variants
318  * @pl023: supports a subset of the ST extensions called "PL023"
319  * @loopback: supports loopback mode
320  * @internal_cs_ctrl: supports chip select control register
321  */
322 struct vendor_data {
323 	int fifodepth;
324 	int max_bpw;
325 	bool unidir;
326 	bool extended_cr;
327 	bool pl023;
328 	bool loopback;
329 	bool internal_cs_ctrl;
330 };
331 
332 /**
333  * struct pl022 - This is the private SSP driver data structure
334  * @adev: AMBA device model hookup
335  * @vendor: vendor data for the IP block
336  * @phybase: the physical memory where the SSP device resides
337  * @virtbase: the virtual memory where the SSP is mapped
338  * @clk: outgoing clock "SPICLK" for the SPI bus
339  * @master: SPI framework hookup
340  * @master_info: controller-specific data from machine setup
341  * @pump_transfers: Tasklet used in Interrupt Transfer mode
342  * @cur_msg: Pointer to current spi_message being processed
343  * @cur_transfer: Pointer to current spi_transfer
344  * @cur_chip: pointer to current clients chip(assigned from controller_state)
345  * @next_msg_cs_active: the next message in the queue has been examined
346  *  and it was found that it uses the same chip select as the previous
347  *  message, so we left it active after the previous transfer, and it's
348  *  active already.
349  * @tx: current position in TX buffer to be read
350  * @tx_end: end position in TX buffer to be read
351  * @rx: current position in RX buffer to be written
352  * @rx_end: end position in RX buffer to be written
353  * @read: the type of read currently going on
354  * @write: the type of write currently going on
355  * @exp_fifo_level: expected FIFO level
356  * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
357  * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
358  * @dma_rx_channel: optional channel for RX DMA
359  * @dma_tx_channel: optional channel for TX DMA
360  * @sgt_rx: scattertable for the RX transfer
361  * @sgt_tx: scattertable for the TX transfer
362  * @dummypage: a dummy page used for driving data on the bus with DMA
363  * @dma_running: indicates whether DMA is in operation
364  * @cur_cs: current chip select index
365  * @cur_gpiod: current chip select GPIO descriptor
366  */
367 struct pl022 {
368 	struct amba_device		*adev;
369 	struct vendor_data		*vendor;
370 	resource_size_t			phybase;
371 	void __iomem			*virtbase;
372 	struct clk			*clk;
373 	struct spi_master		*master;
374 	struct pl022_ssp_controller	*master_info;
375 	/* Message per-transfer pump */
376 	struct tasklet_struct		pump_transfers;
377 	struct spi_message		*cur_msg;
378 	struct spi_transfer		*cur_transfer;
379 	struct chip_data		*cur_chip;
380 	bool				next_msg_cs_active;
381 	void				*tx;
382 	void				*tx_end;
383 	void				*rx;
384 	void				*rx_end;
385 	enum ssp_reading		read;
386 	enum ssp_writing		write;
387 	u32				exp_fifo_level;
388 	enum ssp_rx_level_trig		rx_lev_trig;
389 	enum ssp_tx_level_trig		tx_lev_trig;
390 	/* DMA settings */
391 #ifdef CONFIG_DMA_ENGINE
392 	struct dma_chan			*dma_rx_channel;
393 	struct dma_chan			*dma_tx_channel;
394 	struct sg_table			sgt_rx;
395 	struct sg_table			sgt_tx;
396 	char				*dummypage;
397 	bool				dma_running;
398 #endif
399 	int cur_cs;
400 	struct gpio_desc *cur_gpiod;
401 };
402 
403 /**
404  * struct chip_data - To maintain runtime state of SSP for each client chip
405  * @cr0: Value of control register CR0 of SSP - on later ST variants this
406  *       register is 32 bits wide rather than just 16
407  * @cr1: Value of control register CR1 of SSP
408  * @dmacr: Value of DMA control Register of SSP
409  * @cpsr: Value of Clock prescale register
410  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
411  * @enable_dma: Whether to enable DMA or not
412  * @read: function ptr to be used to read when doing xfer for this chip
413  * @write: function ptr to be used to write when doing xfer for this chip
414  * @xfer_type: polling/interrupt/DMA
415  *
416  * Runtime state of the SSP controller, maintained per chip,
417  * This would be set according to the current message that would be served
418  */
419 struct chip_data {
420 	u32 cr0;
421 	u16 cr1;
422 	u16 dmacr;
423 	u16 cpsr;
424 	u8 n_bytes;
425 	bool enable_dma;
426 	enum ssp_reading read;
427 	enum ssp_writing write;
428 	int xfer_type;
429 };
430 
431 /**
432  * internal_cs_control - Control chip select signals via SSP_CSR.
433  * @pl022: SSP driver private data structure
434  * @command: select/delect the chip
435  *
436  * Used on controller with internal chip select control via SSP_CSR register
437  * (vendor extension). Each of the 5 LSB in the register controls one chip
438  * select signal.
439  */
440 static void internal_cs_control(struct pl022 *pl022, u32 command)
441 {
442 	u32 tmp;
443 
444 	tmp = readw(SSP_CSR(pl022->virtbase));
445 	if (command == SSP_CHIP_SELECT)
446 		tmp &= ~BIT(pl022->cur_cs);
447 	else
448 		tmp |= BIT(pl022->cur_cs);
449 	writew(tmp, SSP_CSR(pl022->virtbase));
450 }
451 
452 static void pl022_cs_control(struct pl022 *pl022, u32 command)
453 {
454 	if (pl022->vendor->internal_cs_ctrl)
455 		internal_cs_control(pl022, command);
456 	else if (pl022->cur_gpiod)
457 		/*
458 		 * This needs to be inverted since with GPIOLIB in
459 		 * control, the inversion will be handled by
460 		 * GPIOLIB's active low handling. The "command"
461 		 * passed into this function will be SSP_CHIP_SELECT
462 		 * which is enum:ed to 0, so we need the inverse
463 		 * (1) to activate chip select.
464 		 */
465 		gpiod_set_value(pl022->cur_gpiod, !command);
466 }
467 
468 /**
469  * giveback - current spi_message is over, schedule next message and call
470  * callback of this message. Assumes that caller already
471  * set message->status; dma and pio irqs are blocked
472  * @pl022: SSP driver private data structure
473  */
474 static void giveback(struct pl022 *pl022)
475 {
476 	struct spi_transfer *last_transfer;
477 	pl022->next_msg_cs_active = false;
478 
479 	last_transfer = list_last_entry(&pl022->cur_msg->transfers,
480 					struct spi_transfer, transfer_list);
481 
482 	/* Delay if requested before any change in chip select */
483 	/*
484 	 * FIXME: This runs in interrupt context.
485 	 * Is this really smart?
486 	 */
487 	spi_transfer_delay_exec(last_transfer);
488 
489 	if (!last_transfer->cs_change) {
490 		struct spi_message *next_msg;
491 
492 		/*
493 		 * cs_change was not set. We can keep the chip select
494 		 * enabled if there is message in the queue and it is
495 		 * for the same spi device.
496 		 *
497 		 * We cannot postpone this until pump_messages, because
498 		 * after calling msg->complete (below) the driver that
499 		 * sent the current message could be unloaded, which
500 		 * could invalidate the cs_control() callback...
501 		 */
502 		/* get a pointer to the next message, if any */
503 		next_msg = spi_get_next_queued_message(pl022->master);
504 
505 		/*
506 		 * see if the next and current messages point
507 		 * to the same spi device.
508 		 */
509 		if (next_msg && next_msg->spi != pl022->cur_msg->spi)
510 			next_msg = NULL;
511 		if (!next_msg || pl022->cur_msg->state == STATE_ERROR)
512 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
513 		else
514 			pl022->next_msg_cs_active = true;
515 
516 	}
517 
518 	pl022->cur_msg = NULL;
519 	pl022->cur_transfer = NULL;
520 	pl022->cur_chip = NULL;
521 
522 	/* disable the SPI/SSP operation */
523 	writew((readw(SSP_CR1(pl022->virtbase)) &
524 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
525 
526 	spi_finalize_current_message(pl022->master);
527 }
528 
529 /**
530  * flush - flush the FIFO to reach a clean state
531  * @pl022: SSP driver private data structure
532  */
533 static int flush(struct pl022 *pl022)
534 {
535 	unsigned long limit = loops_per_jiffy << 1;
536 
537 	dev_dbg(&pl022->adev->dev, "flush\n");
538 	do {
539 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
540 			readw(SSP_DR(pl022->virtbase));
541 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
542 
543 	pl022->exp_fifo_level = 0;
544 
545 	return limit;
546 }
547 
548 /**
549  * restore_state - Load configuration of current chip
550  * @pl022: SSP driver private data structure
551  */
552 static void restore_state(struct pl022 *pl022)
553 {
554 	struct chip_data *chip = pl022->cur_chip;
555 
556 	if (pl022->vendor->extended_cr)
557 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
558 	else
559 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
560 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
561 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
562 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
563 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
564 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
565 }
566 
567 /*
568  * Default SSP Register Values
569  */
570 #define DEFAULT_SSP_REG_CR0 ( \
571 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
572 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
573 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
574 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
575 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
576 )
577 
578 /* ST versions have slightly different bit layout */
579 #define DEFAULT_SSP_REG_CR0_ST ( \
580 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
581 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
582 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
583 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
584 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
585 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
586 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
587 )
588 
589 /* The PL023 version is slightly different again */
590 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
591 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
592 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
593 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
594 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
595 )
596 
597 #define DEFAULT_SSP_REG_CR1 ( \
598 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
599 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
600 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
601 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
602 )
603 
604 /* ST versions extend this register to use all 16 bits */
605 #define DEFAULT_SSP_REG_CR1_ST ( \
606 	DEFAULT_SSP_REG_CR1 | \
607 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
608 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
609 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
610 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
611 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
612 )
613 
614 /*
615  * The PL023 variant has further differences: no loopback mode, no microwire
616  * support, and a new clock feedback delay setting.
