1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * A driver for the ARM PL022 PrimeCell SSP/SPI bus master. 4 * 5 * Copyright (C) 2008-2012 ST-Ericsson AB 6 * Copyright (C) 2006 STMicroelectronics Pvt. Ltd. 7 * 8 * Author: Linus Walleij <linus.walleij@stericsson.com> 9 * 10 * Initial version inspired by: 11 * linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c 12 * Initial adoption to PL022 by: 13 * Sachin Verma <sachin.verma@st.com> 14 */ 15 16 #include <linux/init.h> 17 #include <linux/module.h> 18 #include <linux/device.h> 19 #include <linux/ioport.h> 20 #include <linux/errno.h> 21 #include <linux/interrupt.h> 22 #include <linux/spi/spi.h> 23 #include <linux/delay.h> 24 #include <linux/clk.h> 25 #include <linux/err.h> 26 #include <linux/amba/bus.h> 27 #include <linux/amba/pl022.h> 28 #include <linux/io.h> 29 #include <linux/slab.h> 30 #include <linux/dmaengine.h> 31 #include <linux/dma-mapping.h> 32 #include <linux/scatterlist.h> 33 #include <linux/pm_runtime.h> 34 #include <linux/of.h> 35 #include <linux/pinctrl/consumer.h> 36 37 /* 38 * This macro is used to define some register default values. 39 * reg is masked with mask, the OR:ed with an (again masked) 40 * val shifted sb steps to the left. 41 */ 42 #define SSP_WRITE_BITS(reg, val, mask, sb) \ 43 ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask)))) 44 45 /* 46 * This macro is also used to define some default values. 47 * It will just shift val by sb steps to the left and mask 48 * the result with mask. 49 */ 50 #define GEN_MASK_BITS(val, mask, sb) \ 51 (((val)<<(sb)) & (mask)) 52 53 #define DRIVE_TX 0 54 #define DO_NOT_DRIVE_TX 1 55 56 #define DO_NOT_QUEUE_DMA 0 57 #define QUEUE_DMA 1 58 59 #define RX_TRANSFER 1 60 #define TX_TRANSFER 2 61 62 /* 63 * Macros to access SSP Registers with their offsets 64 */ 65 #define SSP_CR0(r) (r + 0x000) 66 #define SSP_CR1(r) (r + 0x004) 67 #define SSP_DR(r) (r + 0x008) 68 #define SSP_SR(r) (r + 0x00C) 69 #define SSP_CPSR(r) (r + 0x010) 70 #define SSP_IMSC(r) (r + 0x014) 71 #define SSP_RIS(r) (r + 0x018) 72 #define SSP_MIS(r) (r + 0x01C) 73 #define SSP_ICR(r) (r + 0x020) 74 #define SSP_DMACR(r) (r + 0x024) 75 #define SSP_CSR(r) (r + 0x030) /* vendor extension */ 76 #define SSP_ITCR(r) (r + 0x080) 77 #define SSP_ITIP(r) (r + 0x084) 78 #define SSP_ITOP(r) (r + 0x088) 79 #define SSP_TDR(r) (r + 0x08C) 80 81 #define SSP_PID0(r) (r + 0xFE0) 82 #define SSP_PID1(r) (r + 0xFE4) 83 #define SSP_PID2(r) (r + 0xFE8) 84 #define SSP_PID3(r) (r + 0xFEC) 85 86 #define SSP_CID0(r) (r + 0xFF0) 87 #define SSP_CID1(r) (r + 0xFF4) 88 #define SSP_CID2(r) (r + 0xFF8) 89 #define SSP_CID3(r) (r + 0xFFC) 90 91 /* 92 * SSP Control Register 0 - SSP_CR0 93 */ 94 #define SSP_CR0_MASK_DSS (0x0FUL << 0) 95 #define SSP_CR0_MASK_FRF (0x3UL << 4) 96 #define SSP_CR0_MASK_SPO (0x1UL << 6) 97 #define SSP_CR0_MASK_SPH (0x1UL << 7) 98 #define SSP_CR0_MASK_SCR (0xFFUL << 8) 99 100 /* 101 * The ST version of this block moves som bits 102 * in SSP_CR0 and extends it to 32 bits 103 */ 104 #define SSP_CR0_MASK_DSS_ST (0x1FUL << 0) 105 #define SSP_CR0_MASK_HALFDUP_ST (0x1UL << 5) 106 #define SSP_CR0_MASK_CSS_ST (0x1FUL << 16) 107 #define SSP_CR0_MASK_FRF_ST (0x3UL << 21) 108 109 /* 110 * SSP Control Register 0 - SSP_CR1 111 */ 112 #define SSP_CR1_MASK_LBM (0x1UL << 0) 113 #define SSP_CR1_MASK_SSE (0x1UL << 1) 114 #define SSP_CR1_MASK_MS (0x1UL << 2) 115 #define SSP_CR1_MASK_SOD (0x1UL << 3) 116 117 /* 118 * The ST version of this block adds some bits 119 * in SSP_CR1 120 */ 121 #define SSP_CR1_MASK_RENDN_ST (0x1UL << 4) 122 #define SSP_CR1_MASK_TENDN_ST (0x1UL << 5) 123 #define SSP_CR1_MASK_MWAIT_ST (0x1UL << 6) 124 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7) 125 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10) 126 /* This one is only in the PL023 variant */ 127 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13) 128 129 /* 130 * SSP Status Register - SSP_SR 131 */ 132 #define SSP_SR_MASK_TFE (0x1UL << 0) /* Transmit FIFO empty */ 133 #define SSP_SR_MASK_TNF (0x1UL << 1) /* Transmit FIFO not full */ 134 #define SSP_SR_MASK_RNE (0x1UL << 2) /* Receive FIFO not empty */ 135 #define SSP_SR_MASK_RFF (0x1UL << 3) /* Receive FIFO full */ 136 #define SSP_SR_MASK_BSY (0x1UL << 4) /* Busy Flag */ 137 138 /* 139 * SSP Clock Prescale Register - SSP_CPSR 140 */ 141 #define SSP_CPSR_MASK_CPSDVSR (0xFFUL << 0) 142 143 /* 144 * SSP Interrupt Mask Set/Clear Register - SSP_IMSC 145 */ 146 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */ 147 #define SSP_IMSC_MASK_RTIM (0x1UL << 1) /* Receive timeout Interrupt mask */ 148 #define SSP_IMSC_MASK_RXIM (0x1UL << 2) /* Receive FIFO Interrupt mask */ 149 #define SSP_IMSC_MASK_TXIM (0x1UL << 3) /* Transmit FIFO Interrupt mask */ 150 151 /* 152 * SSP Raw Interrupt Status Register - SSP_RIS 153 */ 154 /* Receive Overrun Raw Interrupt status */ 155 #define SSP_RIS_MASK_RORRIS (0x1UL << 0) 156 /* Receive Timeout Raw Interrupt status */ 157 #define SSP_RIS_MASK_RTRIS (0x1UL << 1) 158 /* Receive FIFO Raw Interrupt status */ 159 #define SSP_RIS_MASK_RXRIS (0x1UL << 2) 160 /* Transmit FIFO Raw Interrupt status */ 161 #define SSP_RIS_MASK_TXRIS (0x1UL << 3) 162 163 /* 164 * SSP Masked Interrupt Status Register - SSP_MIS 165 */ 166 /* Receive Overrun Masked Interrupt status */ 167 #define SSP_MIS_MASK_RORMIS (0x1UL << 0) 168 /* Receive Timeout Masked Interrupt status */ 169 #define SSP_MIS_MASK_RTMIS (0x1UL << 1) 170 /* Receive FIFO Masked Interrupt status */ 171 #define SSP_MIS_MASK_RXMIS (0x1UL << 2) 172 /* Transmit FIFO Masked Interrupt status */ 173 #define SSP_MIS_MASK_TXMIS (0x1UL << 3) 174 175 /* 176 * SSP Interrupt Clear Register - SSP_ICR 177 */ 178 /* Receive Overrun Raw Clear Interrupt bit */ 179 #define SSP_ICR_MASK_RORIC (0x1UL << 0) 180 /* Receive Timeout Clear Interrupt bit */ 181 #define SSP_ICR_MASK_RTIC (0x1UL << 1) 182 183 /* 184 * SSP DMA Control Register - SSP_DMACR 185 */ 186 /* Receive DMA Enable bit */ 187 #define SSP_DMACR_MASK_RXDMAE (0x1UL << 0) 188 /* Transmit DMA Enable bit */ 189 #define SSP_DMACR_MASK_TXDMAE (0x1UL << 1) 190 191 /* 192 * SSP Chip Select Control Register - SSP_CSR 193 * (vendor extension) 194 */ 195 #define SSP_CSR_CSVALUE_MASK (0x1FUL << 0) 196 197 /* 198 * SSP Integration Test control Register - SSP_ITCR 199 */ 200 #define SSP_ITCR_MASK_ITEN (0x1UL << 0) 201 #define SSP_ITCR_MASK_TESTFIFO (0x1UL << 1) 202 203 /* 204 * SSP Integration Test Input Register - SSP_ITIP 205 */ 206 #define ITIP_MASK_SSPRXD (0x1UL << 0) 207 #define ITIP_MASK_SSPFSSIN (0x1UL << 1) 208 #define ITIP_MASK_SSPCLKIN (0x1UL << 2) 209 #define ITIP_MASK_RXDMAC (0x1UL << 3) 210 #define ITIP_MASK_TXDMAC (0x1UL << 4) 211 #define ITIP_MASK_SSPTXDIN (0x1UL << 5) 212 213 /* 214 * SSP Integration Test output Register - SSP_ITOP 215 */ 216 #define ITOP_MASK_SSPTXD (0x1UL << 0) 217 #define ITOP_MASK_SSPFSSOUT (0x1UL << 1) 218 #define ITOP_MASK_SSPCLKOUT (0x1UL << 2) 219 #define ITOP_MASK_SSPOEn (0x1UL << 3) 220 #define ITOP_MASK_SSPCTLOEn (0x1UL << 4) 221 #define ITOP_MASK_RORINTR (0x1UL << 5) 222 #define ITOP_MASK_RTINTR (0x1UL << 6) 223 #define ITOP_MASK_RXINTR (0x1UL << 7) 224 #define ITOP_MASK_TXINTR (0x1UL << 8) 225 #define ITOP_MASK_INTR (0x1UL << 9) 226 #define ITOP_MASK_RXDMABREQ (0x1UL << 10) 227 #define ITOP_MASK_RXDMASREQ (0x1UL << 11) 228 #define ITOP_MASK_TXDMABREQ (0x1UL << 12) 229 #define ITOP_MASK_TXDMASREQ (0x1UL << 13) 230 231 /* 232 * SSP Test Data Register - SSP_TDR 233 */ 234 #define TDR_MASK_TESTDATA (0xFFFFFFFF) 235 236 /* 237 * Message State 238 * we use the spi_message.state (void *) pointer to 239 * hold a single state value, that's why all this 240 * (void *) casting is done here. 241 */ 242 #define STATE_START ((void *) 0) 243 #define STATE_RUNNING ((void *) 1) 244 #define STATE_DONE ((void *) 2) 245 #define STATE_ERROR ((void *) -1) 246 #define STATE_TIMEOUT ((void *) -2) 247 248 /* 249 * SSP State - Whether Enabled or Disabled 250 */ 251 #define SSP_DISABLED (0) 252 #define SSP_ENABLED (1) 253 254 /* 255 * SSP DMA State - Whether DMA Enabled or Disabled 256 */ 257 #define SSP_DMA_DISABLED (0) 258 #define SSP_DMA_ENABLED (1) 259 260 /* 261 * SSP Clock Defaults 262 */ 263 #define SSP_DEFAULT_CLKRATE 0x2 264 #define SSP_DEFAULT_PRESCALE 0x40 265 266 /* 267 * SSP Clock Parameter ranges 268 */ 269 #define CPSDVR_MIN 0x02 270 #define CPSDVR_MAX 0xFE 271 #define SCR_MIN 0x00 272 #define SCR_MAX 0xFF 273 274 /* 275 * SSP Interrupt related Macros 276 */ 277 #define DEFAULT_SSP_REG_IMSC 0x0UL 278 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC 279 #define ENABLE_ALL_INTERRUPTS ( \ 280 SSP_IMSC_MASK_RORIM | \ 281 SSP_IMSC_MASK_RTIM | \ 282 SSP_IMSC_MASK_RXIM | \ 283 SSP_IMSC_MASK_TXIM \ 284 ) 285 286 #define CLEAR_ALL_INTERRUPTS 0x3 287 288 #define SPI_POLLING_TIMEOUT 1000 289 290 /* 291 * The type of reading going on this chip 292 */ 293 enum ssp_reading { 294 READING_NULL, 295 READING_U8, 296 READING_U16, 297 READING_U32 298 }; 299 300 /* 301 * The type of writing going on this chip 302 */ 303 enum ssp_writing { 304 WRITING_NULL, 305 WRITING_U8, 306 WRITING_U16, 307 WRITING_U32 308 }; 309 310 /** 311 * struct vendor_data - vendor-specific config parameters 312 * for PL022 derivates 313 * @fifodepth: depth of FIFOs (both) 314 * @max_bpw: maximum number of bits per word 315 * @unidir: supports unidirection transfers 316 * @extended_cr: 32 bit wide control register 0 with extra 317 * features and extra features in CR1 as found in the ST variants 318 * @pl023: supports a subset of the ST extensions called "PL023" 319 * @loopback: supports loopback mode 320 * @internal_cs_ctrl: supports chip select control register 321 */ 322 struct vendor_data { 323 int fifodepth; 324 int max_bpw; 325 bool unidir; 326 bool extended_cr; 327 bool pl023; 328 bool loopback; 329 bool internal_cs_ctrl; 330 }; 331 332 /** 333 * struct pl022 - This is the private SSP driver data structure 334 * @adev: AMBA device model hookup 335 * @vendor: vendor data for the IP block 336 * @phybase: the physical memory where the SSP device resides 337 * @virtbase: the virtual memory where the SSP is mapped 338 * @clk: outgoing clock "SPICLK" for the SPI bus 339 * @master: SPI framework hookup 340 * @master_info: controller-specific data from machine setup 341 * @pump_transfers: Tasklet used in Interrupt Transfer mode 342 * @cur_msg: Pointer to current spi_message being processed 343 * @cur_transfer: Pointer to current spi_transfer 344 * @cur_chip: pointer to current clients chip(assigned from controller_state) 345 * @next_msg_cs_active: the next message in the queue has been examined 346 * and it was found that it uses the same chip select as the previous 347 * message, so we left it active after the previous transfer, and it's 348 * active already. 