xref: /linux/drivers/spi/spi-pl022.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * A driver for the ARM PL022 PrimeCell SSP/SPI bus master.
4  *
5  * Copyright (C) 2008-2012 ST-Ericsson AB
6  * Copyright (C) 2006 STMicroelectronics Pvt. Ltd.
7  *
8  * Author: Linus Walleij <linus.walleij@stericsson.com>
9  *
10  * Initial version inspired by:
11  *	linux-2.6.17-rc3-mm1/drivers/spi/pxa2xx_spi.c
12  * Initial adoption to PL022 by:
13  *      Sachin Verma <sachin.verma@st.com>
14  */
15 
16 #include <linux/init.h>
17 #include <linux/module.h>
18 #include <linux/device.h>
19 #include <linux/ioport.h>
20 #include <linux/errno.h>
21 #include <linux/interrupt.h>
22 #include <linux/spi/spi.h>
23 #include <linux/delay.h>
24 #include <linux/clk.h>
25 #include <linux/err.h>
26 #include <linux/amba/bus.h>
27 #include <linux/amba/pl022.h>
28 #include <linux/io.h>
29 #include <linux/slab.h>
30 #include <linux/dmaengine.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/scatterlist.h>
33 #include <linux/pm_runtime.h>
34 #include <linux/of.h>
35 #include <linux/pinctrl/consumer.h>
36 #include <linux/minmax.h>
37 
38 /*
39  * This macro is used to define some register default values.
40  * reg is masked with mask, the OR:ed with an (again masked)
41  * val shifted sb steps to the left.
42  */
43 #define SSP_WRITE_BITS(reg, val, mask, sb) \
44  ((reg) = (((reg) & ~(mask)) | (((val)<<(sb)) & (mask))))
45 
46 /*
47  * This macro is also used to define some default values.
48  * It will just shift val by sb steps to the left and mask
49  * the result with mask.
50  */
51 #define GEN_MASK_BITS(val, mask, sb) \
52  (((val)<<(sb)) & (mask))
53 
54 #define DRIVE_TX		0
55 #define DO_NOT_DRIVE_TX		1
56 
57 #define DO_NOT_QUEUE_DMA	0
58 #define QUEUE_DMA		1
59 
60 #define RX_TRANSFER		1
61 #define TX_TRANSFER		2
62 
63 /*
64  * Macros to access SSP Registers with their offsets
65  */
66 #define SSP_CR0(r)	(r + 0x000)
67 #define SSP_CR1(r)	(r + 0x004)
68 #define SSP_DR(r)	(r + 0x008)
69 #define SSP_SR(r)	(r + 0x00C)
70 #define SSP_CPSR(r)	(r + 0x010)
71 #define SSP_IMSC(r)	(r + 0x014)
72 #define SSP_RIS(r)	(r + 0x018)
73 #define SSP_MIS(r)	(r + 0x01C)
74 #define SSP_ICR(r)	(r + 0x020)
75 #define SSP_DMACR(r)	(r + 0x024)
76 #define SSP_CSR(r)	(r + 0x030) /* vendor extension */
77 #define SSP_ITCR(r)	(r + 0x080)
78 #define SSP_ITIP(r)	(r + 0x084)
79 #define SSP_ITOP(r)	(r + 0x088)
80 #define SSP_TDR(r)	(r + 0x08C)
81 
82 #define SSP_PID0(r)	(r + 0xFE0)
83 #define SSP_PID1(r)	(r + 0xFE4)
84 #define SSP_PID2(r)	(r + 0xFE8)
85 #define SSP_PID3(r)	(r + 0xFEC)
86 
87 #define SSP_CID0(r)	(r + 0xFF0)