617  */
618 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
619 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
620 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
621 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
622 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
623 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
624 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
625 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
626 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
627 )
628 
629 #define DEFAULT_SSP_REG_CPSR ( \
630 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
631 )
632 
633 #define DEFAULT_SSP_REG_DMACR (\
634 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
635 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
636 )
637 
638 /**
639  * load_ssp_default_config - Load default configuration for SSP
640  * @pl022: SSP driver private data structure
641  */
642 static void load_ssp_default_config(struct pl022 *pl022)
643 {
644 	if (pl022->vendor->pl023) {
645 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
646 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
647 	} else if (pl022->vendor->extended_cr) {
648 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
649 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
650 	} else {
651 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
652 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
653 	}
654 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
655 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
656 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
657 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
658 }
659 
660 /*
661  * This will write to TX and read from RX according to the parameters
662  * set in pl022.
663  */
664 static void readwriter(struct pl022 *pl022)
665 {
666 
667 	/*
668 	 * The FIFO depth is different between primecell variants.
669 	 * I believe filling in too much in the FIFO might cause
670 	 * errons in 8bit wide transfers on ARM variants (just 8 words
671 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
672 	 *
673 	 * To prevent this issue, the TX FIFO is only filled to the
674 	 * unused RX FIFO fill length, regardless of what the TX
675 	 * FIFO status flag indicates.
676 	 */
677 	dev_dbg(&pl022->adev->dev,
678 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
679 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
680 
681 	/* Read as much as you can */
682 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
683 	       && (pl022->rx < pl022->rx_end)) {
684 		switch (pl022->read) {
685 		case READING_NULL:
686 			readw(SSP_DR(pl022->virtbase));
687 			break;
688 		case READING_U8:
689 			*(u8 *) (pl022->rx) =
690 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
691 			break;
692 		case READING_U16:
693 			*(u16 *) (pl022->rx) =
694 				(u16) readw(SSP_DR(pl022->virtbase));
695 			break;
696 		case READING_U32:
697 			*(u32 *) (pl022->rx) =
698 				readl(SSP_DR(pl022->virtbase));
699 			break;
700 		}
701 		pl022->rx += (pl022->cur_chip->n_bytes);
702 		pl022->exp_fifo_level--;
703 	}
704 	/*
705 	 * Write as much as possible up to the RX FIFO size
706 	 */
707 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
708 	       && (pl022->tx < pl022->tx_end)) {
709 		switch (pl022->write) {
710 		case WRITING_NULL:
711 			writew(0x0, SSP_DR(pl022->virtbase));
712 			break;
713 		case WRITING_U8:
714 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
715 			break;
716 		case WRITING_U16:
717 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
718 			break;
719 		case WRITING_U32:
720 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
721 			break;
722 		}
723 		pl022->tx += (pl022->cur_chip->n_bytes);
724 		pl022->exp_fifo_level++;
725 		/*
726 		 * This inner reader takes care of things appearing in the RX
727 		 * FIFO as we're transmitting. This will happen a lot since the
728 		 * clock starts running when you put things into the TX FIFO,
729 		 * and then things are continuously clocked into the RX FIFO.
730 		 */
731 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
732 		       && (pl022->rx < pl022->rx_end)) {
733 			switch (pl022->read) {
734 			case READING_NULL:
735 				readw(SSP_DR(pl022->virtbase));
736 				break;
737 			case READING_U8:
738 				*(u8 *) (pl022->rx) =
739 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
740 				break;
741 			case READING_U16:
742 				*(u16 *) (pl022->rx) =
743 					(u16) readw(SSP_DR(pl022->virtbase));
744 				break;
745 			case READING_U32:
746 				*(u32 *) (pl022->rx) =
747 					readl(SSP_DR(pl022->virtbase));
748 				break;
749 			}
750 			pl022->rx += (pl022->cur_chip->n_bytes);
751 			pl022->exp_fifo_level--;
752 		}
753 	}
754 	/*
755 	 * When we exit here the TX FIFO should be full and the RX FIFO
756 	 * should be empty
757 	 */
758 }
759 
760 /**
761  * next_transfer - Move to the Next transfer in the current spi message
762  * @pl022: SSP driver private data structure
763  *
764  * This function moves though the linked list of spi transfers in the
765  * current spi message and returns with the state of current spi
766  * message i.e whether its last transfer is done(STATE_DONE) or
767  * Next transfer is ready(STATE_RUNNING)
768  */
769 static void *next_transfer(struct pl022 *pl022)
770 {
771 	struct spi_message *msg = pl022->cur_msg;
772 	struct spi_transfer *trans = pl022->cur_transfer;
773 
774 	/* Move to next transfer */
775 	if (trans->transfer_list.next != &msg->transfers) {
776 		pl022->cur_transfer =
777 		    list_entry(trans->transfer_list.next,
778 			       struct spi_transfer, transfer_list);
779 		return STATE_RUNNING;
780 	}
781 	return STATE_DONE;
782 }
783 
784 /*
785  * This DMA functionality is only compiled in if we have
786  * access to the generic DMA devices/DMA engine.
787  */
788 #ifdef CONFIG_DMA_ENGINE
789 static void unmap_free_dma_scatter(struct pl022 *pl022)
790 {
791 	/* Unmap and free the SG tables */
792 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
793 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
794 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
795 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
796 	sg_free_table(&pl022->sgt_rx);
797 	sg_free_table(&pl022->sgt_tx);
798 }
799 
800 static void dma_callback(void *data)
801 {
802 	struct pl022 *pl022 = data;
803 	struct spi_message *msg = pl022->cur_msg;
804 
805 	BUG_ON(!pl022->sgt_rx.sgl);
806 
807 #ifdef VERBOSE_DEBUG
808 	/*
809 	 * Optionally dump out buffers to inspect contents, this is
810 	 * good if you want to convince yourself that the loopback
811 	 * read/write contents are the same, when adopting to a new
812 	 * DMA engine.
813 	 */
814 	{
815 		struct scatterlist *sg;
816 		unsigned int i;
817 
818 		dma_sync_sg_for_cpu(&pl022->adev->dev,
819 				    pl022->sgt_rx.sgl,
820 				    pl022->sgt_rx.nents,
821 				    DMA_FROM_DEVICE);
822 
823 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
824 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
825 			print_hex_dump(KERN_ERR, "SPI RX: ",
826 				       DUMP_PREFIX_OFFSET,
827 				       16,
828 				       1,
829 				       sg_virt(sg),
830 				       sg_dma_len(sg),
831 				       1);
832 		}
833 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
834 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
835 			print_hex_dump(KERN_ERR, "SPI TX: ",
836 				       DUMP_PREFIX_OFFSET,
837 				       16,
838 				       1,
839 				       sg_virt(sg),
840 				       sg_dma_len(sg),
841 				       1);
842 		}
843 	}
844 #endif
845 
846 	unmap_free_dma_scatter(pl022);
847 
848 	/* Update total bytes transferred */
849 	msg->actual_length += pl022->cur_transfer->len;
850 	/* Move to next transfer */
851 	msg->state = next_transfer(pl022);
852 	if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
853 		pl022_cs_control(pl022, SSP_CHIP_DESELECT);
854 	tasklet_schedule(&pl022->pump_transfers);
855 }
856 
857 static void setup_dma_scatter(struct pl022 *pl022,
858 			      void *buffer,
859 			      unsigned int length,
860 			      struct sg_table *sgtab)
861 {
862 	struct scatterlist *sg;
863 	int bytesleft = length;
864 	void *bufp = buffer;
865 	int mapbytes;
866 	int i;
867 
868 	if (buffer) {
869 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
870 			/*
871 			 * If there are less bytes left than what fits
872 			 * in the current page (plus page alignment offset)
873 			 * we just feed in this, else we stuff in as much
874 			 * as we can.