349 * @tx: current position in TX buffer to be read 350 * @tx_end: end position in TX buffer to be read 351 * @rx: current position in RX buffer to be written 352 * @rx_end: end position in RX buffer to be written 353 * @read: the type of read currently going on 354 * @write: the type of write currently going on 355 * @exp_fifo_level: expected FIFO level 356 * @rx_lev_trig: receive FIFO watermark level which triggers IRQ 357 * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ 358 * @dma_rx_channel: optional channel for RX DMA 359 * @dma_tx_channel: optional channel for TX DMA 360 * @sgt_rx: scattertable for the RX transfer 361 * @sgt_tx: scattertable for the TX transfer 362 * @dummypage: a dummy page used for driving data on the bus with DMA 363 * @dma_running: indicates whether DMA is in operation 364 * @cur_cs: current chip select index 365 * @cur_gpiod: current chip select GPIO descriptor 366 */ 367 struct pl022 { 368 struct amba_device *adev; 369 struct vendor_data *vendor; 370 resource_size_t phybase; 371 void __iomem *virtbase; 372 struct clk *clk; 373 struct spi_master *master; 374 struct pl022_ssp_controller *master_info; 375 /* Message per-transfer pump */ 376 struct tasklet_struct pump_transfers; 377 struct spi_message *cur_msg; 378 struct spi_transfer *cur_transfer; 379 struct chip_data *cur_chip; 380 bool next_msg_cs_active; 381 void *tx; 382 void *tx_end; 383 void *rx; 384 void *rx_end; 385 enum ssp_reading read; 386 enum ssp_writing write; 387 u32 exp_fifo_level; 388 enum ssp_rx_level_trig rx_lev_trig; 389 enum ssp_tx_level_trig tx_lev_trig; 390 /* DMA settings */ 391 #ifdef CONFIG_DMA_ENGINE 392 struct dma_chan *dma_rx_channel; 393 struct dma_chan *dma_tx_channel; 394 struct sg_table sgt_rx; 395 struct sg_table sgt_tx; 396 char *dummypage; 397 bool dma_running; 398 #endif 399 int cur_cs; 400 struct gpio_desc *cur_gpiod; 401 }; 402 403 /** 404 * struct chip_data - To maintain runtime state of SSP for each client chip 405 * @cr0: Value of control register CR0 of SSP - on later ST variants this 406 * register is 32 bits wide rather than just 16 407 * @cr1: Value of control register CR1 of SSP 408 * @dmacr: Value of DMA control Register of SSP 409 * @cpsr: Value of Clock prescale register 410 * @n_bytes: how many bytes(power of 2) reqd for a given data width of client 411 * @enable_dma: Whether to enable DMA or not 412 * @read: function ptr to be used to read when doing xfer for this chip 413 * @write: function ptr to be used to write when doing xfer for this chip 414 * @xfer_type: polling/interrupt/DMA 415 * 416 * Runtime state of the SSP controller, maintained per chip, 417 * This would be set according to the current message that would be served 418 */ 419 struct chip_data { 420 u32 cr0; 421 u16 cr1; 422 u16 dmacr; 423 u16 cpsr; 424 u8 n_bytes; 425 bool enable_dma; 426 enum ssp_reading read; 427 enum ssp_writing write; 428 int xfer_type; 429 }; 430 431 /** 432 * internal_cs_control - Control chip select signals via SSP_CSR. 433 * @pl022: SSP driver private data structure 434 * @command: select/delect the chip 435 * 436 * Used on controller with internal chip select control via SSP_CSR register 437 * (vendor extension). Each of the 5 LSB in the register controls one chip 438 * select signal. 439 */ 440 static void internal_cs_control(struct pl022 *pl022, u32 command) 441 { 442 u32 tmp; 443 444 tmp = readw(SSP_CSR(pl022->virtbase)); 445 if (command == SSP_CHIP_SELECT) 446 tmp &= ~BIT(pl022->cur_cs); 447 else 448 tmp |= BIT(pl022->cur_cs); 449 writew(tmp, SSP_CSR(pl022->virtbase)); 450 } 451 452 static void pl022_cs_control(struct pl022 *pl022, u32 command) 453 { 454 if (pl022->vendor->internal_cs_ctrl) 455 internal_cs_control(pl022, command); 456 else if (pl022->cur_gpiod) 457 /* 458 * This needs to be inverted since with GPIOLIB in 459 * control, the inversion will be handled by 460 * GPIOLIB's active low handling. The "command" 461 * passed into this function will be SSP_CHIP_SELECT 462 * which is enum:ed to 0, so we need the inverse 463 * (1) to activate chip select. 464 */ 465 gpiod_set_value(pl022->cur_gpiod, !command); 466 } 467 468 /** 469 * giveback - current spi_message is over, schedule next message and call 470 * callback of this message. Assumes that caller already 471 * set message->status; dma and pio irqs are blocked 472 * @pl022: SSP driver private data structure 473 */ 474 static void giveback(struct pl022 *pl022) 475 { 476 struct spi_transfer *last_transfer; 477 pl022->next_msg_cs_active = false; 478 479 last_transfer = list_last_entry(&pl022->cur_msg->transfers, 480 struct spi_transfer, transfer_list); 481 482 /* Delay if requested before any change in chip select */ 483 /* 484 * FIXME: This runs in interrupt context. 485 * Is this really smart? 486 */ 487 spi_transfer_delay_exec(last_transfer); 488 489 if (!last_transfer->cs_change) { 490 struct spi_message *next_msg; 491 492 /* 493 * cs_change was not set. We can keep the chip select 494 * enabled if there is message in the queue and it is 495 * for the same spi device. 496 * 497 * We cannot postpone this until pump_messages, because 498 * after calling msg->complete (below) the driver that 499 * sent the current message could be unloaded, which 500 * could invalidate the cs_control() callback... 501 */ 502 /* get a pointer to the next message, if any */ 503 next_msg = spi_get_next_queued_message(pl022->master); 504 505 /* 506 * see if the next and current messages point 507 * to the same spi device. 508 */ 509 if (next_msg && next_msg->spi != pl022->cur_msg->spi) 510 next_msg = NULL; 511 if (!next_msg || pl022->cur_msg->state == STATE_ERROR) 512 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 513 else 514 pl022->next_msg_cs_active = true; 515 516 } 517 518 pl022->cur_msg = NULL; 519 pl022->cur_transfer = NULL; 520 pl022->cur_chip = NULL; 521 522 /* disable the SPI/SSP operation */ 523 writew((readw(SSP_CR1(pl022->virtbase)) & 524 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 525 526 spi_finalize_current_message(pl022->master); 527 } 528 529 /** 530 * flush - flush the FIFO to reach a clean state 531 * @pl022: SSP driver private data structure 532 */ 533 static int flush(struct pl022 *pl022) 534 { 535 unsigned long limit = loops_per_jiffy << 1; 536 537 dev_dbg(&pl022->adev->dev, "flush\n"); 538 do { 539 while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 540 readw(SSP_DR(pl022->virtbase)); 541 } while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--); 542 543 pl022->exp_fifo_level = 0; 544 545 return limit; 546 } 547 548 /** 549 * restore_state - Load configuration of current chip 550 * @pl022: SSP driver private data structure 551 */ 552 static void restore_state(struct pl022 *pl022) 553 { 554 struct chip_data *chip = pl022->cur_chip; 555 556 if (pl022->vendor->extended_cr) 557 writel(chip->cr0, SSP_CR0(pl022->virtbase)); 558 else 559 writew(chip->cr0, SSP_CR0(pl022->virtbase)); 560 writew(chip->cr1, SSP_CR1(pl022->virtbase)); 561 writew(chip->dmacr, SSP_DMACR(pl022->virtbase)); 562 writew(chip->cpsr, SSP_CPSR(pl022->virtbase)); 563 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 564 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 565 } 566 567 /* 568 * Default SSP Register Values 569 */ 570 #define DEFAULT_SSP_REG_CR0 ( \ 571 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0) | \ 572 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \ 573 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 574 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 575 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 576 ) 577 578 /* ST versions have slightly different bit layout */ 579 #define DEFAULT_SSP_REG_CR0_ST ( \ 580 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 581 GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \ 582 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 583 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 584 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \ 585 GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16) | \ 586 GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \ 587 ) 588 589 /* The PL023 version is slightly different again */ 590 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \ 591 GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0) | \ 592 GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \ 593 GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \ 594 GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \ 595 ) 596 597 #define DEFAULT_SSP_REG_CR1 ( \ 598 GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \ 599 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 600 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 601 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \ 602 ) 603 604 /* ST versions extend this register to use all 16 bits */ 605 #define DEFAULT_SSP_REG_CR1_ST ( \ 606 DEFAULT_SSP_REG_CR1 | \ 607 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 608 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 609 GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\ 610 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 611 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \ 612 ) 613 614 /* 615 * The PL023 variant has further differences: no loopback mode, no microwire 616 * support, and a new clock feedback delay setting. 