88 #define SSP_CID1(r)	(r + 0xFF4)
89 #define SSP_CID2(r)	(r + 0xFF8)
90 #define SSP_CID3(r)	(r + 0xFFC)
91 
92 /*
93  * SSP Control Register 0  - SSP_CR0
94  */
95 #define SSP_CR0_MASK_DSS	(0x0FUL << 0)
96 #define SSP_CR0_MASK_FRF	(0x3UL << 4)
97 #define SSP_CR0_MASK_SPO	(0x1UL << 6)
98 #define SSP_CR0_MASK_SPH	(0x1UL << 7)
99 #define SSP_CR0_MASK_SCR	(0xFFUL << 8)
100 
101 /*
102  * The ST version of this block moves som bits
103  * in SSP_CR0 and extends it to 32 bits
104  */
105 #define SSP_CR0_MASK_DSS_ST	(0x1FUL << 0)
106 #define SSP_CR0_MASK_HALFDUP_ST	(0x1UL << 5)
107 #define SSP_CR0_MASK_CSS_ST	(0x1FUL << 16)
108 #define SSP_CR0_MASK_FRF_ST	(0x3UL << 21)
109 
110 /*
111  * SSP Control Register 0  - SSP_CR1
112  */
113 #define SSP_CR1_MASK_LBM	(0x1UL << 0)
114 #define SSP_CR1_MASK_SSE	(0x1UL << 1)
115 #define SSP_CR1_MASK_MS		(0x1UL << 2)
116 #define SSP_CR1_MASK_SOD	(0x1UL << 3)
117 
118 /*
119  * The ST version of this block adds some bits
120  * in SSP_CR1
121  */
122 #define SSP_CR1_MASK_RENDN_ST	(0x1UL << 4)
123 #define SSP_CR1_MASK_TENDN_ST	(0x1UL << 5)
124 #define SSP_CR1_MASK_MWAIT_ST	(0x1UL << 6)
125 #define SSP_CR1_MASK_RXIFLSEL_ST (0x7UL << 7)
126 #define SSP_CR1_MASK_TXIFLSEL_ST (0x7UL << 10)
127 /* This one is only in the PL023 variant */
128 #define SSP_CR1_MASK_FBCLKDEL_ST (0x7UL << 13)
129 
130 /*
131  * SSP Status Register - SSP_SR
132  */
133 #define SSP_SR_MASK_TFE		(0x1UL << 0) /* Transmit FIFO empty */
134 #define SSP_SR_MASK_TNF		(0x1UL << 1) /* Transmit FIFO not full */
135 #define SSP_SR_MASK_RNE		(0x1UL << 2) /* Receive FIFO not empty */
136 #define SSP_SR_MASK_RFF		(0x1UL << 3) /* Receive FIFO full */
137 #define SSP_SR_MASK_BSY		(0x1UL << 4) /* Busy Flag */
138 
139 /*
140  * SSP Clock Prescale Register  - SSP_CPSR
141  */
142 #define SSP_CPSR_MASK_CPSDVSR	(0xFFUL << 0)
143 
144 /*
145  * SSP Interrupt Mask Set/Clear Register - SSP_IMSC
146  */
147 #define SSP_IMSC_MASK_RORIM (0x1UL << 0) /* Receive Overrun Interrupt mask */
148 #define SSP_IMSC_MASK_RTIM  (0x1UL << 1) /* Receive timeout Interrupt mask */
149 #define SSP_IMSC_MASK_RXIM  (0x1UL << 2) /* Receive FIFO Interrupt mask */
150 #define SSP_IMSC_MASK_TXIM  (0x1UL << 3) /* Transmit FIFO Interrupt mask */
151 
152 /*
153  * SSP Raw Interrupt Status Register - SSP_RIS
154  */
155 /* Receive Overrun Raw Interrupt status */
156 #define SSP_RIS_MASK_RORRIS		(0x1UL << 0)
157 /* Receive Timeout Raw Interrupt status */
158 #define SSP_RIS_MASK_RTRIS		(0x1UL << 1)
159 /* Receive FIFO Raw Interrupt status */
160 #define SSP_RIS_MASK_RXRIS		(0x1UL << 2)
161 /* Transmit FIFO Raw Interrupt status */