875 			 */
876 			if (bytesleft < (PAGE_SIZE - offset_in_page(bufp)))
877 				mapbytes = bytesleft;
878 			else
879 				mapbytes = PAGE_SIZE - offset_in_page(bufp);
880 			sg_set_page(sg, virt_to_page(bufp),
881 				    mapbytes, offset_in_page(bufp));
882 			bufp += mapbytes;
883 			bytesleft -= mapbytes;
884 			dev_dbg(&pl022->adev->dev,
885 				"set RX/TX target page @ %p, %d bytes, %d left\n",
886 				bufp, mapbytes, bytesleft);
887 		}
888 	} else {
889 		/* Map the dummy buffer on every page */
890 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
891 			if (bytesleft < PAGE_SIZE)
892 				mapbytes = bytesleft;
893 			else
894 				mapbytes = PAGE_SIZE;
895 			sg_set_page(sg, virt_to_page(pl022->dummypage),
896 				    mapbytes, 0);
897 			bytesleft -= mapbytes;
898 			dev_dbg(&pl022->adev->dev,
899 				"set RX/TX to dummy page %d bytes, %d left\n",
900 				mapbytes, bytesleft);
901 
902 		}
903 	}
904 	BUG_ON(bytesleft);
905 }
906 
907 /**
908  * configure_dma - configures the channels for the next transfer
909  * @pl022: SSP driver's private data structure
910  */
911 static int configure_dma(struct pl022 *pl022)
912 {
913 	struct dma_slave_config rx_conf = {
914 		.src_addr = SSP_DR(pl022->phybase),
915 		.direction = DMA_DEV_TO_MEM,
916 		.device_fc = false,
917 	};
918 	struct dma_slave_config tx_conf = {
919 		.dst_addr = SSP_DR(pl022->phybase),
920 		.direction = DMA_MEM_TO_DEV,
921 		.device_fc = false,
922 	};
923 	unsigned int pages;
924 	int ret;
925 	int rx_sglen, tx_sglen;
926 	struct dma_chan *rxchan = pl022->dma_rx_channel;
927 	struct dma_chan *txchan = pl022->dma_tx_channel;
928 	struct dma_async_tx_descriptor *rxdesc;
929 	struct dma_async_tx_descriptor *txdesc;
930 
931 	/* Check that the channels are available */
932 	if (!rxchan || !txchan)
933 		return -ENODEV;
934 
935 	/*
936 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
937 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
938 	 * not trigger on 2 elements this needs explicit mapping rather than
939 	 * calculation.
940 	 */
941 	switch (pl022->rx_lev_trig) {
942 	case SSP_RX_1_OR_MORE_ELEM:
943 		rx_conf.src_maxburst = 1;
944 		break;
945 	case SSP_RX_4_OR_MORE_ELEM:
946 		rx_conf.src_maxburst = 4;
947 		break;
948 	case SSP_RX_8_OR_MORE_ELEM:
949 		rx_conf.src_maxburst = 8;
950 		break;
951 	case SSP_RX_16_OR_MORE_ELEM:
952 		rx_conf.src_maxburst = 16;
953 		break;
954 	case SSP_RX_32_OR_MORE_ELEM:
955 		rx_conf.src_maxburst = 32;
956 		break;
957 	default:
958 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
959 		break;
960 	}
961 
962 	switch (pl022->tx_lev_trig) {
963 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
964 		tx_conf.dst_maxburst = 1;
965 		break;
966 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
967 		tx_conf.dst_maxburst = 4;
968 		break;
969 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
970 		tx_conf.dst_maxburst = 8;
971 		break;
972 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
973 		tx_conf.dst_maxburst = 16;
974 		break;
975 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
976 		tx_conf.dst_maxburst = 32;
977 		break;
978 	default:
979 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
980 		break;
981 	}
982 
983 	switch (pl022->read) {
984 	case READING_NULL:
985 		/* Use the same as for writing */
986 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
987 		break;
988 	case READING_U8:
989 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
990 		break;
991 	case READING_U16:
992 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
993 		break;
994 	case READING_U32:
995 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
996 		break;
997 	}
998 
999 	switch (pl022->write) {
1000 	case WRITING_NULL:
1001 		/* Use the same as for reading */
1002 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
1003 		break;
1004 	case WRITING_U8:
1005 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
1006 		break;
1007 	case WRITING_U16:
1008 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
1009 		break;
1010 	case WRITING_U32:
1011 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
1012 		break;
1013 	}
1014 
1015 	/* SPI pecularity: we need to read and write the same width */
1016 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1017 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
1018 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
1019 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
1020 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
1021 
1022 	dmaengine_slave_config(rxchan, &rx_conf);
1023 	dmaengine_slave_config(txchan, &tx_conf);
1024 
1025 	/* Create sglists for the transfers */
1026 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
1027 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
1028 
1029 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
1030 	if (ret)
1031 		goto err_alloc_rx_sg;
1032 
1033 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
1034 	if (ret)
1035 		goto err_alloc_tx_sg;
1036 
1037 	/* Fill in the scatterlists for the RX+TX buffers */
1038 	setup_dma_scatter(pl022, pl022->rx,
1039 			  pl022->cur_transfer->len, &pl022->sgt_rx);
1040 	setup_dma_scatter(pl022, pl022->tx,
1041 			  pl022->cur_transfer->len, &pl022->sgt_tx);
1042 
1043 	/* Map DMA buffers */
1044 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1045 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1046 	if (!rx_sglen)
1047 		goto err_rx_sgmap;
1048 
1049 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1050 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
1051 	if (!tx_sglen)
1052 		goto err_tx_sgmap;
1053 
1054 	/* Send both scatterlists */
1055 	rxdesc = dmaengine_prep_slave_sg(rxchan,
1056 				      pl022->sgt_rx.sgl,
1057 				      rx_sglen,
1058 				      DMA_DEV_TO_MEM,
1059 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1060 	if (!rxdesc)
1061 		goto err_rxdesc;
1062 
1063 	txdesc = dmaengine_prep_slave_sg(txchan,
1064 				      pl022->sgt_tx.sgl,
1065 				      tx_sglen,
1066 				      DMA_MEM_TO_DEV,
1067 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
1068 	if (!txdesc)
1069 		goto err_txdesc;
1070 
1071 	/* Put the callback on the RX transfer only, that should finish last */
1072 	rxdesc->callback = dma_callback;
1073 	rxdesc->callback_param = pl022;
1074 
1075 	/* Submit and fire RX and TX with TX last so we're ready to read! */
1076 	dmaengine_submit(rxdesc);
1077 	dmaengine_submit(txdesc);
1078 	dma_async_issue_pending(rxchan);
1079 	dma_async_issue_pending(txchan);
1080 	pl022->dma_running = true;
1081 
1082 	return 0;
1083 
1084 err_txdesc:
1085 	dmaengine_terminate_all(txchan);
1086 err_rxdesc:
1087 	dmaengine_terminate_all(rxchan);
1088 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
1089 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
1090 err_tx_sgmap:
1091 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
1092 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
1093 err_rx_sgmap:
1094 	sg_free_table(&pl022->sgt_tx);
1095 err_alloc_tx_sg:
1096 	sg_free_table(&pl022->sgt_rx);
1097 err_alloc_rx_sg:
1098 	return -ENOMEM;
1099 }
1100 
1101 static int pl022_dma_probe(struct pl022 *pl022)
1102 {
1103 	dma_cap_mask_t mask;
1104 
1105 	/* Try to acquire a generic DMA engine slave channel */
1106 	dma_cap_zero(mask);
1107 	dma_cap_set(DMA_SLAVE, mask);
1108 	/*
1109 	 * We need both RX and TX channels to do DMA, else do none
1110 	 * of them.