617 */ 618 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \ 619 GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \ 620 GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \ 621 GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \ 622 GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \ 623 GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \ 624 GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \ 625 GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \ 626 GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \ 627 ) 628 629 #define DEFAULT_SSP_REG_CPSR ( \ 630 GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \ 631 ) 632 633 #define DEFAULT_SSP_REG_DMACR (\ 634 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \ 635 GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \ 636 ) 637 638 /** 639 * load_ssp_default_config - Load default configuration for SSP 640 * @pl022: SSP driver private data structure 641 */ 642 static void load_ssp_default_config(struct pl022 *pl022) 643 { 644 if (pl022->vendor->pl023) { 645 writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase)); 646 writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase)); 647 } else if (pl022->vendor->extended_cr) { 648 writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase)); 649 writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase)); 650 } else { 651 writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase)); 652 writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase)); 653 } 654 writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase)); 655 writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase)); 656 writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase)); 657 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 658 } 659 660 /* 661 * This will write to TX and read from RX according to the parameters 662 * set in pl022. 663 */ 664 static void readwriter(struct pl022 *pl022) 665 { 666 667 /* 668 * The FIFO depth is different between primecell variants. 669 * I believe filling in too much in the FIFO might cause 670 * errons in 8bit wide transfers on ARM variants (just 8 words 671 * FIFO, means only 8x8 = 64 bits in FIFO) at least. 672 * 673 * To prevent this issue, the TX FIFO is only filled to the 674 * unused RX FIFO fill length, regardless of what the TX 675 * FIFO status flag indicates. 676 */ 677 dev_dbg(&pl022->adev->dev, 678 "%s, rx: %p, rxend: %p, tx: %p, txend: %p\n", 679 __func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end); 680 681 /* Read as much as you can */ 682 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 683 && (pl022->rx < pl022->rx_end)) { 684 switch (pl022->read) { 685 case READING_NULL: 686 readw(SSP_DR(pl022->virtbase)); 687 break; 688 case READING_U8: 689 *(u8 *) (pl022->rx) = 690 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 691 break; 692 case READING_U16: 693 *(u16 *) (pl022->rx) = 694 (u16) readw(SSP_DR(pl022->virtbase)); 695 break; 696 case READING_U32: 697 *(u32 *) (pl022->rx) = 698 readl(SSP_DR(pl022->virtbase)); 699 break; 700 } 701 pl022->rx += (pl022->cur_chip->n_bytes); 702 pl022->exp_fifo_level--; 703 } 704 /* 705 * Write as much as possible up to the RX FIFO size 706 */ 707 while ((pl022->exp_fifo_level < pl022->vendor->fifodepth) 708 && (pl022->tx < pl022->tx_end)) { 709 switch (pl022->write) { 710 case WRITING_NULL: 711 writew(0x0, SSP_DR(pl022->virtbase)); 712 break; 713 case WRITING_U8: 714 writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase)); 715 break; 716 case WRITING_U16: 717 writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase)); 718 break; 719 case WRITING_U32: 720 writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase)); 721 break; 722 } 723 pl022->tx += (pl022->cur_chip->n_bytes); 724 pl022->exp_fifo_level++; 725 /* 726 * This inner reader takes care of things appearing in the RX 727 * FIFO as we're transmitting. This will happen a lot since the 728 * clock starts running when you put things into the TX FIFO, 729 * and then things are continuously clocked into the RX FIFO. 730 */ 731 while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE) 732 && (pl022->rx < pl022->rx_end)) { 733 switch (pl022->read) { 734 case READING_NULL: 735 readw(SSP_DR(pl022->virtbase)); 736 break; 737 case READING_U8: 738 *(u8 *) (pl022->rx) = 739 readw(SSP_DR(pl022->virtbase)) & 0xFFU; 740 break; 741 case READING_U16: 742 *(u16 *) (pl022->rx) = 743 (u16) readw(SSP_DR(pl022->virtbase)); 744 break; 745 case READING_U32: 746 *(u32 *) (pl022->rx) = 747 readl(SSP_DR(pl022->virtbase)); 748 break; 749 } 750 pl022->rx += (pl022->cur_chip->n_bytes); 751 pl022->exp_fifo_level--; 752 } 753 } 754 /* 755 * When we exit here the TX FIFO should be full and the RX FIFO 756 * should be empty 757 */ 758 } 759 760 /** 761 * next_transfer - Move to the Next transfer in the current spi message 762 * @pl022: SSP driver private data structure 763 * 764 * This function moves though the linked list of spi transfers in the 765 * current spi message and returns with the state of current spi 766 * message i.e whether its last transfer is done(STATE_DONE) or 767 * Next transfer is ready(STATE_RUNNING) 768 */ 769 static void *next_transfer(struct pl022 *pl022) 770 { 771 struct spi_message *msg = pl022->cur_msg; 772 struct spi_transfer *trans = pl022->cur_transfer; 773 774 /* Move to next transfer */ 775 if (trans->transfer_list.next != &msg->transfers) { 776 pl022->cur_transfer = 777 list_entry(trans->transfer_list.next, 778 struct spi_transfer, transfer_list); 779 return STATE_RUNNING; 780 } 781 return STATE_DONE; 782 } 783 784 /* 785 * This DMA functionality is only compiled in if we have 786 * access to the generic DMA devices/DMA engine. 787 */ 788 #ifdef CONFIG_DMA_ENGINE 789 static void unmap_free_dma_scatter(struct pl022 *pl022) 790 { 791 /* Unmap and free the SG tables */ 792 dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl, 793 pl022->sgt_tx.nents, DMA_TO_DEVICE); 794 dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl, 795 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 796 sg_free_table(&pl022->sgt_rx); 797 sg_free_table(&pl022->sgt_tx); 798 } 799 800 static void dma_callback(void *data) 801 { 802 struct pl022 *pl022 = data; 803 struct spi_message *msg = pl022->cur_msg; 804 805 BUG_ON(!pl022->sgt_rx.sgl); 806 807 #ifdef VERBOSE_DEBUG 808 /* 809 * Optionally dump out buffers to inspect contents, this is 810 * good if you want to convince yourself that the loopback 811 * read/write contents are the same, when adopting to a new 812 * DMA engine. 813 */ 814 { 815 struct scatterlist *sg; 816 unsigned int i; 817 818 dma_sync_sg_for_cpu(&pl022->adev->dev, 819 pl022->sgt_rx.sgl, 820 pl022->sgt_rx.nents, 821 DMA_FROM_DEVICE); 822 823 for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) { 824 dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i); 825 print_hex_dump(KERN_ERR, "SPI RX: ", 826 DUMP_PREFIX_OFFSET, 827 16, 828 1, 829 sg_virt(sg), 830 sg_dma_len(sg), 831 1); 832 } 833 for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) { 834 dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i); 835 print_hex_dump(KERN_ERR, "SPI TX: ", 836 DUMP_PREFIX_OFFSET, 837 16, 838 1, 839 sg_virt(sg), 840 sg_dma_len(sg), 841 1); 842 } 843 } 844 #endif 845 846 unmap_free_dma_scatter(pl022); 847 848 /* Update total bytes transferred */ 849 msg->actual_length += pl022->cur_transfer->len; 850 /* Move to next transfer */ 851 msg->state = next_transfer(pl022); 852 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change) 853 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 854 tasklet_schedule(&pl022->pump_transfers); 855 } 856 857 static void setup_dma_scatter(struct pl022 *pl022, 858 void *buffer, 859 unsigned int length, 860 struct sg_table *sgtab) 861 { 862 struct scatterlist *sg; 863 int bytesleft = length; 864 void *bufp = buffer; 865 int mapbytes; 866 int i; 867 868 if (buffer) { 869 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 870 /* 871 * If there are less bytes left than what fits 872 * in the current page (plus page alignment offset) 873 * we just feed in this, else we stuff in as much 874 * as we can. 875 */ 876 if (bytesleft < (PAGE_SIZE - offset_in_page(bufp))) 877 mapbytes = bytesleft; 878 else 879 mapbytes = PAGE_SIZE - offset_in_page(bufp); 880 sg_set_page(sg, virt_to_page(bufp), 