162 #define SSP_RIS_MASK_TXRIS		(0x1UL << 3)
163 
164 /*
165  * SSP Masked Interrupt Status Register - SSP_MIS
166  */
167 /* Receive Overrun Masked Interrupt status */
168 #define SSP_MIS_MASK_RORMIS		(0x1UL << 0)
169 /* Receive Timeout Masked Interrupt status */
170 #define SSP_MIS_MASK_RTMIS		(0x1UL << 1)
171 /* Receive FIFO Masked Interrupt status */
172 #define SSP_MIS_MASK_RXMIS		(0x1UL << 2)
173 /* Transmit FIFO Masked Interrupt status */
174 #define SSP_MIS_MASK_TXMIS		(0x1UL << 3)
175 
176 /*
177  * SSP Interrupt Clear Register - SSP_ICR
178  */
179 /* Receive Overrun Raw Clear Interrupt bit */
180 #define SSP_ICR_MASK_RORIC		(0x1UL << 0)
181 /* Receive Timeout Clear Interrupt bit */
182 #define SSP_ICR_MASK_RTIC		(0x1UL << 1)
183 
184 /*
185  * SSP DMA Control Register - SSP_DMACR
186  */
187 /* Receive DMA Enable bit */
188 #define SSP_DMACR_MASK_RXDMAE		(0x1UL << 0)
189 /* Transmit DMA Enable bit */
190 #define SSP_DMACR_MASK_TXDMAE		(0x1UL << 1)
191 
192 /*
193  * SSP Chip Select Control Register - SSP_CSR
194  * (vendor extension)
195  */
196 #define SSP_CSR_CSVALUE_MASK		(0x1FUL << 0)
197 
198 /*
199  * SSP Integration Test control Register - SSP_ITCR
200  */
201 #define SSP_ITCR_MASK_ITEN		(0x1UL << 0)
202 #define SSP_ITCR_MASK_TESTFIFO		(0x1UL << 1)
203 
204 /*
205  * SSP Integration Test Input Register - SSP_ITIP
206  */
207 #define ITIP_MASK_SSPRXD		 (0x1UL << 0)
208 #define ITIP_MASK_SSPFSSIN		 (0x1UL << 1)
209 #define ITIP_MASK_SSPCLKIN		 (0x1UL << 2)
210 #define ITIP_MASK_RXDMAC		 (0x1UL << 3)
211 #define ITIP_MASK_TXDMAC		 (0x1UL << 4)
212 #define ITIP_MASK_SSPTXDIN		 (0x1UL << 5)
213 
214 /*
215  * SSP Integration Test output Register - SSP_ITOP
216  */
217 #define ITOP_MASK_SSPTXD		 (0x1UL << 0)
218 #define ITOP_MASK_SSPFSSOUT		 (0x1UL << 1)
219 #define ITOP_MASK_SSPCLKOUT		 (0x1UL << 2)
220 #define ITOP_MASK_SSPOEn		 (0x1UL << 3)
221 #define ITOP_MASK_SSPCTLOEn		 (0x1UL << 4)
222 #define ITOP_MASK_RORINTR		 (0x1UL << 5)
223 #define ITOP_MASK_RTINTR		 (0x1UL << 6)
224 #define ITOP_MASK_RXINTR		 (0x1UL << 7)
225 #define ITOP_MASK_TXINTR		 (0x1UL << 8)
226 #define ITOP_MASK_INTR			 (0x1UL << 9)
227 #define ITOP_MASK_RXDMABREQ		 (0x1UL << 10)
228 #define ITOP_MASK_RXDMASREQ		 (0x1UL << 11)
229 #define ITOP_MASK_TXDMABREQ		 (0x1UL << 12)
230 #define ITOP_MASK_TXDMASREQ		 (0x1UL << 13)
231 
232 /*
233  * SSP Test Data Register - SSP_TDR
234  */
235 #define TDR_MASK_TESTDATA		(0xFFFFFFFF)
236 
237 /*
238  * Message State
239  * we use the spi_message.state (void *) pointer to
240  * hold a single state value, that's why all this
241  * (void *) casting is done here.