1111 	 */
1112 	pl022->dma_rx_channel = dma_request_channel(mask,
1113 					    pl022->master_info->dma_filter,
1114 					    pl022->master_info->dma_rx_param);
1115 	if (!pl022->dma_rx_channel) {
1116 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1117 		goto err_no_rxchan;
1118 	}
1119 
1120 	pl022->dma_tx_channel = dma_request_channel(mask,
1121 					    pl022->master_info->dma_filter,
1122 					    pl022->master_info->dma_tx_param);
1123 	if (!pl022->dma_tx_channel) {
1124 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1125 		goto err_no_txchan;
1126 	}
1127 
1128 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1129 	if (!pl022->dummypage)
1130 		goto err_no_dummypage;
1131 
1132 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1133 		 dma_chan_name(pl022->dma_rx_channel),
1134 		 dma_chan_name(pl022->dma_tx_channel));
1135 
1136 	return 0;
1137 
1138 err_no_dummypage:
1139 	dma_release_channel(pl022->dma_tx_channel);
1140 err_no_txchan:
1141 	dma_release_channel(pl022->dma_rx_channel);
1142 	pl022->dma_rx_channel = NULL;
1143 err_no_rxchan:
1144 	dev_err(&pl022->adev->dev,
1145 			"Failed to work in dma mode, work without dma!\n");
1146 	return -ENODEV;
1147 }
1148 
1149 static int pl022_dma_autoprobe(struct pl022 *pl022)
1150 {
1151 	struct device *dev = &pl022->adev->dev;
1152 	struct dma_chan *chan;
1153 	int err;
1154 
1155 	/* automatically configure DMA channels from platform, normally using DT */
1156 	chan = dma_request_chan(dev, "rx");
1157 	if (IS_ERR(chan)) {
1158 		err = PTR_ERR(chan);
1159 		goto err_no_rxchan;
1160 	}
1161 
1162 	pl022->dma_rx_channel = chan;
1163 
1164 	chan = dma_request_chan(dev, "tx");
1165 	if (IS_ERR(chan)) {
1166 		err = PTR_ERR(chan);
1167 		goto err_no_txchan;
1168 	}
1169 
1170 	pl022->dma_tx_channel = chan;
1171 
1172 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1173 	if (!pl022->dummypage) {
1174 		err = -ENOMEM;
1175 		goto err_no_dummypage;
1176 	}
1177 
1178 	return 0;
1179 
1180 err_no_dummypage:
1181 	dma_release_channel(pl022->dma_tx_channel);
1182 	pl022->dma_tx_channel = NULL;
1183 err_no_txchan:
1184 	dma_release_channel(pl022->dma_rx_channel);
1185 	pl022->dma_rx_channel = NULL;
1186 err_no_rxchan:
1187 	return err;
1188 }
1189 
1190 static void terminate_dma(struct pl022 *pl022)
1191 {
1192 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1193 	struct dma_chan *txchan = pl022->dma_tx_channel;
1194 
1195 	dmaengine_terminate_all(rxchan);
1196 	dmaengine_terminate_all(txchan);
1197 	unmap_free_dma_scatter(pl022);
1198 	pl022->dma_running = false;
1199 }
1200 
1201 static void pl022_dma_remove(struct pl022 *pl022)
1202 {
1203 	if (pl022->dma_running)
1204 		terminate_dma(pl022);
1205 	if (pl022->dma_tx_channel)
1206 		dma_release_channel(pl022->dma_tx_channel);
1207 	if (pl022->dma_rx_channel)
1208 		dma_release_channel(pl022->dma_rx_channel);
1209 	kfree(pl022->dummypage);
1210 }
1211 
1212 #else
1213 static inline int configure_dma(struct pl022 *pl022)
1214 {
1215 	return -ENODEV;
1216 }
1217 
1218 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1219 {
1220 	return 0;
1221 }
1222 
1223 static inline int pl022_dma_probe(struct pl022 *pl022)
1224 {
1225 	return 0;
1226 }
1227 
1228 static inline void pl022_dma_remove(struct pl022 *pl022)
1229 {
1230 }
1231 #endif
1232 
1233 /**
1234  * pl022_interrupt_handler - Interrupt handler for SSP controller
1235  * @irq: IRQ number
1236  * @dev_id: Local device data
1237  *
1238  * This function handles interrupts generated for an interrupt based transfer.
1239  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1240  * current message's state as STATE_ERROR and schedule the tasklet
1241  * pump_transfers which will do the postprocessing of the current message by
1242  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1243  * more data, and writes data in TX FIFO till it is not full. If we complete
1244  * the transfer we move to the next transfer and schedule the tasklet.
1245  */
1246 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1247 {
1248 	struct pl022 *pl022 = dev_id;
1249 	struct spi_message *msg = pl022->cur_msg;
1250 	u16 irq_status = 0;
1251 
1252 	if (unlikely(!msg)) {
1253 		dev_err(&pl022->adev->dev,
1254 			"bad message state in interrupt handler");
1255 		/* Never fail */
1256 		return IRQ_HANDLED;
1257 	}
1258 
1259 	/* Read the Interrupt Status Register */
1260 	irq_status = readw(SSP_MIS(pl022->virtbase));
1261 
1262 	if (unlikely(!irq_status))
1263 		return IRQ_NONE;
1264 
1265 	/*
1266 	 * This handles the FIFO interrupts, the timeout
1267 	 * interrupts are flatly ignored, they cannot be
1268 	 * trusted.
1269 	 */
1270 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1271 		/*
1272 		 * Overrun interrupt - bail out since our Data has been
1273 		 * corrupted
1274 		 */
1275 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1276 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1277 			dev_err(&pl022->adev->dev,
1278 				"RXFIFO is full\n");
1279 
1280 		/*
1281 		 * Disable and clear interrupts, disable SSP,
1282 		 * mark message with bad status so it can be
1283 		 * retried.
1284 		 */
1285 		writew(DISABLE_ALL_INTERRUPTS,
1286 		       SSP_IMSC(pl022->virtbase));
1287 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1288 		writew((readw(SSP_CR1(pl022->virtbase)) &
1289 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1290 		msg->state = STATE_ERROR;
1291 
1292 		/* Schedule message queue handler */
1293 		tasklet_schedule(&pl022->pump_transfers);
1294 		return IRQ_HANDLED;
1295 	}
1296 
1297 	readwriter(pl022);
1298 
1299 	if (pl022->tx == pl022->tx_end) {
1300 		/* Disable Transmit interrupt, enable receive interrupt */
1301 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1302 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1303 		       SSP_IMSC(pl022->virtbase));
1304 	}
1305 
1306 	/*
1307 	 * Since all transactions must write as much as shall be read,
1308 	 * we can conclude the entire transaction once RX is complete.
1309 	 * At this point, all TX will always be finished.
1310 	 */
1311 	if (pl022->rx >= pl022->rx_end) {
1312 		writew(DISABLE_ALL_INTERRUPTS,
1313 		       SSP_IMSC(pl022->virtbase));
1314 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1315 		if (unlikely(pl022->rx > pl022->rx_end)) {
1316 			dev_warn(&pl022->adev->dev, "read %u surplus "
1317 				 "bytes (did you request an odd "
1318 				 "number of bytes on a 16bit bus?)\n",
1319 				 (u32) (pl022->rx - pl022->rx_end));
1320 		}
1321 		/* Update total bytes transferred */
1322 		msg->actual_length += pl022->cur_transfer->len;
1323 		/* Move to next transfer */
1324 		msg->state = next_transfer(pl022);
1325 		if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change)
1326 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1327 		tasklet_schedule(&pl022->pump_transfers);
1328 		return IRQ_HANDLED;
1329 	}
1330 
1331 	return IRQ_HANDLED;
1332 }
1333 
1334 /*
1335  * This sets up the pointers to memory for the next message to
1336  * send out on the SPI bus.
1337  */
1338 static int set_up_next_transfer(struct pl022 *pl022,
1339 				struct spi_transfer *transfer)
1340 {
1341 	int residue;
1342 
1343 	/* Sanity check the message for this bus width */
1344 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1345 	if (unlikely(residue != 0)) {
1346 		dev_err(&pl022->adev->dev,
1347 			"message of %u bytes to transmit but the current "
1348 			"chip bus has a data width of %u bytes!\n",
1349 			pl022->cur_transfer->len,
1350 			pl022->cur_chip->n_bytes);
1351 		dev_err(&pl022->adev->dev, "skipping this message\n");
1352 		return -EIO;
1353 	}
1354 	pl022->tx = (void *)transfer->tx_buf;
1355 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1356 	pl022->rx = (void *)transfer->rx_buf;
1357 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1358 	pl022->write =
1359 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1360 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1361 	return 0;
1362 }
1363 
1364 /**
1365  * pump_transfers - Tasklet function which schedules next transfer
1366  * when running in interrupt or DMA transfer mode.
1367  * @data: SSP driver private data structure
1368  *
1369  */
1370 static void pump_transfers(unsigned long data)
1371 {
1372 	struct pl022 *pl022 = (struct pl022 *) data;
1373 	struct spi_message *message = NULL;
1374 	struct spi_transfer *transfer = NULL;
1375 	struct spi_transfer *previous = NULL;
1376 
1377 	/* Get current state information */
1378 	message = pl022->cur_msg;
1379 	transfer = pl022->cur_transfer;
1380 
1381 	/* Handle for abort */
1382 	if (message->state == STATE_ERROR) {
1383 		message->status = -EIO;
1384 		giveback(pl022);
1385 		return;
1386 	}
1387 
1388 	/* Handle end of message */
1389 	if (message->state == STATE_DONE) {
1390 		message->status = 0;
1391 		giveback(pl022);
1392 		return;
1393 	}
1394 
1395 	/* Delay if requested at end of transfer before CS change */
1396 	if (message->state == STATE_RUNNING) {
1397 		previous = list_entry(transfer->transfer_list.prev,
1398 					struct spi_transfer,
1399 					transfer_list);
1400 		/*
1401 		 * FIXME: This runs in interrupt context.
1402 		 * Is this really smart?