881 mapbytes, offset_in_page(bufp)); 882 bufp += mapbytes; 883 bytesleft -= mapbytes; 884 dev_dbg(&pl022->adev->dev, 885 "set RX/TX target page @ %p, %d bytes, %d left\n", 886 bufp, mapbytes, bytesleft); 887 } 888 } else { 889 /* Map the dummy buffer on every page */ 890 for_each_sg(sgtab->sgl, sg, sgtab->nents, i) { 891 if (bytesleft < PAGE_SIZE) 892 mapbytes = bytesleft; 893 else 894 mapbytes = PAGE_SIZE; 895 sg_set_page(sg, virt_to_page(pl022->dummypage), 896 mapbytes, 0); 897 bytesleft -= mapbytes; 898 dev_dbg(&pl022->adev->dev, 899 "set RX/TX to dummy page %d bytes, %d left\n", 900 mapbytes, bytesleft); 901 902 } 903 } 904 BUG_ON(bytesleft); 905 } 906 907 /** 908 * configure_dma - configures the channels for the next transfer 909 * @pl022: SSP driver's private data structure 910 */ 911 static int configure_dma(struct pl022 *pl022) 912 { 913 struct dma_slave_config rx_conf = { 914 .src_addr = SSP_DR(pl022->phybase), 915 .direction = DMA_DEV_TO_MEM, 916 .device_fc = false, 917 }; 918 struct dma_slave_config tx_conf = { 919 .dst_addr = SSP_DR(pl022->phybase), 920 .direction = DMA_MEM_TO_DEV, 921 .device_fc = false, 922 }; 923 unsigned int pages; 924 int ret; 925 int rx_sglen, tx_sglen; 926 struct dma_chan *rxchan = pl022->dma_rx_channel; 927 struct dma_chan *txchan = pl022->dma_tx_channel; 928 struct dma_async_tx_descriptor *rxdesc; 929 struct dma_async_tx_descriptor *txdesc; 930 931 /* Check that the channels are available */ 932 if (!rxchan || !txchan) 933 return -ENODEV; 934 935 /* 936 * If supplied, the DMA burstsize should equal the FIFO trigger level. 937 * Notice that the DMA engine uses one-to-one mapping. Since we can 938 * not trigger on 2 elements this needs explicit mapping rather than 939 * calculation. 940 */ 941 switch (pl022->rx_lev_trig) { 942 case SSP_RX_1_OR_MORE_ELEM: 943 rx_conf.src_maxburst = 1; 944 break; 945 case SSP_RX_4_OR_MORE_ELEM: 946 rx_conf.src_maxburst = 4; 947 break; 948 case SSP_RX_8_OR_MORE_ELEM: 949 rx_conf.src_maxburst = 8; 950 break; 951 case SSP_RX_16_OR_MORE_ELEM: 952 rx_conf.src_maxburst = 16; 953 break; 954 case SSP_RX_32_OR_MORE_ELEM: 955 rx_conf.src_maxburst = 32; 956 break; 957 default: 958 rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1; 959 break; 960 } 961 962 switch (pl022->tx_lev_trig) { 963 case SSP_TX_1_OR_MORE_EMPTY_LOC: 964 tx_conf.dst_maxburst = 1; 965 break; 966 case SSP_TX_4_OR_MORE_EMPTY_LOC: 967 tx_conf.dst_maxburst = 4; 968 break; 969 case SSP_TX_8_OR_MORE_EMPTY_LOC: 970 tx_conf.dst_maxburst = 8; 971 break; 972 case SSP_TX_16_OR_MORE_EMPTY_LOC: 973 tx_conf.dst_maxburst = 16; 974 break; 975 case SSP_TX_32_OR_MORE_EMPTY_LOC: 976 tx_conf.dst_maxburst = 32; 977 break; 978 default: 979 tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1; 980 break; 981 } 982 983 switch (pl022->read) { 984 case READING_NULL: 985 /* Use the same as for writing */ 986 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 987 break; 988 case READING_U8: 989 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 990 break; 991 case READING_U16: 992 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 993 break; 994 case READING_U32: 995 rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 996 break; 997 } 998 999 switch (pl022->write) { 1000 case WRITING_NULL: 1001 /* Use the same as for reading */ 1002 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED; 1003 break; 1004 case WRITING_U8: 1005 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE; 1006 break; 1007 case WRITING_U16: 1008 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES; 1009 break; 1010 case WRITING_U32: 1011 tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES; 1012 break; 1013 } 1014 1015 /* SPI pecularity: we need to read and write the same width */ 1016 if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1017 rx_conf.src_addr_width = tx_conf.dst_addr_width; 1018 if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED) 1019 tx_conf.dst_addr_width = rx_conf.src_addr_width; 1020 BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width); 1021 1022 dmaengine_slave_config(rxchan, &rx_conf); 1023 dmaengine_slave_config(txchan, &tx_conf); 1024 1025 /* Create sglists for the transfers */ 1026 pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE); 1027 dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages); 1028 1029 ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC); 1030 if (ret) 1031 goto err_alloc_rx_sg; 1032 1033 ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC); 1034 if (ret) 1035 goto err_alloc_tx_sg; 1036 1037 /* Fill in the scatterlists for the RX+TX buffers */ 1038 setup_dma_scatter(pl022, pl022->rx, 1039 pl022->cur_transfer->len, &pl022->sgt_rx); 1040 setup_dma_scatter(pl022, pl022->tx, 1041 pl022->cur_transfer->len, &pl022->sgt_tx); 1042 1043 /* Map DMA buffers */ 1044 rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1045 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1046 if (!rx_sglen) 1047 goto err_rx_sgmap; 1048 1049 tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1050 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1051 if (!tx_sglen) 1052 goto err_tx_sgmap; 1053 1054 /* Send both scatterlists */ 1055 rxdesc = dmaengine_prep_slave_sg(rxchan, 1056 pl022->sgt_rx.sgl, 1057 rx_sglen, 1058 DMA_DEV_TO_MEM, 1059 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1060 if (!rxdesc) 1061 goto err_rxdesc; 1062 1063 txdesc = dmaengine_prep_slave_sg(txchan, 1064 pl022->sgt_tx.sgl, 1065 tx_sglen, 1066 DMA_MEM_TO_DEV, 1067 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 1068 if (!txdesc) 1069 goto err_txdesc; 1070 1071 /* Put the callback on the RX transfer only, that should finish last */ 1072 rxdesc->callback = dma_callback; 1073 rxdesc->callback_param = pl022; 1074 1075 /* Submit and fire RX and TX with TX last so we're ready to read! */ 1076 dmaengine_submit(rxdesc); 1077 dmaengine_submit(txdesc); 1078 dma_async_issue_pending(rxchan); 1079 dma_async_issue_pending(txchan); 1080 pl022->dma_running = true; 1081 1082 return 0; 1083 1084 err_txdesc: 1085 dmaengine_terminate_all(txchan); 1086 err_rxdesc: 1087 dmaengine_terminate_all(rxchan); 1088 dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl, 1089 pl022->sgt_tx.nents, DMA_TO_DEVICE); 1090 err_tx_sgmap: 1091 dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl, 1092 pl022->sgt_rx.nents, DMA_FROM_DEVICE); 1093 err_rx_sgmap: 1094 sg_free_table(&pl022->sgt_tx); 1095 err_alloc_tx_sg: 1096 sg_free_table(&pl022->sgt_rx); 1097 err_alloc_rx_sg: 1098 return -ENOMEM; 1099 } 1100 1101 static int pl022_dma_probe(struct pl022 *pl022) 1102 { 1103 dma_cap_mask_t mask; 1104 1105 /* Try to acquire a generic DMA engine slave channel */ 1106 dma_cap_zero(mask); 1107 dma_cap_set(DMA_SLAVE, mask); 1108 /* 1109 * We need both RX and TX channels to do DMA, else do none 1110 * of them. 1111 */ 1112 pl022->dma_rx_channel = dma_request_channel(mask, 1113 pl022->master_info->dma_filter, 1114 pl022->master_info->dma_rx_param); 1115 if (!pl022->dma_rx_channel) { 1116 dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n"); 1117 goto err_no_rxchan; 1118 } 1119 1120 pl022->dma_tx_channel = dma_request_channel(mask, 1121 pl022->master_info->dma_filter, 1122 pl022->master_info->dma_tx_param); 1123 if (!pl022->dma_tx_channel) { 1124 dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n"); 1125 goto err_no_txchan; 1126 } 1127 1128 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1129 if (!pl022->dummypage) 1130 goto err_no_dummypage; 1131 1132 dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n", 1133 dma_chan_name(pl022->dma_rx_channel), 1134 dma_chan_name(pl022->dma_tx_channel)); 1135 1136 return 0; 1137 1138 err_no_dummypage: 1139 dma_release_channel(pl022->dma_tx_channel); 1140 err_no_txchan: 1141 dma_release_channel(pl022->dma_rx_channel); 1142 pl022->dma_rx_channel = NULL; 1143 err_no_rxchan: 1144 dev_err(&pl022->adev->dev, 1145 "Failed to work in dma mode, work without dma!\n"); 1146 return -ENODEV; 1147 } 1148 1149 static int pl022_dma_autoprobe(struct pl022 *pl022) 1150 { 1151 struct device *dev = &pl022->adev->dev; 1152 struct dma_chan *chan; 1153 int err; 1154 1155 /* automatically configure DMA channels from platform, normally using DT */ 1156 chan = dma_request_chan(dev, "rx"); 1157 if (IS_ERR(chan)) { 1158 err = PTR_ERR(chan); 1159 goto err_no_rxchan; 1160 } 1161 1162 pl022->dma_rx_channel = chan; 1163 1164 chan = dma_request_chan(dev, "tx"); 1165 if (IS_ERR(chan)) { 1166 err = PTR_ERR(chan); 1167 goto err_no_txchan; 1168 } 1169 1170 pl022->dma_tx_channel = chan; 1171 1172 pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL); 1173 if (!pl022->dummypage) { 1174 err = -ENOMEM; 1175 goto err_no_dummypage; 1176 } 1177 1178 return 0; 1179 1180 err_no_dummypage: 1181 dma_release_channel(pl022->dma_tx_channel); 1182 pl022->dma_tx_channel = NULL; 1183 err_no_txchan: 1184 dma_release_channel(pl022->dma_rx_channel); 1185 pl022->dma_rx_channel = NULL; 1186 err_no_rxchan: 1187 return err; 1188 } 1189 1190 static void terminate_dma(struct pl022 *pl022) 1191 { 1192 struct dma_chan *rxchan = pl022->dma_rx_channel; 1193 struct dma_chan *txchan = pl022->dma_tx_channel; 1194 1195 dmaengine_terminate_all(rxchan); 1196 dmaengine_terminate_all(txchan); 1197 unmap_free_dma_scatter(pl022); 1198 pl022->dma_running = false; 1199 } 1200 1201 static void pl022_dma_remove(struct pl022 *pl022) 1202 { 1203 if (pl022->dma_running) 1204 terminate_dma(pl022); 1205 if (pl022->dma_tx_channel) 1206 dma_release_channel(pl022->dma_tx_channel); 1207 if (pl022->dma_rx_channel) 1208 dma_release_channel(pl022->dma_rx_channel); 1209 kfree(pl022->dummypage); 1210 } 1211 1212 #else 1213 static inline int configure_dma(struct pl022 *pl022) 1214 { 1215 return -ENODEV; 1216 } 1217 1218 static inline int pl022_dma_autoprobe(struct pl022 *pl022) 1219 { 1220 return 0; 1221 } 1222 1223 static inline int pl022_dma_probe(struct pl022 *pl022) 1224 { 1225 return 0; 1226 } 1227 1228 static inline void pl022_dma_remove(struct pl022 *pl022) 1229 { 1230 } 1231 #endif 1232 1233 /** 1234 * pl022_interrupt_handler - Interrupt handler for SSP controller 1235 * @irq: IRQ number 1236 * @dev_id: Local device data 1237 * 1238 * This function handles interrupts generated for an interrupt based transfer. 