242  */
243 #define STATE_START			((void *) 0)
244 #define STATE_RUNNING			((void *) 1)
245 #define STATE_DONE			((void *) 2)
246 #define STATE_ERROR			((void *) -1)
247 #define STATE_TIMEOUT			((void *) -2)
248 
249 /*
250  * SSP State - Whether Enabled or Disabled
251  */
252 #define SSP_DISABLED			(0)
253 #define SSP_ENABLED			(1)
254 
255 /*
256  * SSP DMA State - Whether DMA Enabled or Disabled
257  */
258 #define SSP_DMA_DISABLED		(0)
259 #define SSP_DMA_ENABLED			(1)
260 
261 /*
262  * SSP Clock Defaults
263  */
264 #define SSP_DEFAULT_CLKRATE 0x2
265 #define SSP_DEFAULT_PRESCALE 0x40
266 
267 /*
268  * SSP Clock Parameter ranges
269  */
270 #define CPSDVR_MIN 0x02
271 #define CPSDVR_MAX 0xFE
272 #define SCR_MIN 0x00
273 #define SCR_MAX 0xFF
274 
275 /*
276  * SSP Interrupt related Macros
277  */
278 #define DEFAULT_SSP_REG_IMSC  0x0UL
279 #define DISABLE_ALL_INTERRUPTS DEFAULT_SSP_REG_IMSC
280 #define ENABLE_ALL_INTERRUPTS ( \
281 	SSP_IMSC_MASK_RORIM | \
282 	SSP_IMSC_MASK_RTIM | \
283 	SSP_IMSC_MASK_RXIM | \
284 	SSP_IMSC_MASK_TXIM \
285 )
286 
287 #define CLEAR_ALL_INTERRUPTS  0x3
288 
289 #define SPI_POLLING_TIMEOUT 1000
290 
291 /*
292  * The type of reading going on this chip
293  */
294 enum ssp_reading {
295 	READING_NULL,
296 	READING_U8,
297 	READING_U16,
298 	READING_U32
299 };
300 
301 /*
302  * The type of writing going on this chip
303  */
304 enum ssp_writing {
305 	WRITING_NULL,
306 	WRITING_U8,
307 	WRITING_U16,
308 	WRITING_U32
309 };
310 
311 /**
312  * struct vendor_data - vendor-specific config parameters
313  * for PL022 derivates
314  * @fifodepth: depth of FIFOs (both)
315  * @max_bpw: maximum number of bits per word
316  * @unidir: supports unidirection transfers
317  * @extended_cr: 32 bit wide control register 0 with extra
318  * features and extra features in CR1 as found in the ST variants
319  * @pl023: supports a subset of the ST extensions called "PL023"
320  * @loopback: supports loopback mode
321  * @internal_cs_ctrl: supports chip select control register
322  */
323 struct vendor_data {
324 	int fifodepth;
325 	int max_bpw;
326 	bool unidir;
327 	bool extended_cr;
328 	bool pl023;
329 	bool loopback;
330 	bool internal_cs_ctrl;
331 };
332 
333 /**
334  * struct pl022 - This is the private SSP driver data structure
335  * @adev: AMBA device model hookup
336  * @vendor: vendor data for the IP block
337  * @phybase: the physical memory where the SSP device resides
338  * @virtbase: the virtual memory where the SSP is mapped
339  * @clk: outgoing clock "SPICLK" for the SPI bus
340  * @host: SPI framework hookup
341  * @host_info: controller-specific data from machine setup
342  * @cur_transfer: Pointer to current spi_transfer
343  * @cur_chip: pointer to current clients chip(assigned from controller_state)
344  * @tx: current position in TX buffer to be read
345  * @tx_end: end position in TX buffer to be read
346  * @rx: current position in RX buffer to be written