1403 		 */
1404 		spi_transfer_delay_exec(previous);
1405 
1406 		/* Reselect chip select only if cs_change was requested */
1407 		if (previous->cs_change)
1408 			pl022_cs_control(pl022, SSP_CHIP_SELECT);
1409 	} else {
1410 		/* STATE_START */
1411 		message->state = STATE_RUNNING;
1412 	}
1413 
1414 	if (set_up_next_transfer(pl022, transfer)) {
1415 		message->state = STATE_ERROR;
1416 		message->status = -EIO;
1417 		giveback(pl022);
1418 		return;
1419 	}
1420 	/* Flush the FIFOs and let's go! */
1421 	flush(pl022);
1422 
1423 	if (pl022->cur_chip->enable_dma) {
1424 		if (configure_dma(pl022)) {
1425 			dev_dbg(&pl022->adev->dev,
1426 				"configuration of DMA failed, fall back to interrupt mode\n");
1427 			goto err_config_dma;
1428 		}
1429 		return;
1430 	}
1431 
1432 err_config_dma:
1433 	/* enable all interrupts except RX */
1434 	writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase));
1435 }
1436 
1437 static void do_interrupt_dma_transfer(struct pl022 *pl022)
1438 {
1439 	/*
1440 	 * Default is to enable all interrupts except RX -
1441 	 * this will be enabled once TX is complete
1442 	 */
1443 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1444 
1445 	/* Enable target chip, if not already active */
1446 	if (!pl022->next_msg_cs_active)
1447 		pl022_cs_control(pl022, SSP_CHIP_SELECT);
1448 
1449 	if (set_up_next_transfer(pl022, pl022->cur_transfer)) {
1450 		/* Error path */
1451 		pl022->cur_msg->state = STATE_ERROR;
1452 		pl022->cur_msg->status = -EIO;
1453 		giveback(pl022);
1454 		return;
1455 	}
1456 	/* If we're using DMA, set up DMA here */
1457 	if (pl022->cur_chip->enable_dma) {
1458 		/* Configure DMA transfer */
1459 		if (configure_dma(pl022)) {
1460 			dev_dbg(&pl022->adev->dev,
1461 				"configuration of DMA failed, fall back to interrupt mode\n");
1462 			goto err_config_dma;
1463 		}
1464 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1465 		irqflags = DISABLE_ALL_INTERRUPTS;
1466 	}
1467 err_config_dma:
1468 	/* Enable SSP, turn on interrupts */
1469 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1470 	       SSP_CR1(pl022->virtbase));
1471 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1472 }
1473 
1474 static void print_current_status(struct pl022 *pl022)
1475 {
1476 	u32 read_cr0;
1477 	u16 read_cr1, read_dmacr, read_sr;
1478 
1479 	if (pl022->vendor->extended_cr)
1480 		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1481 	else
1482 		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1483 	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1484 	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1485 	read_sr = readw(SSP_SR(pl022->virtbase));
1486 
1487 	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1488 	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1489 	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1490 	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1491 	dev_warn(&pl022->adev->dev,
1492 			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1493 			pl022->exp_fifo_level,
1494 			pl022->vendor->fifodepth);
1495 
1496 }
1497 
1498 static void do_polling_transfer(struct pl022 *pl022)
1499 {
1500 	struct spi_message *message = NULL;
1501 	struct spi_transfer *transfer = NULL;
1502 	struct spi_transfer *previous = NULL;
1503 	unsigned long time, timeout;
1504 
1505 	message = pl022->cur_msg;
1506 
1507 	while (message->state != STATE_DONE) {
1508 		/* Handle for abort */
1509 		if (message->state == STATE_ERROR)
1510 			break;
1511 		transfer = pl022->cur_transfer;
1512 
1513 		/* Delay if requested at end of transfer */
1514 		if (message->state == STATE_RUNNING) {
1515 			previous =
1516 			    list_entry(transfer->transfer_list.prev,
1517 				       struct spi_transfer, transfer_list);
1518 			spi_transfer_delay_exec(previous);
1519 			if (previous->cs_change)
1520 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1521 		} else {
1522 			/* STATE_START */
1523 			message->state = STATE_RUNNING;
1524 			if (!pl022->next_msg_cs_active)
1525 				pl022_cs_control(pl022, SSP_CHIP_SELECT);
1526 		}
1527 
1528 		/* Configuration Changing Per Transfer */
1529 		if (set_up_next_transfer(pl022, transfer)) {
1530 			/* Error path */
1531 			message->state = STATE_ERROR;
1532 			break;
1533 		}
1534 		/* Flush FIFOs and enable SSP */
1535 		flush(pl022);
1536 		writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1537 		       SSP_CR1(pl022->virtbase));
1538 
1539 		dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1540 
1541 		timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1542 		while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1543 			time = jiffies;
1544 			readwriter(pl022);
1545 			if (time_after(time, timeout)) {
1546 				dev_warn(&pl022->adev->dev,
1547 				"%s: timeout!\n", __func__);
1548 				message->state = STATE_TIMEOUT;
1549 				print_current_status(pl022);
1550 				goto out;
1551 			}
1552 			cpu_relax();
1553 		}
1554 
1555 		/* Update total byte transferred */
1556 		message->actual_length += pl022->cur_transfer->len;
1557 		/* Move to next transfer */
1558 		message->state = next_transfer(pl022);
1559 		if (message->state != STATE_DONE
1560 		    && pl022->cur_transfer->cs_change)
1561 			pl022_cs_control(pl022, SSP_CHIP_DESELECT);
1562 	}
1563 out:
1564 	/* Handle end of message */
1565 	if (message->state == STATE_DONE)
1566 		message->status = 0;
1567 	else if (message->state == STATE_TIMEOUT)
1568 		message->status = -EAGAIN;
1569 	else
1570 		message->status = -EIO;
1571 
1572 	giveback(pl022);
1573 	return;
1574 }
1575 
1576 static int pl022_transfer_one_message(struct spi_master *master,
1577 				      struct spi_message *msg)
1578 {
1579 	struct pl022 *pl022 = spi_master_get_devdata(master);
1580 
1581 	/* Initial message state */
1582 	pl022->cur_msg = msg;
1583 	msg->state = STATE_START;
1584 
1585 	pl022->cur_transfer = list_entry(msg->transfers.next,
1586 					 struct spi_transfer, transfer_list);
1587 
1588 	/* Setup the SPI using the per chip configuration */
1589 	pl022->cur_chip = spi_get_ctldata(msg->spi);
1590 	pl022->cur_cs = spi_get_chipselect(msg->spi, 0);
1591 	/* This is always available but may be set to -ENOENT */
1592 	pl022->cur_gpiod = spi_get_csgpiod(msg->spi, 0);
1593 
1594 	restore_state(pl022);
1595 	flush(pl022);
1596 
1597 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1598 		do_polling_transfer(pl022);
1599 	else
1600 		do_interrupt_dma_transfer(pl022);
1601 
1602 	return 0;
1603 }
1604 
1605 static int pl022_unprepare_transfer_hardware(struct spi_master *master)
1606 {
1607 	struct pl022 *pl022 = spi_master_get_devdata(master);
1608 
1609 	/* nothing more to do - disable spi/ssp and power off */
1610 	writew((readw(SSP_CR1(pl022->virtbase)) &
1611 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1612 
1613 	return 0;
1614 }
1615 
1616 static int verify_controller_parameters(struct pl022 *pl022,
1617 				struct pl022_config_chip const *chip_info)
1618 {
1619 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1620 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1621 		dev_err(&pl022->adev->dev,
1622 			"interface is configured incorrectly\n");
1623 		return -EINVAL;
1624 	}
1625 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1626 	    (!pl022->vendor->unidir)) {
1627 		dev_err(&pl022->adev->dev,
1628 			"unidirectional mode not supported in this "
1629 			"hardware version\n");
1630 		return -EINVAL;
1631 	}
1632 	if ((chip_info->hierarchy != SSP_MASTER)
1633 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1634 		dev_err(&pl022->adev->dev,
1635 			"hierarchy is configured incorrectly\n");
1636 		return -EINVAL;
1637 	}
1638 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1639 	    && (chip_info->com_mode != DMA_TRANSFER)
1640 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1641 		dev_err(&pl022->adev->dev,
1642 			"Communication mode is configured incorrectly\n");
1643 		return -EINVAL;
1644 	}
1645 	switch (chip_info->rx_lev_trig) {
1646 	case SSP_RX_1_OR_MORE_ELEM:
1647 	case SSP_RX_4_OR_MORE_ELEM:
1648 	case SSP_RX_8_OR_MORE_ELEM:
1649 		/* These are always OK, all variants can handle this */
1650 		break;
1651 	case SSP_RX_16_OR_MORE_ELEM:
1652 		if (pl022->vendor->fifodepth < 16) {
1653 			dev_err(&pl022->adev->dev,
1654 			"RX FIFO Trigger Level is configured incorrectly\n");
1655 			return -EINVAL;
1656 		}