1239 * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the 1240 * current message's state as STATE_ERROR and schedule the tasklet 1241 * pump_transfers which will do the postprocessing of the current message by 1242 * calling giveback(). Otherwise it reads data from RX FIFO till there is no 1243 * more data, and writes data in TX FIFO till it is not full. If we complete 1244 * the transfer we move to the next transfer and schedule the tasklet. 1245 */ 1246 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id) 1247 { 1248 struct pl022 *pl022 = dev_id; 1249 struct spi_message *msg = pl022->cur_msg; 1250 u16 irq_status = 0; 1251 1252 if (unlikely(!msg)) { 1253 dev_err(&pl022->adev->dev, 1254 "bad message state in interrupt handler"); 1255 /* Never fail */ 1256 return IRQ_HANDLED; 1257 } 1258 1259 /* Read the Interrupt Status Register */ 1260 irq_status = readw(SSP_MIS(pl022->virtbase)); 1261 1262 if (unlikely(!irq_status)) 1263 return IRQ_NONE; 1264 1265 /* 1266 * This handles the FIFO interrupts, the timeout 1267 * interrupts are flatly ignored, they cannot be 1268 * trusted. 1269 */ 1270 if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) { 1271 /* 1272 * Overrun interrupt - bail out since our Data has been 1273 * corrupted 1274 */ 1275 dev_err(&pl022->adev->dev, "FIFO overrun\n"); 1276 if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF) 1277 dev_err(&pl022->adev->dev, 1278 "RXFIFO is full\n"); 1279 1280 /* 1281 * Disable and clear interrupts, disable SSP, 1282 * mark message with bad status so it can be 1283 * retried. 1284 */ 1285 writew(DISABLE_ALL_INTERRUPTS, 1286 SSP_IMSC(pl022->virtbase)); 1287 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1288 writew((readw(SSP_CR1(pl022->virtbase)) & 1289 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1290 msg->state = STATE_ERROR; 1291 1292 /* Schedule message queue handler */ 1293 tasklet_schedule(&pl022->pump_transfers); 1294 return IRQ_HANDLED; 1295 } 1296 1297 readwriter(pl022); 1298 1299 if (pl022->tx == pl022->tx_end) { 1300 /* Disable Transmit interrupt, enable receive interrupt */ 1301 writew((readw(SSP_IMSC(pl022->virtbase)) & 1302 ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM, 1303 SSP_IMSC(pl022->virtbase)); 1304 } 1305 1306 /* 1307 * Since all transactions must write as much as shall be read, 1308 * we can conclude the entire transaction once RX is complete. 1309 * At this point, all TX will always be finished. 1310 */ 1311 if (pl022->rx >= pl022->rx_end) { 1312 writew(DISABLE_ALL_INTERRUPTS, 1313 SSP_IMSC(pl022->virtbase)); 1314 writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase)); 1315 if (unlikely(pl022->rx > pl022->rx_end)) { 1316 dev_warn(&pl022->adev->dev, "read %u surplus " 1317 "bytes (did you request an odd " 1318 "number of bytes on a 16bit bus?)\n", 1319 (u32) (pl022->rx - pl022->rx_end)); 1320 } 1321 /* Update total bytes transferred */ 1322 msg->actual_length += pl022->cur_transfer->len; 1323 /* Move to next transfer */ 1324 msg->state = next_transfer(pl022); 1325 if (msg->state != STATE_DONE && pl022->cur_transfer->cs_change) 1326 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1327 tasklet_schedule(&pl022->pump_transfers); 1328 return IRQ_HANDLED; 1329 } 1330 1331 return IRQ_HANDLED; 1332 } 1333 1334 /* 1335 * This sets up the pointers to memory for the next message to 1336 * send out on the SPI bus. 1337 */ 1338 static int set_up_next_transfer(struct pl022 *pl022, 1339 struct spi_transfer *transfer) 1340 { 1341 int residue; 1342 1343 /* Sanity check the message for this bus width */ 1344 residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes; 1345 if (unlikely(residue != 0)) { 1346 dev_err(&pl022->adev->dev, 1347 "message of %u bytes to transmit but the current " 1348 "chip bus has a data width of %u bytes!\n", 1349 pl022->cur_transfer->len, 1350 pl022->cur_chip->n_bytes); 1351 dev_err(&pl022->adev->dev, "skipping this message\n"); 1352 return -EIO; 1353 } 1354 pl022->tx = (void *)transfer->tx_buf; 1355 pl022->tx_end = pl022->tx + pl022->cur_transfer->len; 1356 pl022->rx = (void *)transfer->rx_buf; 1357 pl022->rx_end = pl022->rx + pl022->cur_transfer->len; 1358 pl022->write = 1359 pl022->tx ? pl022->cur_chip->write : WRITING_NULL; 1360 pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL; 1361 return 0; 1362 } 1363 1364 /** 1365 * pump_transfers - Tasklet function which schedules next transfer 1366 * when running in interrupt or DMA transfer mode. 1367 * @data: SSP driver private data structure 1368 * 1369 */ 1370 static void pump_transfers(unsigned long data) 1371 { 1372 struct pl022 *pl022 = (struct pl022 *) data; 1373 struct spi_message *message = NULL; 1374 struct spi_transfer *transfer = NULL; 1375 struct spi_transfer *previous = NULL; 1376 1377 /* Get current state information */ 1378 message = pl022->cur_msg; 1379 transfer = pl022->cur_transfer; 1380 1381 /* Handle for abort */ 1382 if (message->state == STATE_ERROR) { 1383 message->status = -EIO; 1384 giveback(pl022); 1385 return; 1386 } 1387 1388 /* Handle end of message */ 1389 if (message->state == STATE_DONE) { 1390 message->status = 0; 1391 giveback(pl022); 1392 return; 1393 } 1394 1395 /* Delay if requested at end of transfer before CS change */ 1396 if (message->state == STATE_RUNNING) { 1397 previous = list_entry(transfer->transfer_list.prev, 1398 struct spi_transfer, 1399 transfer_list); 1400 /* 1401 * FIXME: This runs in interrupt context. 1402 * Is this really smart? 1403 */ 1404 spi_transfer_delay_exec(previous); 1405 1406 /* Reselect chip select only if cs_change was requested */ 1407 if (previous->cs_change) 1408 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1409 } else { 1410 /* STATE_START */ 1411 message->state = STATE_RUNNING; 1412 } 1413 1414 if (set_up_next_transfer(pl022, transfer)) { 1415 message->state = STATE_ERROR; 1416 message->status = -EIO; 1417 giveback(pl022); 1418 return; 1419 } 1420 /* Flush the FIFOs and let's go! */ 1421 flush(pl022); 1422 1423 if (pl022->cur_chip->enable_dma) { 1424 if (configure_dma(pl022)) { 1425 dev_dbg(&pl022->adev->dev, 1426 "configuration of DMA failed, fall back to interrupt mode\n"); 1427 goto err_config_dma; 1428 } 1429 return; 1430 } 1431 1432 err_config_dma: 1433 /* enable all interrupts except RX */ 1434 writew(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM, SSP_IMSC(pl022->virtbase)); 1435 } 1436 1437 static void do_interrupt_dma_transfer(struct pl022 *pl022) 1438 { 1439 /* 1440 * Default is to enable all interrupts except RX - 1441 * this will be enabled once TX is complete 1442 */ 1443 u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM); 1444 1445 /* Enable target chip, if not already active */ 1446 if (!pl022->next_msg_cs_active) 1447 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1448 1449 if (set_up_next_transfer(pl022, pl022->cur_transfer)) { 1450 /* Error path */ 1451 pl022->cur_msg->state = STATE_ERROR; 1452 pl022->cur_msg->status = -EIO; 1453 giveback(pl022); 1454 return; 1455 } 1456 /* If we're using DMA, set up DMA here */ 1457 if (pl022->cur_chip->enable_dma) { 1458 /* Configure DMA transfer */ 1459 if (configure_dma(pl022)) { 1460 dev_dbg(&pl022->adev->dev, 1461 "configuration of DMA failed, fall back to interrupt mode\n"); 1462 goto err_config_dma; 1463 } 1464 /* Disable interrupts in DMA mode, IRQ from DMA controller */ 1465 irqflags = DISABLE_ALL_INTERRUPTS; 1466 } 1467 err_config_dma: 1468 /* Enable SSP, turn on interrupts */ 1469 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1470 SSP_CR1(pl022->virtbase)); 1471 writew(irqflags, SSP_IMSC(pl022->virtbase)); 1472 } 1473 1474 static void print_current_status(struct pl022 *pl022) 1475 { 1476 u32 read_cr0; 1477 u16 read_cr1, read_dmacr, read_sr; 1478 1479 if (pl022->vendor->extended_cr) 1480 read_cr0 = readl(SSP_CR0(pl022->virtbase)); 1481 else 1482 read_cr0 = readw(SSP_CR0(pl022->virtbase)); 1483 read_cr1 = readw(SSP_CR1(pl022->virtbase)); 1484 read_dmacr = readw(SSP_DMACR(pl022->virtbase)); 1485 read_sr = readw(SSP_SR(pl022->virtbase)); 1486 1487 dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0); 1488 dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1); 1489 dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr); 1490 dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr); 1491 dev_warn(&pl022->adev->dev, 1492 "spi-pl022 exp_fifo_level/fifodepth: %u/%d\n", 1493 pl022->exp_fifo_level, 1494 pl022->vendor->fifodepth); 1495 1496 } 1497 1498 static void do_polling_transfer(struct pl022 *pl022) 1499 { 1500 struct spi_message *message = NULL; 1501 struct spi_transfer *transfer = NULL; 1502 struct spi_transfer *previous = NULL; 1503 unsigned long time, timeout; 1504 1505 message = pl022->cur_msg; 1506 1507 while (message->state != STATE_DONE) { 1508 /* Handle for abort */ 1509 if (message->state == STATE_ERROR) 1510 break; 1511 transfer = pl022->cur_transfer; 1512 1513 /* Delay if requested at end of transfer */ 1514 if (message->state == STATE_RUNNING) { 1515 previous = 1516 list_entry(transfer->transfer_list.prev, 1517 struct spi_transfer, transfer_list); 1518 spi_transfer_delay_exec(previous); 1519 if (previous->cs_change) 1520 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1521 } else { 1522 /* STATE_START */ 1523 message->state = STATE_RUNNING; 1524 if (!pl022->next_msg_cs_active) 1525 pl022_cs_control(pl022, SSP_CHIP_SELECT); 1526 } 1527 1528 /* Configuration Changing Per Transfer */ 1529 if (set_up_next_transfer(pl022, transfer)) { 1530 /* Error path */ 1531 message->state = STATE_ERROR; 1532 break; 1533 } 1534 /* Flush FIFOs and enable SSP */ 1535 flush(pl022); 1536 writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE), 1537 SSP_CR1(pl022->virtbase)); 1538 1539 dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n"); 1540 1541 timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT); 1542 while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) { 1543 time = jiffies; 1544 readwriter(pl022); 1545 if (time_after(time, timeout)) { 1546 dev_warn(&pl022->adev->dev, 1547 "%s: timeout!