347  * @rx_end: end position in RX buffer to be written
348  * @read: the type of read currently going on
349  * @write: the type of write currently going on
350  * @exp_fifo_level: expected FIFO level
351  * @rx_lev_trig: receive FIFO watermark level which triggers IRQ
352  * @tx_lev_trig: transmit FIFO watermark level which triggers IRQ
353  * @dma_rx_channel: optional channel for RX DMA
354  * @dma_tx_channel: optional channel for TX DMA
355  * @sgt_rx: scattertable for the RX transfer
356  * @sgt_tx: scattertable for the TX transfer
357  * @dummypage: a dummy page used for driving data on the bus with DMA
358  * @dma_running: indicates whether DMA is in operation
359  * @cur_cs: current chip select index
360  */
361 struct pl022 {
362 	struct amba_device		*adev;
363 	struct vendor_data		*vendor;
364 	resource_size_t			phybase;
365 	void __iomem			*virtbase;
366 	struct clk			*clk;
367 	struct spi_controller		*host;
368 	struct pl022_ssp_controller	*host_info;
369 	struct spi_transfer		*cur_transfer;
370 	struct chip_data		*cur_chip;
371 	void				*tx;
372 	void				*tx_end;
373 	void				*rx;
374 	void				*rx_end;
375 	enum ssp_reading		read;
376 	enum ssp_writing		write;
377 	u32				exp_fifo_level;
378 	enum ssp_rx_level_trig		rx_lev_trig;
379 	enum ssp_tx_level_trig		tx_lev_trig;
380 	/* DMA settings */
381 #ifdef CONFIG_DMA_ENGINE
382 	struct dma_chan			*dma_rx_channel;
383 	struct dma_chan			*dma_tx_channel;
384 	struct sg_table			sgt_rx;
385 	struct sg_table			sgt_tx;
386 	char				*dummypage;
387 	bool				dma_running;
388 #endif
389 	int cur_cs;
390 };
391 
392 /**
393  * struct chip_data - To maintain runtime state of SSP for each client chip
394  * @cr0: Value of control register CR0 of SSP - on later ST variants this
395  *       register is 32 bits wide rather than just 16
396  * @cr1: Value of control register CR1 of SSP
397  * @dmacr: Value of DMA control Register of SSP
398  * @cpsr: Value of Clock prescale register
399  * @n_bytes: how many bytes(power of 2) reqd for a given data width of client
400  * @enable_dma: Whether to enable DMA or not
401  * @read: function ptr to be used to read when doing xfer for this chip
402  * @write: function ptr to be used to write when doing xfer for this chip
403  * @xfer_type: polling/interrupt/DMA
404  *
405  * Runtime state of the SSP controller, maintained per chip,
406  * This would be set according to the current message that would be served
407  */
408 struct chip_data {
409 	u32 cr0;
410 	u16 cr1;
411 	u16 dmacr;
412 	u16 cpsr;
413 	u8 n_bytes;
414 	bool enable_dma;
415 	enum ssp_reading read;
416 	enum ssp_writing write;
417 	int xfer_type;
418 };
419 
420 /**
421  * internal_cs_control - Control chip select signals via SSP_CSR.
422  * @pl022: SSP driver private data structure
423  * @enable: select/delect the chip
424  *
425  * Used on controller with internal chip select control via SSP_CSR register
426  * (vendor extension). Each of the 5 LSB in the register controls one chip
427  * select signal.