1657 		break;
1658 	case SSP_RX_32_OR_MORE_ELEM:
1659 		if (pl022->vendor->fifodepth < 32) {
1660 			dev_err(&pl022->adev->dev,
1661 			"RX FIFO Trigger Level is configured incorrectly\n");
1662 			return -EINVAL;
1663 		}
1664 		break;
1665 	default:
1666 		dev_err(&pl022->adev->dev,
1667 			"RX FIFO Trigger Level is configured incorrectly\n");
1668 		return -EINVAL;
1669 	}
1670 	switch (chip_info->tx_lev_trig) {
1671 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1672 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1673 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1674 		/* These are always OK, all variants can handle this */
1675 		break;
1676 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1677 		if (pl022->vendor->fifodepth < 16) {
1678 			dev_err(&pl022->adev->dev,
1679 			"TX FIFO Trigger Level is configured incorrectly\n");
1680 			return -EINVAL;
1681 		}
1682 		break;
1683 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1684 		if (pl022->vendor->fifodepth < 32) {
1685 			dev_err(&pl022->adev->dev,
1686 			"TX FIFO Trigger Level is configured incorrectly\n");
1687 			return -EINVAL;
1688 		}
1689 		break;
1690 	default:
1691 		dev_err(&pl022->adev->dev,
1692 			"TX FIFO Trigger Level is configured incorrectly\n");
1693 		return -EINVAL;
1694 	}
1695 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1696 		if ((chip_info->ctrl_len < SSP_BITS_4)
1697 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1698 			dev_err(&pl022->adev->dev,
1699 				"CTRL LEN is configured incorrectly\n");
1700 			return -EINVAL;
1701 		}
1702 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1703 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1704 			dev_err(&pl022->adev->dev,
1705 				"Wait State is configured incorrectly\n");
1706 			return -EINVAL;
1707 		}
1708 		/* Half duplex is only available in the ST Micro version */
1709 		if (pl022->vendor->extended_cr) {
1710 			if ((chip_info->duplex !=
1711 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1712 			    && (chip_info->duplex !=
1713 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1714 				dev_err(&pl022->adev->dev,
1715 					"Microwire duplex mode is configured incorrectly\n");
1716 				return -EINVAL;
1717 			}
1718 		} else {
1719 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1720 				dev_err(&pl022->adev->dev,
1721 					"Microwire half duplex mode requested,"
1722 					" but this is only available in the"
1723 					" ST version of PL022\n");
1724 				return -EINVAL;
1725 			}
1726 		}
1727 	}
1728 	return 0;
1729 }
1730 
1731 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1732 {
1733 	return rate / (cpsdvsr * (1 + scr));
1734 }
1735 
1736 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1737 				    ssp_clock_params * clk_freq)
1738 {
1739 	/* Lets calculate the frequency parameters */
1740 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1741 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1742 		best_scr = 0, tmp, found = 0;
1743 
1744 	rate = clk_get_rate(pl022->clk);
1745 	/* cpsdvscr = 2 & scr 0 */
1746 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1747 	/* cpsdvsr = 254 & scr = 255 */
1748 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1749 
1750 	if (freq > max_tclk)
1751 		dev_warn(&pl022->adev->dev,
1752 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1753 			max_tclk, freq);
1754 
1755 	if (freq < min_tclk) {
1756 		dev_err(&pl022->adev->dev,
1757 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1758 			freq, min_tclk);
1759 		return -EINVAL;
1760 	}
1761 
1762 	/*
1763 	 * best_freq will give closest possible available rate (<= requested
1764 	 * freq) for all values of scr & cpsdvsr.
1765 	 */
1766 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1767 		while (scr <= SCR_MAX) {
1768 			tmp = spi_rate(rate, cpsdvsr, scr);
1769 
1770 			if (tmp > freq) {
1771 				/* we need lower freq */
1772 				scr++;
1773 				continue;
1774 			}
1775 
1776 			/*
1777 			 * If found exact value, mark found and break.
1778 			 * If found more closer value, update and break.
1779 			 */
1780 			if (tmp > best_freq) {
1781 				best_freq = tmp;
1782 				best_cpsdvsr = cpsdvsr;
1783 				best_scr = scr;
1784 
1785 				if (tmp == freq)
1786 					found = 1;
1787 			}
1788 			/*
1789 			 * increased scr will give lower rates, which are not
1790 			 * required
1791 			 */
1792 			break;
1793 		}
1794 		cpsdvsr += 2;
1795 		scr = SCR_MIN;
1796 	}
1797 
1798 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1799 			freq);
1800 
1801 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1802 	clk_freq->scr = (u8) (best_scr & 0xFF);
1803 	dev_dbg(&pl022->adev->dev,
1804 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1805 		freq, best_freq);
1806 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1807 		clk_freq->cpsdvsr, clk_freq->scr);
1808 
1809 	return 0;
1810 }
1811 
1812 /*
1813  * A piece of default chip info unless the platform
1814  * supplies it.
1815  */
1816 static const struct pl022_config_chip pl022_default_chip_info = {
1817 	.com_mode = INTERRUPT_TRANSFER,
1818 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1819 	.hierarchy = SSP_MASTER,
1820 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1821 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1822 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1823 	.ctrl_len = SSP_BITS_8,
1824 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1825 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1826 };
1827 
1828 /**
1829  * pl022_setup - setup function registered to SPI master framework
1830  * @spi: spi device which is requesting setup
1831  *
1832  * This function is registered to the SPI framework for this SPI master
1833  * controller. If it is the first time when setup is called by this device,
1834  * this function will initialize the runtime state for this chip and save
1835  * the same in the device structure. Else it will update the runtime info
1836  * with the updated chip info. Nothing is really being written to the
1837  * controller hardware here, that is not done until the actual transfer
1838  * commence.
1839  */
1840 static int pl022_setup(struct spi_device *spi)
1841 {
1842 	struct pl022_config_chip const *chip_info;
1843 	struct pl022_config_chip chip_info_dt;
1844 	struct chip_data *chip;
1845 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1846 	int status = 0;
1847 	struct pl022 *pl022 = spi_master_get_devdata(spi->master);
1848 	unsigned int bits = spi->bits_per_word;
1849 	u32 tmp;
1850 	struct device_node *np = spi->dev.of_node;
1851 
1852 	if (!spi->max_speed_hz)
1853 		return -EINVAL;
1854 
1855 	/* Get controller_state if one is supplied */
1856 	chip = spi_get_ctldata(spi);
1857 
1858 	if (chip == NULL) {
1859 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1860 		if (!chip)
1861 			return -ENOMEM;
1862 		dev_dbg(&spi->dev,
1863 			"allocated memory for controller's runtime state\n");
1864 	}
1865 
1866 	/* Get controller data if one is supplied */
1867 	chip_info = spi->controller_data;
1868 
1869 	if (chip_info == NULL) {
1870 		if (np) {
1871 			chip_info_dt = pl022_default_chip_info;
1872 
1873 			chip_info_dt.hierarchy = SSP_MASTER;
1874 			of_property_read_u32(np, "pl022,interface",
1875 				&chip_info_dt.iface);
1876 			of_property_read_u32(np, "pl022,com-mode",
1877 				&chip_info_dt.com_mode);
1878 			of_property_read_u32(np, "pl022,rx-level-trig",
1879 				&chip_info_dt.rx_lev_trig);
1880 			of_property_read_u32(np, "pl022,tx-level-trig",
1881 				&chip_info_dt.tx_lev_trig);
1882 			of_property_read_u32(np, "pl022,ctrl-len",
1883 				&chip_info_dt.ctrl_len);
1884 			of_property_read_u32(np, "pl022,wait-state",
1885 				&chip_info_dt.wait_state);
1886 			of_property_read_u32(np, "pl022,duplex",
1887 				&chip_info_dt.duplex);
1888 
1889 			chip_info = &chip_info_dt;
1890 		} else {
1891 			chip_info = &pl022_default_chip_info;
1892 			/* spi_board_info.controller_data not is supplied */
1893 			dev_dbg(&spi->dev,
1894 				"using default controller_data settings\n");
1895 		}
1896 	} else
1897 		dev_dbg(&spi->dev,
1898 			"using user supplied controller_data settings\n");
1899 
1900 	/*
1901 	 * We can override with custom divisors, else we use the board
1902 	 * frequency setting
1903 	 */
1904 	if ((0 == chip_info->clk_freq.cpsdvsr)
1905 	    && (0 == chip_info->clk_freq.scr)) {