\n", __func__); 1548 message->state = STATE_TIMEOUT; 1549 print_current_status(pl022); 1550 goto out; 1551 } 1552 cpu_relax(); 1553 } 1554 1555 /* Update total byte transferred */ 1556 message->actual_length += pl022->cur_transfer->len; 1557 /* Move to next transfer */ 1558 message->state = next_transfer(pl022); 1559 if (message->state != STATE_DONE 1560 && pl022->cur_transfer->cs_change) 1561 pl022_cs_control(pl022, SSP_CHIP_DESELECT); 1562 } 1563 out: 1564 /* Handle end of message */ 1565 if (message->state == STATE_DONE) 1566 message->status = 0; 1567 else if (message->state == STATE_TIMEOUT) 1568 message->status = -EAGAIN; 1569 else 1570 message->status = -EIO; 1571 1572 giveback(pl022); 1573 return; 1574 } 1575 1576 static int pl022_transfer_one_message(struct spi_master *master, 1577 struct spi_message *msg) 1578 { 1579 struct pl022 *pl022 = spi_master_get_devdata(master); 1580 1581 /* Initial message state */ 1582 pl022->cur_msg = msg; 1583 msg->state = STATE_START; 1584 1585 pl022->cur_transfer = list_entry(msg->transfers.next, 1586 struct spi_transfer, transfer_list); 1587 1588 /* Setup the SPI using the per chip configuration */ 1589 pl022->cur_chip = spi_get_ctldata(msg->spi); 1590 pl022->cur_cs = msg->spi->chip_select; 1591 /* This is always available but may be set to -ENOENT */ 1592 pl022->cur_gpiod = msg->spi->cs_gpiod; 1593 1594 restore_state(pl022); 1595 flush(pl022); 1596 1597 if (pl022->cur_chip->xfer_type == POLLING_TRANSFER) 1598 do_polling_transfer(pl022); 1599 else 1600 do_interrupt_dma_transfer(pl022); 1601 1602 return 0; 1603 } 1604 1605 static int pl022_unprepare_transfer_hardware(struct spi_master *master) 1606 { 1607 struct pl022 *pl022 = spi_master_get_devdata(master); 1608 1609 /* nothing more to do - disable spi/ssp and power off */ 1610 writew((readw(SSP_CR1(pl022->virtbase)) & 1611 (~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase)); 1612 1613 return 0; 1614 } 1615 1616 static int verify_controller_parameters(struct pl022 *pl022, 1617 struct pl022_config_chip const *chip_info) 1618 { 1619 if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI) 1620 || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) { 1621 dev_err(&pl022->adev->dev, 1622 "interface is configured incorrectly\n"); 1623 return -EINVAL; 1624 } 1625 if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) && 1626 (!pl022->vendor->unidir)) { 1627 dev_err(&pl022->adev->dev, 1628 "unidirectional mode not supported in this " 1629 "hardware version\n"); 1630 return -EINVAL; 1631 } 1632 if ((chip_info->hierarchy != SSP_MASTER) 1633 && (chip_info->hierarchy != SSP_SLAVE)) { 1634 dev_err(&pl022->adev->dev, 1635 "hierarchy is configured incorrectly\n"); 1636 return -EINVAL; 1637 } 1638 if ((chip_info->com_mode != INTERRUPT_TRANSFER) 1639 && (chip_info->com_mode != DMA_TRANSFER) 1640 && (chip_info->com_mode != POLLING_TRANSFER)) { 1641 dev_err(&pl022->adev->dev, 1642 "Communication mode is configured incorrectly\n"); 1643 return -EINVAL; 1644 } 1645 switch (chip_info->rx_lev_trig) { 1646 case SSP_RX_1_OR_MORE_ELEM: 1647 case SSP_RX_4_OR_MORE_ELEM: 1648 case SSP_RX_8_OR_MORE_ELEM: 1649 /* These are always OK, all variants can handle this */ 1650 break; 1651 case SSP_RX_16_OR_MORE_ELEM: 1652 if (pl022->vendor->fifodepth < 16) { 1653 dev_err(&pl022->adev->dev, 1654 "RX FIFO Trigger Level is configured incorrectly\n"); 1655 return -EINVAL; 1656 } 1657 break; 1658 case SSP_RX_32_OR_MORE_ELEM: 1659 if (pl022->vendor->fifodepth < 32) { 1660 dev_err(&pl022->adev->dev, 1661 "RX FIFO Trigger Level is configured incorrectly\n"); 1662 return -EINVAL; 1663 } 1664 break; 1665 default: 1666 dev_err(&pl022->adev->dev, 1667 "RX FIFO Trigger Level is configured incorrectly\n"); 1668 return -EINVAL; 1669 } 1670 switch (chip_info->tx_lev_trig) { 1671 case SSP_TX_1_OR_MORE_EMPTY_LOC: 1672 case SSP_TX_4_OR_MORE_EMPTY_LOC: 1673 case SSP_TX_8_OR_MORE_EMPTY_LOC: 1674 /* These are always OK, all variants can handle this */ 1675 break; 1676 case SSP_TX_16_OR_MORE_EMPTY_LOC: 1677 if (pl022->vendor->fifodepth < 16) { 1678 dev_err(&pl022->adev->dev, 1679 "TX FIFO Trigger Level is configured incorrectly\n"); 1680 return -EINVAL; 1681 } 1682 break; 1683 case SSP_TX_32_OR_MORE_EMPTY_LOC: 1684 if (pl022->vendor->fifodepth < 32) { 1685 dev_err(&pl022->adev->dev, 1686 "TX FIFO Trigger Level is configured incorrectly\n"); 1687 return -EINVAL; 1688 } 1689 break; 1690 default: 1691 dev_err(&pl022->adev->dev, 1692 "TX FIFO Trigger Level is configured incorrectly\n"); 1693 return -EINVAL; 1694 } 1695 if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) { 1696 if ((chip_info->ctrl_len < SSP_BITS_4) 1697 || (chip_info->ctrl_len > SSP_BITS_32)) { 1698 dev_err(&pl022->adev->dev, 1699 "CTRL LEN is configured incorrectly\n"); 1700 return -EINVAL; 1701 } 1702 if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO) 1703 && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) { 1704 dev_err(&pl022->adev->dev, 1705 "Wait State is configured incorrectly\n"); 1706 return -EINVAL; 1707 } 1708 /* Half duplex is only available in the ST Micro version */ 1709 if (pl022->vendor->extended_cr) { 1710 if ((chip_info->duplex != 1711 SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) 1712 && (chip_info->duplex != 1713 SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) { 1714 dev_err(&pl022->adev->dev, 1715 "Microwire duplex mode is configured incorrectly\n"); 1716 return -EINVAL; 1717 } 1718 } else { 1719 if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) { 1720 dev_err(&pl022->adev->dev, 1721 "Microwire half duplex mode requested," 1722 " but this is only available in the" 1723 " ST version of PL022\n"); 1724 return -EINVAL; 1725 } 1726 } 1727 } 1728 return 0; 1729 } 1730 1731 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr) 1732 { 1733 return rate / (cpsdvsr * (1 + scr)); 1734 } 1735 1736 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct 1737 ssp_clock_params * clk_freq) 1738 { 1739 /* Lets calculate the frequency parameters */ 1740 u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN; 1741 u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0, 1742 best_scr = 0, tmp, found = 0; 1743 1744 rate = clk_get_rate(pl022->clk); 1745 /* cpsdvscr = 2 & scr 0 */ 1746 max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN); 1747 /* cpsdvsr = 254 & scr = 255 */ 1748 min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX); 1749 1750 if (freq > max_tclk) 1751 dev_warn(&pl022->adev->dev, 1752 "Max speed that can be programmed is %d Hz, you requested %d\n", 1753 max_tclk, freq); 1754 1755 if (freq < min_tclk) { 1756 dev_err(&pl022->adev->dev, 1757 "Requested frequency: %d Hz is less than minimum possible %d Hz\n", 1758 freq, min_tclk); 1759 return -EINVAL; 1760 } 1761 1762 /* 1763 * best_freq will give closest possible available rate (<= requested 1764 * freq) for all values of scr & cpsdvsr. 1765 */ 1766 while ((cpsdvsr <= CPSDVR_MAX) && !found) { 1767 while (scr <= SCR_MAX) { 1768 tmp = spi_rate(rate, cpsdvsr, scr); 1769 1770 if (tmp > freq) { 1771 /* we need lower freq */ 1772 scr++; 1773 continue; 1774 } 1775 1776 /* 1777 * If found exact value, mark found and break. 1778 * If found more closer value, update and break. 