428  */
429 static void internal_cs_control(struct pl022 *pl022, bool enable)
430 {
431 	u32 tmp;
432 
433 	tmp = readw(SSP_CSR(pl022->virtbase));
434 	if (enable)
435 		tmp &= ~BIT(pl022->cur_cs);
436 	else
437 		tmp |= BIT(pl022->cur_cs);
438 	writew(tmp, SSP_CSR(pl022->virtbase));
439 }
440 
441 static void pl022_cs_control(struct spi_device *spi, bool enable)
442 {
443 	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
444 	if (pl022->vendor->internal_cs_ctrl)
445 		internal_cs_control(pl022, enable);
446 }
447 
448 /**
449  * flush - flush the FIFO to reach a clean state
450  * @pl022: SSP driver private data structure
451  */
452 static int flush(struct pl022 *pl022)
453 {
454 	unsigned long limit = loops_per_jiffy << 1;
455 
456 	dev_dbg(&pl022->adev->dev, "flush\n");
457 	do {
458 		while (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
459 			readw(SSP_DR(pl022->virtbase));
460 	} while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_BSY) && limit--);
461 
462 	pl022->exp_fifo_level = 0;
463 
464 	return limit;
465 }
466 
467 /**
468  * restore_state - Load configuration of current chip
469  * @pl022: SSP driver private data structure
470  */
471 static void restore_state(struct pl022 *pl022)
472 {
473 	struct chip_data *chip = pl022->cur_chip;
474 
475 	if (pl022->vendor->extended_cr)
476 		writel(chip->cr0, SSP_CR0(pl022->virtbase));
477 	else
478 		writew(chip->cr0, SSP_CR0(pl022->virtbase));
479 	writew(chip->cr1, SSP_CR1(pl022->virtbase));
480 	writew(chip->dmacr, SSP_DMACR(pl022->virtbase));
481 	writew(chip->cpsr, SSP_CPSR(pl022->virtbase));
482 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
483 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
484 }
485 
486 /*
487  * Default SSP Register Values
488  */
489 #define DEFAULT_SSP_REG_CR0 ( \
490 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS, 0)	| \
491 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF, 4) | \
492 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
493 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
494 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
495 )
496 
497 /* ST versions have slightly different bit layout */
498 #define DEFAULT_SSP_REG_CR0_ST ( \
499 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
500 	GEN_MASK_BITS(SSP_MICROWIRE_CHANNEL_FULL_DUPLEX, SSP_CR0_MASK_HALFDUP_ST, 5) | \
501 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
502 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
503 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) | \
504 	GEN_MASK_BITS(SSP_BITS_8, SSP_CR0_MASK_CSS_ST, 16)	| \
505 	GEN_MASK_BITS(SSP_INTERFACE_MOTOROLA_SPI, SSP_CR0_MASK_FRF_ST, 21) \
506 )
507 
508 /* The PL023 version is slightly different again */
509 #define DEFAULT_SSP_REG_CR0_ST_PL023 ( \
510 	GEN_MASK_BITS(SSP_DATA_BITS_12, SSP_CR0_MASK_DSS_ST, 0)	| \
511 	GEN_MASK_BITS(SSP_CLK_POL_IDLE_LOW, SSP_CR0_MASK_SPO, 6) | \
512 	GEN_MASK_BITS(SSP_CLK_SECOND_EDGE, SSP_CR0_MASK_SPH, 7) | \
513 	GEN_MASK_BITS(SSP_DEFAULT_CLKRATE, SSP_CR0_MASK_SCR, 8) \
514 )
515 
516 #define DEFAULT_SSP_REG_CR1 ( \
517 	GEN_MASK_BITS(LOOPBACK_DISABLED, SSP_CR1_MASK_LBM, 0) | \
518 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
519 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
520 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) \
521 )
522 
523 /* ST versions extend this register to use all 16 bits */
524 #define DEFAULT_SSP_REG_CR1_ST ( \
525 	DEFAULT_SSP_REG_CR1 | \
526 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
527 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
528 	GEN_MASK_BITS(SSP_MWIRE_WAIT_ZERO, SSP_CR1_MASK_MWAIT_ST, 6) |\
529 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
530 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) \
531 )
532 
533 /*
534  * The PL023 variant has further differences: no loopback mode, no microwire
535  * support, and a new clock feedback delay setting.