1906 		status = calculate_effective_freq(pl022,
1907 						  spi->max_speed_hz,
1908 						  &clk_freq);
1909 		if (status < 0)
1910 			goto err_config_params;
1911 	} else {
1912 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1913 		if ((clk_freq.cpsdvsr % 2) != 0)
1914 			clk_freq.cpsdvsr =
1915 				clk_freq.cpsdvsr - 1;
1916 	}
1917 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1918 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1919 		status = -EINVAL;
1920 		dev_err(&spi->dev,
1921 			"cpsdvsr is configured incorrectly\n");
1922 		goto err_config_params;
1923 	}
1924 
1925 	status = verify_controller_parameters(pl022, chip_info);
1926 	if (status) {
1927 		dev_err(&spi->dev, "controller data is incorrect");
1928 		goto err_config_params;
1929 	}
1930 
1931 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1932 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1933 
1934 	/* Now set controller state based on controller data */
1935 	chip->xfer_type = chip_info->com_mode;
1936 
1937 	/* Check bits per word with vendor specific range */
1938 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1939 		status = -ENOTSUPP;
1940 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1941 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1942 				pl022->vendor->max_bpw);
1943 		goto err_config_params;
1944 	} else if (bits <= 8) {
1945 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1946 		chip->n_bytes = 1;
1947 		chip->read = READING_U8;
1948 		chip->write = WRITING_U8;
1949 	} else if (bits <= 16) {
1950 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1951 		chip->n_bytes = 2;
1952 		chip->read = READING_U16;
1953 		chip->write = WRITING_U16;
1954 	} else {
1955 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1956 		chip->n_bytes = 4;
1957 		chip->read = READING_U32;
1958 		chip->write = WRITING_U32;
1959 	}
1960 
1961 	/* Now Initialize all register settings required for this chip */
1962 	chip->cr0 = 0;
1963 	chip->cr1 = 0;
1964 	chip->dmacr = 0;
1965 	chip->cpsr = 0;
1966 	if ((chip_info->com_mode == DMA_TRANSFER)
1967 	    && ((pl022->master_info)->enable_dma)) {
1968 		chip->enable_dma = true;
1969 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1970 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1971 			       SSP_DMACR_MASK_RXDMAE, 0);
1972 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1973 			       SSP_DMACR_MASK_TXDMAE, 1);
1974 	} else {
1975 		chip->enable_dma = false;
1976 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1977 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1978 			       SSP_DMACR_MASK_RXDMAE, 0);
1979 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1980 			       SSP_DMACR_MASK_TXDMAE, 1);
1981 	}
1982 
1983 	chip->cpsr = clk_freq.cpsdvsr;
1984 
1985 	/* Special setup for the ST micro extended control registers */
1986 	if (pl022->vendor->extended_cr) {
1987 		u32 etx;
1988 
1989 		if (pl022->vendor->pl023) {
1990 			/* These bits are only in the PL023 */
1991 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1992 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1993 		} else {
1994 			/* These bits are in the PL022 but not PL023 */
1995 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1996 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1997 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1998 				       SSP_CR0_MASK_CSS_ST, 16);
1999 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2000 				       SSP_CR0_MASK_FRF_ST, 21);
2001 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
2002 				       SSP_CR1_MASK_MWAIT_ST, 6);
2003 		}
2004 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2005 			       SSP_CR0_MASK_DSS_ST, 0);
2006 
2007 		if (spi->mode & SPI_LSB_FIRST) {
2008 			tmp = SSP_RX_LSB;
2009 			etx = SSP_TX_LSB;
2010 		} else {
2011 			tmp = SSP_RX_MSB;
2012 			etx = SSP_TX_MSB;
2013 		}
2014 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
2015 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
2016 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
2017 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
2018 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
2019 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
2020 	} else {
2021 		SSP_WRITE_BITS(chip->cr0, bits - 1,
2022 			       SSP_CR0_MASK_DSS, 0);
2023 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
2024 			       SSP_CR0_MASK_FRF, 4);
2025 	}
2026 
2027 	/* Stuff that is common for all versions */
2028 	if (spi->mode & SPI_CPOL)
2029 		tmp = SSP_CLK_POL_IDLE_HIGH;
2030 	else
2031 		tmp = SSP_CLK_POL_IDLE_LOW;
2032 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
2033 
2034 	if (spi->mode & SPI_CPHA)
2035 		tmp = SSP_CLK_SECOND_EDGE;
2036 	else
2037 		tmp = SSP_CLK_FIRST_EDGE;
2038 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
2039 
2040 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
2041 	/* Loopback is available on all versions except PL023 */
2042 	if (pl022->vendor->loopback) {
2043 		if (spi->mode & SPI_LOOP)
2044 			tmp = LOOPBACK_ENABLED;
2045 		else
2046 			tmp = LOOPBACK_DISABLED;
2047 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
2048 	}
2049 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
2050 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
2051 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
2052 		3);
2053 
2054 	/* Save controller_state */
2055 	spi_set_ctldata(spi, chip);
2056 	return status;
2057  err_config_params:
2058 	spi_set_ctldata(spi, NULL);
2059 	kfree(chip);
2060 	return status;
2061 }
2062 
2063 /**
2064  * pl022_cleanup - cleanup function registered to SPI master framework
2065  * @spi: spi device which is requesting cleanup
2066  *
2067  * This function is registered to the SPI framework for this SPI master
2068  * controller. It will free the runtime state of chip.
2069  */
2070 static void pl022_cleanup(struct spi_device *spi)
2071 {
2072 	struct chip_data *chip = spi_get_ctldata(spi);
2073 
2074 	spi_set_ctldata(spi, NULL);
2075 	kfree(chip);
2076 }
2077 
2078 static struct pl022_ssp_controller *
2079 pl022_platform_data_dt_get(struct device *dev)
2080 {
2081 	struct device_node *np = dev->of_node;
2082 	struct pl022_ssp_controller *pd;
2083 
2084 	if (!np) {
2085 		dev_err(dev, "no dt node defined\n");
2086 		return NULL;
2087 	}
2088 
2089 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
2090 	if (!pd)
2091 		return NULL;
2092 
2093 	pd->bus_id = -1;
2094 	of_property_read_u32(np, "pl022,autosuspend-delay",
2095 			     &pd->autosuspend_delay);
2096 	pd->rt = of_property_read_bool(np, "pl022,rt");
2097 
2098 	return pd;
2099 }
2100 
2101 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
2102 {
2103 	struct device *dev = &adev->dev;
2104 	struct pl022_ssp_controller *platform_info =
2105 			dev_get_platdata(&adev->dev);
2106 	struct spi_master *master;
2107 	struct pl022 *pl022 = NULL;	/*Data for this driver */
2108 	int status = 0;
2109 
2110 	dev_info(&adev->dev,
2111 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
2112 	if (!platform_info && IS_ENABLED(CONFIG_OF))
2113 		platform_info = pl022_platform_data_dt_get(dev);
2114 
2115 	if (!platform_info) {
2116 		dev_err(dev, "probe: no platform data defined\n");
2117 		return -ENODEV;
2118 	}
2119 
2120 	/* Allocate master with space for data */
2121 	master = spi_alloc_master(dev, sizeof(struct pl022));
2122 	if (master == NULL) {
2123 		dev_err(&adev->dev, "probe - cannot alloc SPI master\n");
2124 		return -ENOMEM;
2125 	}
2126 
2127 	pl022 = spi_master_get_devdata(master);
2128 	pl022->master = master;
2129 	pl022->master_info = platform_info;
2130 	pl022->adev = adev;
2131 	pl022->vendor = id->data;
2132 
2133 	/*
2134 	 * Bus Number Which has been Assigned to this SSP controller
2135 	 * on this board
2136 	 */
2137 	master->bus_num = platform_info->bus_id;
2138 	master->cleanup = pl022_cleanup;
2139 	master->setup = pl022_setup;
2140 	master->auto_runtime_pm = true;
2141 	master->transfer_one_message = pl022_transfer_one_message;
2142 	master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
2143 	master->rt = platform_info->rt;
2144 	master->dev.of_node = dev->of_node;
2145 	master->use_gpio_descriptors = true;
2146 
2147 	/*
2148 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
2149 	 * always MS bit first on the original pl022.