1779 */ 1780 if (tmp > best_freq) { 1781 best_freq = tmp; 1782 best_cpsdvsr = cpsdvsr; 1783 best_scr = scr; 1784 1785 if (tmp == freq) 1786 found = 1; 1787 } 1788 /* 1789 * increased scr will give lower rates, which are not 1790 * required 1791 */ 1792 break; 1793 } 1794 cpsdvsr += 2; 1795 scr = SCR_MIN; 1796 } 1797 1798 WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n", 1799 freq); 1800 1801 clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF); 1802 clk_freq->scr = (u8) (best_scr & 0xFF); 1803 dev_dbg(&pl022->adev->dev, 1804 "SSP Target Frequency is: %u, Effective Frequency is %u\n", 1805 freq, best_freq); 1806 dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n", 1807 clk_freq->cpsdvsr, clk_freq->scr); 1808 1809 return 0; 1810 } 1811 1812 /* 1813 * A piece of default chip info unless the platform 1814 * supplies it. 1815 */ 1816 static const struct pl022_config_chip pl022_default_chip_info = { 1817 .com_mode = INTERRUPT_TRANSFER, 1818 .iface = SSP_INTERFACE_MOTOROLA_SPI, 1819 .hierarchy = SSP_MASTER, 1820 .slave_tx_disable = DO_NOT_DRIVE_TX, 1821 .rx_lev_trig = SSP_RX_1_OR_MORE_ELEM, 1822 .tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC, 1823 .ctrl_len = SSP_BITS_8, 1824 .wait_state = SSP_MWIRE_WAIT_ZERO, 1825 .duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, 1826 }; 1827 1828 /** 1829 * pl022_setup - setup function registered to SPI master framework 1830 * @spi: spi device which is requesting setup 1831 * 1832 * This function is registered to the SPI framework for this SPI master 1833 * controller. If it is the first time when setup is called by this device, 1834 * this function will initialize the runtime state for this chip and save 1835 * the same in the device structure. Else it will update the runtime info 1836 * with the updated chip info. Nothing is really being written to the 1837 * controller hardware here, that is not done until the actual transfer 1838 * commence. 1839 */ 1840 static int pl022_setup(struct spi_device *spi) 1841 { 1842 struct pl022_config_chip const *chip_info; 1843 struct pl022_config_chip chip_info_dt; 1844 struct chip_data *chip; 1845 struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0}; 1846 int status = 0; 1847 struct pl022 *pl022 = spi_master_get_devdata(spi->master); 1848 unsigned int bits = spi->bits_per_word; 1849 u32 tmp; 1850 struct device_node *np = spi->dev.of_node; 1851 1852 if (!spi->max_speed_hz) 1853 return -EINVAL; 1854 1855 /* Get controller_state if one is supplied */ 1856 chip = spi_get_ctldata(spi); 1857 1858 if (chip == NULL) { 1859 chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL); 1860 if (!chip) 1861 return -ENOMEM; 1862 dev_dbg(&spi->dev, 1863 "allocated memory for controller's runtime state\n"); 1864 } 1865 1866 /* Get controller data if one is supplied */ 1867 chip_info = spi->controller_data; 1868 1869 if (chip_info == NULL) { 1870 if (np) { 1871 chip_info_dt = pl022_default_chip_info; 1872 1873 chip_info_dt.hierarchy = SSP_MASTER; 1874 of_property_read_u32(np, "pl022,interface", 1875 &chip_info_dt.iface); 1876 of_property_read_u32(np, "pl022,com-mode", 1877 &chip_info_dt.com_mode); 1878 of_property_read_u32(np, "pl022,rx-level-trig", 1879 &chip_info_dt.rx_lev_trig); 1880 of_property_read_u32(np, "pl022,tx-level-trig", 1881 &chip_info_dt.tx_lev_trig); 1882 of_property_read_u32(np, "pl022,ctrl-len", 1883 &chip_info_dt.ctrl_len); 1884 of_property_read_u32(np, "pl022,wait-state", 1885 &chip_info_dt.wait_state); 1886 of_property_read_u32(np, "pl022,duplex", 1887 &chip_info_dt.duplex); 1888 1889 chip_info = &chip_info_dt; 1890 } else { 1891 chip_info = &pl022_default_chip_info; 1892 /* spi_board_info.controller_data not is supplied */ 1893 dev_dbg(&spi->dev, 1894 "using default controller_data settings\n"); 1895 } 1896 } else 1897 dev_dbg(&spi->dev, 1898 "using user supplied controller_data settings\n"); 1899 1900 /* 1901 * We can override with custom divisors, else we use the board 1902 * frequency setting 1903 */ 1904 if ((0 == chip_info->clk_freq.cpsdvsr) 1905 && (0 == chip_info->clk_freq.scr)) { 1906 status = calculate_effective_freq(pl022, 1907 spi->max_speed_hz, 1908 &clk_freq); 1909 if (status < 0) 1910 goto err_config_params; 1911 } else { 1912 memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq)); 1913 if ((clk_freq.cpsdvsr % 2) != 0) 1914 clk_freq.cpsdvsr = 1915 clk_freq.cpsdvsr - 1; 1916 } 1917 if ((clk_freq.cpsdvsr < CPSDVR_MIN) 1918 || (clk_freq.cpsdvsr > CPSDVR_MAX)) { 1919 status = -EINVAL; 1920 dev_err(&spi->dev, 1921 "cpsdvsr is configured incorrectly\n"); 1922 goto err_config_params; 1923 } 1924 1925 status = verify_controller_parameters(pl022, chip_info); 1926 if (status) { 1927 dev_err(&spi->dev, "controller data is incorrect"); 1928 goto err_config_params; 1929 } 1930 1931 pl022->rx_lev_trig = chip_info->rx_lev_trig; 1932 pl022->tx_lev_trig = chip_info->tx_lev_trig; 1933 1934 /* Now set controller state based on controller data */ 1935 chip->xfer_type = chip_info->com_mode; 1936 1937 /* Check bits per word with vendor specific range */ 1938 if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) { 1939 status = -ENOTSUPP; 1940 dev_err(&spi->dev, "illegal data size for this controller!\n"); 1941 dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n", 1942 pl022->vendor->max_bpw); 1943 goto err_config_params; 1944 } else if (bits <= 8) { 1945 dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n"); 1946 chip->n_bytes = 1; 1947 chip->read = READING_U8; 1948 chip->write = WRITING_U8; 1949 } else if (bits <= 16) { 1950 dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n"); 1951 chip->n_bytes = 2; 1952 chip->read = READING_U16; 1953 chip->write = WRITING_U16; 1954 } else { 1955 dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n"); 1956 chip->n_bytes = 4; 1957 chip->read = READING_U32; 1958 chip->write = WRITING_U32; 1959 } 1960 1961 /* Now Initialize all register settings required for this chip */ 1962 chip->cr0 = 0; 1963 chip->cr1 = 0; 1964 chip->dmacr = 0; 1965 chip->cpsr = 0; 1966 if ((chip_info->com_mode == DMA_TRANSFER) 1967 && ((pl022->master_info)->enable_dma)) { 1968 chip->enable_dma = true; 1969 dev_dbg(&spi->dev, "DMA mode set in controller state\n"); 1970 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1971 SSP_DMACR_MASK_RXDMAE, 0); 1972 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED, 1973 SSP_DMACR_MASK_TXDMAE, 1); 1974 } else { 1975 chip->enable_dma = false; 1976 dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n"); 1977 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1978 SSP_DMACR_MASK_RXDMAE, 0); 1979 SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED, 1980 SSP_DMACR_MASK_TXDMAE, 1); 1981 } 1982 1983 chip->cpsr = clk_freq.cpsdvsr; 1984 1985 /* Special setup for the ST micro extended control registers */ 1986 if (pl022->vendor->extended_cr) { 1987 u32 etx; 1988 1989 if (pl022->vendor->pl023) { 1990 /* These bits are only in the PL023 */ 1991 SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay, 1992 SSP_CR1_MASK_FBCLKDEL_ST, 13); 1993 } else { 1994 /* These bits are in the PL022 but not PL023 */ 1995 SSP_WRITE_BITS(chip->cr0, chip_info->duplex, 1996 SSP_CR0_MASK_HALFDUP_ST, 5); 1997 SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len, 1998 SSP_CR0_MASK_CSS_ST, 16); 1999 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 2000 SSP_CR0_MASK_FRF_ST, 21); 2001 SSP_WRITE_BITS(chip->cr1, chip_info->wait_state, 2002 SSP_CR1_MASK_MWAIT_ST, 6); 2003 } 2004 SSP_WRITE_BITS(chip->cr0, bits - 1, 2005 SSP_CR0_MASK_DSS_ST, 0); 2006 2007 if (spi->mode & SPI_LSB_FIRST) { 2008 tmp = SSP_RX_LSB; 2009 etx = SSP_TX_LSB; 2010 } else { 2011 tmp = SSP_RX_MSB; 2012 etx = SSP_TX_MSB; 2013 } 2014 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4); 2015 SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5); 2016 SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig, 2017 SSP_CR1_MASK_RXIFLSEL_ST, 7); 2018 SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig, 2019 SSP_CR1_MASK_TXIFLSEL_ST, 10); 2020 } else { 2021 SSP_WRITE_BITS(chip->cr0, bits - 1, 2022 SSP_CR0_MASK_DSS, 0); 2023 SSP_WRITE_BITS(chip->cr0, chip_info->iface, 2024 SSP_CR0_MASK_FRF, 4); 2025 } 2026 2027 /* Stuff that is common for all versions */ 2028 if (spi->mode & SPI_CPOL) 2029 tmp = SSP_CLK_POL_IDLE_HIGH; 2030 else 2031 tmp = SSP_CLK_POL_IDLE_LOW; 2032 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6); 2033 2034 if (spi->mode & SPI_CPHA) 2035 tmp = SSP_CLK_SECOND_EDGE; 2036 else 2037 tmp = SSP_CLK_FIRST_EDGE; 2038 SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7); 2039 2040 SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8); 2041 /* Loopback is available on all versions except PL023 */ 2042 if (pl022->vendor->loopback) { 2043 if (spi->mode & SPI_LOOP) 2044 tmp = LOOPBACK_ENABLED; 2045 else 2046 tmp = LOOPBACK_DISABLED; 2047 SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0); 2048 } 2049 SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1); 2050 SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2); 2051 SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD, 2052 3); 2053 2054 /* Save controller_state */ 2055 spi_set_ctldata(spi, chip); 2056 return status; 2057 err_config_params: 2058 spi_set_ctldata(spi, NULL); 2059 kfree(chip); 2060 return status; 2061 } 2062 2063 /** 2064 * pl022_cleanup - cleanup function registered to SPI master framework 2065 * @spi: spi device which is requesting cleanup 2066 * 2067 * This function is registered to the SPI framework for this SPI master 2068 * controller. It will free the runtime state of chip. 2069 */ 2070 static void pl022_cleanup(struct spi_device *spi) 2071 { 2072 struct chip_data *chip = spi_get_ctldata(spi); 2073 2074 spi_set_ctldata(spi, NULL); 2075 kfree(chip); 2076 } 2077 2078 static struct pl022_ssp_controller * 2079 pl022_platform_data_dt_get(struct device *dev) 2080 { 2081 struct device_node *np = dev->of_node; 2082 struct pl022_ssp_controller *pd; 2083 2084 if (!np) { 2085 dev_err(dev, "no dt node defined\n"); 2086 return NULL; 2087 } 2088 2089 pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL); 2090 if (!pd) 2091 return NULL; 2092 2093 pd->bus_id = -1; 2094 pd->enable_dma = 1; 2095 of_property_read_u32(np, "pl022,autosuspend-delay", 2096 &pd->autosuspend_delay); 2097 pd->rt = of_property_read_bool(np, "pl022,rt"); 2098 2099 return pd; 2100 } 2101 2102 static int pl022_probe(struct amba_device *adev, const struct amba_id *id) 2103 { 2104 struct device *dev = &adev->dev; 2105 struct pl022_ssp_controller *platform_info = 2106 dev_get_platdata(&adev->dev); 2107 struct spi_master *master; 2108 struct pl022 *pl022 = NULL; /*Data for this driver */ 2109 int status = 0; 2110 2111 dev_info(&adev->dev, 2112 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid); 2113 if (!platform_info && IS_ENABLED(CONFIG_OF)) 2114 platform_info = pl022_platform_data_dt_get(dev); 2115 2116 if (!platform_info) { 2117 dev_err(dev, "probe: no platform data defined\n"); 2118 return -ENODEV; 2119 } 2120 2121 /* Allocate master with space for data */ 2122 master = spi_alloc_master(dev, sizeof(struct pl022)); 2123 if (master == NULL) { 2124 dev_err(&adev->dev, "probe - cannot alloc SPI master\n"); 2125 return -ENOMEM; 2126 } 2127 2128 pl022 = spi_master_get_devdata(master); 2129 pl022->master = master; 2130 pl022->master_info = platform_info; 2131 pl022->adev = adev; 2132 pl022->vendor = id->data; 2133 2134 /* 2135 * Bus Number Which has been Assigned to this SSP controller 2136 * on this board 2137 */ 2138 master->bus_num = platform_info->bus_id; 2139 master->cleanup = pl022_cleanup; 2140 master->setup = pl022_setup; 2141 master->auto_runtime_pm = true; 2142 master->transfer_one_message = pl022_transfer_one_message; 2143 master->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware; 2144 master->rt = platform_info->rt; 2145 master->dev.of_node = dev->of_node; 2146 master->use_gpio_descriptors = true; 2147 2148 /* 2149 * Supports mode 0-3, loopback, and active low CS. Transfers are 2150 * always MS bit first on the original pl022. 2151 */ 2152 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP; 2153 if (pl022->vendor->extended_cr) 2154 master->mode_bits |= SPI_LSB_FIRST; 2155 2156 dev_dbg(&adev->dev, "BUSNO: %d\n", master->bus_num); 2157 2158 status = amba_request_regions(adev, NULL); 2159 if (status) 2160 goto err_no_ioregion; 2161 2162 pl022->phybase = adev->res.start; 2163 pl022->virtbase = devm_ioremap(dev, adev->res.start, 2164 resource_size(&adev->res)); 2165 if (pl022->virtbase == NULL) { 2166 status = -ENOMEM; 2167 goto err_no_ioremap; 2168 } 2169 dev_info(&adev->dev, "mapped registers from %pa to %p\n", 2170 &adev->res.start, pl022->virtbase); 2171 2172 pl022->clk = devm_clk_get(&adev->dev, NULL); 2173 if (IS_ERR(pl022->clk)) { 2174 status = PTR_ERR(pl022->clk); 2175 dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n"); 2176 goto err_no_clk; 2177 } 2178 2179 status = clk_prepare_enable(pl022->clk); 2180 if (status) { 2181 dev_err(&adev->dev, "could not enable SSP/SPI bus clock\n"); 2182 goto err_no_clk_en; 2183 } 2184 2185 /* Initialize transfer pump */ 2186 tasklet_init(&pl022->pump_transfers, pump_transfers, 2187 (unsigned long)pl022); 2188 2189 /* Disable SSP */ 2190 writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)), 2191 SSP_CR1(pl022->virtbase)); 2192 load_ssp_default_config(pl022); 2193 2194 status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler, 2195 0, "pl022", pl022); 2196 if (status < 0) { 2197 dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status); 2198 goto err_no_irq; 2199 } 2200 2201 /* Get DMA channels, try autoconfiguration first */ 2202 status = pl022_dma_autoprobe(pl022); 2203 if (status == -EPROBE_DEFER) { 2204 dev_dbg(dev, "deferring probe to get DMA channel\n"); 2205 goto err_no_irq; 2206 } 2207 2208 /* If that failed, use channels from platform_info */ 2209 if (status == 0) 2210 platform_info->enable_dma = 1; 2211 else if (platform_info->enable_dma) { 2212 status = pl022_dma_probe(pl022); 2213 if (status != 0) 2214 platform_info->enable_dma = 0; 2215 } 2216 2217 /* Register with the SPI framework */ 2218 amba_set_drvdata(adev, pl022); 2219 status = devm_spi_register_master(&adev->dev, master); 2220 if (status != 0) { 2221 dev_err(&adev->dev, 2222 "probe - problem registering spi master\n"); 2223 goto err_spi_register; 2224 } 2225 dev_dbg(dev, "probe succeeded\n"); 2226 2227 /* let runtime pm put suspend */ 2228 if (platform_info->autosuspend_delay > 0) { 2229 dev_info(&adev->dev, 2230 "will use autosuspend for runtime pm, delay %dms\n", 2231 platform_info->autosuspend_delay); 2232 pm_runtime_set_autosuspend_delay(dev, 2233 platform_info->autosuspend_delay); 2234 pm_runtime_use_autosuspend(dev); 2235 } 2236 pm_runtime_put(dev); 2237 2238 return 0; 2239 2240 err_spi_register: 2241 if (platform_info->enable_dma) 2242 pl022_dma_remove(pl022); 2243 err_no_irq: 2244 clk_disable_unprepare(pl022->clk); 2245 err_no_clk_en: 2246 err_no_clk: 2247 err_no_ioremap: 2248 amba_release_regions(adev); 2249 err_no_ioregion: 2250 spi_master_put(master); 2251 return status; 2252 } 2253 2254 static void 2255 pl022_remove(struct amba_device *adev) 2256 { 2257 struct pl022 *pl022 = amba_get_drvdata(adev); 2258 2259 if (!pl022) 2260 return; 2261 2262 /* 2263 * undo pm_runtime_put() in probe. I assume that we're not 2264 * accessing the primecell here. 2265 */ 2266 pm_runtime_get_noresume(&adev->dev); 2267 2268 load_ssp_default_config(pl022); 2269 if (pl022->master_info->enable_dma) 2270 pl022_dma_remove(pl022); 2271 2272 clk_disable_unprepare(pl022->clk); 2273 amba_release_regions(adev); 2274 tasklet_disable(&pl022->pump_transfers); 2275 } 2276 2277 #ifdef CONFIG_PM_SLEEP 2278 static int pl022_suspend(struct device *dev) 2279 { 2280 struct pl022 *pl022 = dev_get_drvdata(dev); 2281 int ret; 2282 2283 ret = spi_master_suspend(pl022->master); 2284 if (ret) 2285 return ret; 2286 2287 ret = pm_runtime_force_suspend(dev); 2288 if (ret) { 2289 spi_master_resume(pl022->master); 2290 return ret; 2291 } 2292 2293 pinctrl_pm_select_sleep_state(dev); 2294 2295 dev_dbg(dev, "suspended\n"); 2296 return 0; 2297 } 2298 2299 static int pl022_resume(struct device *dev) 2300 { 2301 struct pl022 *pl022 = dev_get_drvdata(dev); 2302 int ret; 2303 2304 ret = pm_runtime_force_resume(dev); 2305 if (ret) 2306 dev_err(dev, "problem resuming\n"); 2307 2308 /* Start the queue running */ 2309 ret = spi_master_resume(pl022->master); 2310 if (!ret) 2311 dev_dbg(dev, "resumed\n"); 2312 2313 return ret; 2314 } 2315 #endif 2316 2317 #ifdef CONFIG_PM 2318 static int pl022_runtime_suspend(struct device *dev) 2319 { 2320 struct pl022 *pl022 = dev_get_drvdata(dev); 2321 2322 clk_disable_unprepare(pl022->clk); 2323 pinctrl_pm_select_idle_state(dev); 2324 2325 return 0; 2326 } 2327 2328 static int pl022_runtime_resume(struct device *dev) 2329 { 2330 struct pl022 *pl022 = dev_get_drvdata(dev); 2331 2332 pinctrl_pm_select_default_state(dev); 2333 clk_prepare_enable(pl022->clk); 2334 2335 return 0; 2336 } 2337 #endif 2338 2339 static const struct dev_pm_ops pl022_dev_pm_ops = { 2340 SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume) 2341 SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL) 2342 }; 2343 2344 static struct vendor_data vendor_arm = { 2345 .fifodepth = 8, 2346 .max_bpw = 16, 2347 .unidir = false, 2348 .extended_cr = false, 2349 .pl023 = false, 2350 .loopback = true, 2351 .internal_cs_ctrl = false, 2352 }; 2353 2354 static struct vendor_data vendor_st = { 2355 .fifodepth = 32, 2356 .max_bpw = 32, 2357 .unidir = false, 2358 .extended_cr = true, 2359 .pl023 = false, 2360 .loopback = true, 2361 .internal_cs_ctrl = false, 2362 }; 2363 2364 static struct vendor_data vendor_st_pl023 = { 2365 .fifodepth = 32, 2366 .max_bpw = 32, 2367 .unidir = false, 2368 .extended_cr = true, 2369 .pl023 = true, 2370 .loopback = false, 2371 .internal_cs_ctrl = false, 2372 }; 2373 2374 static struct vendor_data vendor_lsi = { 2375 .fifodepth = 8, 2376 .max_bpw = 16, 2377 .unidir = false, 2378 .extended_cr = false, 2379 .pl023 = false, 2380 .loopback = true, 2381 .internal_cs_ctrl = true, 2382 }; 2383 2384 static const struct amba_id pl022_ids[] = { 2385 { 2386 /* 2387 * ARM PL022 variant, this has a 16bit wide 2388 * and 8 locations deep TX/RX FIFO 2389 */ 2390 .id = 0x00041022, 2391 .mask = 0x000fffff, 2392 .data = &vendor_arm, 2393 }, 2394 { 2395 /* 2396 * ST Micro derivative, this has 32bit wide 2397 * and 32 locations deep TX/RX FIFO 2398 */ 2399 .id = 0x01080022, 2400 .mask = 0xffffffff, 2401 .data = &vendor_st, 2402 }, 2403 { 2404 /* 2405 * ST-Ericsson derivative "PL023" (this is not 2406 * an official ARM number), this is a PL022 SSP block 2407 * stripped to SPI mode only, it has 32bit wide 2408 * and 32 locations deep TX/RX FIFO but no extended 2409 * CR0/CR1 register 2410 */ 2411 .id = 0x00080023, 2412 .mask = 0xffffffff, 2413 .data = &vendor_st_pl023, 2414 }, 2415 { 2416 /* 2417 * PL022 variant that has a chip select control register whih 2418 * allows control of 5 output signals nCS[0:4]. 2419 */ 2420 .id = 0x000b6022, 2421 .mask = 0x000fffff, 2422 .data = &vendor_lsi, 2423 }, 2424 { 0, 0 }, 2425 }; 2426 2427 MODULE_DEVICE_TABLE(amba, pl022_ids); 2428 2429 static struct amba_driver pl022_driver = { 2430 .drv = { 2431 .name = "ssp-pl022", 2432 .pm = &pl022_dev_pm_ops, 2433 }, 2434 .id_table = pl022_ids, 2435 .probe = pl022_probe, 2436 .remove = pl022_remove, 2437 }; 2438 2439 static int __init pl022_init(void) 2440 { 2441 return amba_driver_register(&pl022_driver); 2442 } 2443 subsys_initcall(pl022_init); 2444 2445 static void __exit pl022_exit(void) 2446 { 2447 amba_driver_unregister(&pl022_driver); 2448 } 2449 module_exit(pl022_exit); 2450 2451 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>"); 2452 MODULE_DESCRIPTION("PL022 SSP Controller Driver"); 2453 MODULE_LICENSE("GPL"); 2454