2150 	 */
2151 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
2152 	if (pl022->vendor->extended_cr)
2153 		master->mode_bits |= SPI_LSB_FIRST;
2154 
2155 	dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num);
2156 
2157 	status = amba_request_regions(adev, NULL);
2158 	if (status)
2159 		goto err_no_ioregion;
2160 
2161 	pl022->phybase = adev->res.start;
2162 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
2163 				       resource_size(&adev->res));
2164 	if (pl022->virtbase == NULL) {
2165 		status = -ENOMEM;
2166 		goto err_no_ioremap;
2167 	}
2168 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
2169 		&adev->res.start, pl022->virtbase);
2170 
2171 	pl022->clk = devm_clk_get(&adev->dev, NULL);
2172 	if (IS_ERR(pl022->clk)) {
2173 		status = PTR_ERR(pl022->clk);
2174 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
2175 		goto err_no_clk;
2176 	}
2177 
2178 	status = clk_prepare_enable(pl022->clk);
2179 	if (status) {
2180 		dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n");
2181 		goto err_no_clk_en;
2182 	}
2183 
2184 	/* Initialize transfer pump */
2185 	tasklet_init(&pl022->pump_transfers, pump_transfers,
2186 		     (unsigned long)pl022);
2187 
2188 	/* Disable SSP */
2189 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
2190 	       SSP_CR1(pl022->virtbase));
2191 	load_ssp_default_config(pl022);
2192 
2193 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
2194 				  0, "pl022", pl022);
2195 	if (status < 0) {
2196 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
2197 		goto err_no_irq;
2198 	}
2199 
2200 	/* Get DMA channels, try autoconfiguration first */
2201 	status = pl022_dma_autoprobe(pl022);
2202 	if (status == -EPROBE_DEFER) {
2203 		dev_dbg(dev, "deferring probe to get DMA channel\n");
2204 		goto err_no_irq;
2205 	}
2206 
2207 	/* If that failed, use channels from platform_info */
2208 	if (status == 0)
2209 		platform_info->enable_dma = 1;
2210 	else if (platform_info->enable_dma) {
2211 		status = pl022_dma_probe(pl022);
2212 		if (status != 0)
2213 			platform_info->enable_dma = 0;
2214 	}
2215 
2216 	/* Register with the SPI framework */
2217 	amba_set_drvdata(adev, pl022);
2218 	status = devm_spi_register_master(&adev->dev, master);
2219 	if (status != 0) {
2220 		dev_err_probe(&adev->dev, status,
2221 			      "problem registering spi master\n");
2222 		goto err_spi_register;
2223 	}
2224 	dev_dbg(dev, "probe succeeded\n");
2225 
2226 	/* let runtime pm put suspend */
2227 	if (platform_info->autosuspend_delay > 0) {
2228 		dev_info(&adev->dev,
2229 			"will use autosuspend for runtime pm, delay %dms\n",
2230 			platform_info->autosuspend_delay);
2231 		pm_runtime_set_autosuspend_delay(dev,
2232 			platform_info->autosuspend_delay);
2233 		pm_runtime_use_autosuspend(dev);
2234 	}
2235 	pm_runtime_put(dev);
2236 
2237 	return 0;
2238 
2239  err_spi_register:
2240 	if (platform_info->enable_dma)
2241 		pl022_dma_remove(pl022);
2242  err_no_irq:
2243 	clk_disable_unprepare(pl022->clk);
2244  err_no_clk_en:
2245  err_no_clk:
2246  err_no_ioremap:
2247 	amba_release_regions(adev);
2248  err_no_ioregion:
2249 	spi_master_put(master);
2250 	return status;
2251 }
2252 
2253 static void
2254 pl022_remove(struct amba_device *adev)
2255 {
2256 	struct pl022 *pl022 = amba_get_drvdata(adev);
2257 
2258 	if (!pl022)
2259 		return;
2260 
2261 	/*
2262 	 * undo pm_runtime_put() in probe.  I assume that we're not
2263 	 * accessing the primecell here.
2264 	 */
2265 	pm_runtime_get_noresume(&adev->dev);
2266 
2267 	load_ssp_default_config(pl022);
2268 	if (pl022->master_info->enable_dma)
2269 		pl022_dma_remove(pl022);
2270 
2271 	clk_disable_unprepare(pl022->clk);
2272 	amba_release_regions(adev);
2273 	tasklet_disable(&pl022->pump_transfers);
2274 }
2275 
2276 #ifdef CONFIG_PM_SLEEP
2277 static int pl022_suspend(struct device *dev)
2278 {
2279 	struct pl022 *pl022 = dev_get_drvdata(dev);
2280 	int ret;
2281 
2282 	ret = spi_master_suspend(pl022->master);
2283 	if (ret)
2284 		return ret;
2285 
2286 	ret = pm_runtime_force_suspend(dev);
2287 	if (ret) {
2288 		spi_master_resume(pl022->master);
2289 		return ret;
2290 	}
2291 
2292 	pinctrl_pm_select_sleep_state(dev);
2293 
2294 	dev_dbg(dev, "suspended\n");
2295 	return 0;
2296 }
2297 
2298 static int pl022_resume(struct device *dev)
2299 {
2300 	struct pl022 *pl022 = dev_get_drvdata(dev);
2301 	int ret;
2302 
2303 	ret = pm_runtime_force_resume(dev);
2304 	if (ret)
2305 		dev_err(dev, "problem resuming\n");
2306 
2307 	/* Start the queue running */
2308 	ret = spi_master_resume(pl022->master);
2309 	if (!ret)
2310 		dev_dbg(dev, "resumed\n");
2311 
2312 	return ret;
2313 }
2314 #endif
2315 
2316 #ifdef CONFIG_PM
2317 static int pl022_runtime_suspend(struct device *dev)
2318 {
2319 	struct pl022 *pl022 = dev_get_drvdata(dev);
2320 
2321 	clk_disable_unprepare(pl022->clk);
2322 	pinctrl_pm_select_idle_state(dev);
2323 
2324 	return 0;
2325 }
2326 
2327 static int pl022_runtime_resume(struct device *dev)
2328 {
2329 	struct pl022 *pl022 = dev_get_drvdata(dev);
2330 
2331 	pinctrl_pm_select_default_state(dev);
2332 	clk_prepare_enable(pl022->clk);
2333 
2334 	return 0;
2335 }
2336 #endif
2337 
2338 static const struct dev_pm_ops pl022_dev_pm_ops = {
2339 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2340 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2341 };
2342 
2343 static struct vendor_data vendor_arm = {
2344 	.fifodepth = 8,
2345 	.max_bpw = 16,
2346 	.unidir = false,
2347 	.extended_cr = false,
2348 	.pl023 = false,
2349 	.loopback = true,
2350 	.internal_cs_ctrl = false,
2351 };
2352 
2353 static struct vendor_data vendor_st = {
2354 	.fifodepth = 32,
2355 	.max_bpw = 32,
2356 	.unidir = false,
2357 	.extended_cr = true,
2358 	.pl023 = false,
2359 	.loopback = true,
2360 	.internal_cs_ctrl = false,
2361 };
2362 
2363 static struct vendor_data vendor_st_pl023 = {
2364 	.fifodepth = 32,
2365 	.max_bpw = 32,
2366 	.unidir = false,
2367 	.extended_cr = true,
2368 	.pl023 = true,
2369 	.loopback = false,
2370 	.internal_cs_ctrl = false,
2371 };
2372 
2373 static struct vendor_data vendor_lsi = {
2374 	.fifodepth = 8,
2375 	.max_bpw = 16,
2376 	.unidir = false,
2377 	.extended_cr = false,
2378 	.pl023 = false,
2379 	.loopback = true,
2380 	.internal_cs_ctrl = true,
2381 };
2382 
2383 static const struct amba_id pl022_ids[] = {
2384 	{
2385 		/*
2386 		 * ARM PL022 variant, this has a 16bit wide
2387 		 * and 8 locations deep TX/RX FIFO
2388 		 */
2389 		.id	= 0x00041022,
2390 		.mask	= 0x000fffff,
2391 		.data	= &vendor_arm,
2392 	},
2393 	{
2394 		/*
2395 		 * ST Micro derivative, this has 32bit wide
2396 		 * and 32 locations deep TX/RX FIFO
2397 		 */
2398 		.id	= 0x01080022,
2399 		.mask	= 0xffffffff,
2400 		.data	= &vendor_st,
2401 	},
2402 	{
2403 		/*
2404 		 * ST-Ericsson derivative "PL023" (this is not
2405 		 * an official ARM number), this is a PL022 SSP block
2406 		 * stripped to SPI mode only, it has 32bit wide
2407 		 * and 32 locations deep TX/RX FIFO but no extended
2408 		 * CR0/CR1 register
2409 		 */
2410 		.id	= 0x00080023,
2411 		.mask	= 0xffffffff,
2412 		.data	= &vendor_st_pl023,
2413 	},
2414 	{
2415 		/*
2416 		 * PL022 variant that has a chip select control register whih
2417 		 * allows control of 5 output signals nCS[0:4].
2418 		 */
2419 		.id	= 0x000b6022,
2420 		.mask	= 0x000fffff,
2421 		.data	= &vendor_lsi,
2422 	},
2423 	{ 0, 0 },
2424 };
2425 
2426 MODULE_DEVICE_TABLE(amba, pl022_ids);
2427 
2428 static struct amba_driver pl022_driver = {
2429 	.drv = {
2430 		.name	= "ssp-pl022",
2431 		.pm	= &pl022_dev_pm_ops,
2432 	},
2433 	.id_table	= pl022_ids,
2434 	.probe		= pl022_probe,
2435 	.remove		= pl022_remove,
2436 };
2437 
2438 static int __init pl022_init(void)
2439 {
2440 	return amba_driver_register(&pl022_driver);
2441 }
2442 subsys_initcall(pl022_init);
2443 
2444 static void __exit pl022_exit(void)
2445 {
2446 	amba_driver_unregister(&pl022_driver);
2447 }
2448 module_exit(pl022_exit);
2449 
2450 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2451 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2452 MODULE_LICENSE("GPL");
2453