536  */
537 #define DEFAULT_SSP_REG_CR1_ST_PL023 ( \
538 	GEN_MASK_BITS(SSP_DISABLED, SSP_CR1_MASK_SSE, 1) | \
539 	GEN_MASK_BITS(SSP_MASTER, SSP_CR1_MASK_MS, 2) | \
540 	GEN_MASK_BITS(DO_NOT_DRIVE_TX, SSP_CR1_MASK_SOD, 3) | \
541 	GEN_MASK_BITS(SSP_RX_MSB, SSP_CR1_MASK_RENDN_ST, 4) | \
542 	GEN_MASK_BITS(SSP_TX_MSB, SSP_CR1_MASK_TENDN_ST, 5) | \
543 	GEN_MASK_BITS(SSP_RX_1_OR_MORE_ELEM, SSP_CR1_MASK_RXIFLSEL_ST, 7) | \
544 	GEN_MASK_BITS(SSP_TX_1_OR_MORE_EMPTY_LOC, SSP_CR1_MASK_TXIFLSEL_ST, 10) | \
545 	GEN_MASK_BITS(SSP_FEEDBACK_CLK_DELAY_NONE, SSP_CR1_MASK_FBCLKDEL_ST, 13) \
546 )
547 
548 #define DEFAULT_SSP_REG_CPSR ( \
549 	GEN_MASK_BITS(SSP_DEFAULT_PRESCALE, SSP_CPSR_MASK_CPSDVSR, 0) \
550 )
551 
552 #define DEFAULT_SSP_REG_DMACR (\
553 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_RXDMAE, 0) | \
554 	GEN_MASK_BITS(SSP_DMA_DISABLED, SSP_DMACR_MASK_TXDMAE, 1) \
555 )
556 
557 /**
558  * load_ssp_default_config - Load default configuration for SSP
559  * @pl022: SSP driver private data structure
560  */
561 static void load_ssp_default_config(struct pl022 *pl022)
562 {
563 	if (pl022->vendor->pl023) {
564 		writel(DEFAULT_SSP_REG_CR0_ST_PL023, SSP_CR0(pl022->virtbase));
565 		writew(DEFAULT_SSP_REG_CR1_ST_PL023, SSP_CR1(pl022->virtbase));
566 	} else if (pl022->vendor->extended_cr) {
567 		writel(DEFAULT_SSP_REG_CR0_ST, SSP_CR0(pl022->virtbase));
568 		writew(DEFAULT_SSP_REG_CR1_ST, SSP_CR1(pl022->virtbase));
569 	} else {
570 		writew(DEFAULT_SSP_REG_CR0, SSP_CR0(pl022->virtbase));
571 		writew(DEFAULT_SSP_REG_CR1, SSP_CR1(pl022->virtbase));
572 	}
573 	writew(DEFAULT_SSP_REG_DMACR, SSP_DMACR(pl022->virtbase));
574 	writew(DEFAULT_SSP_REG_CPSR, SSP_CPSR(pl022->virtbase));
575 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
576 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
577 }
578 
579 /*
580  * This will write to TX and read from RX according to the parameters
581  * set in pl022.
582  */
583 static void readwriter(struct pl022 *pl022)
584 {
585 
586 	/*
587 	 * The FIFO depth is different between primecell variants.
588 	 * I believe filling in too much in the FIFO might cause
589 	 * errons in 8bit wide transfers on ARM variants (just 8 words
590 	 * FIFO, means only 8x8 = 64 bits in FIFO) at least.
591 	 *
592 	 * To prevent this issue, the TX FIFO is only filled to the
593 	 * unused RX FIFO fill length, regardless of what the TX
594 	 * FIFO status flag indicates.
595 	 */
596 	dev_dbg(&pl022->adev->dev,
597 		"%s, rx: %p, rxend: %p, tx: %p, txend: %p\n",
598 		__func__, pl022->rx, pl022->rx_end, pl022->tx, pl022->tx_end);
599 
600 	/* Read as much as you can */
601 	while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
602 	       && (pl022->rx < pl022->rx_end)) {
603 		switch (pl022->read) {
604 		case READING_NULL:
605 			readw(SSP_DR(pl022->virtbase));
606 			break;
607 		case READING_U8:
608 			*(u8 *) (pl022->rx) =
609 				readw(SSP_DR(pl022->virtbase)) & 0xFFU;
610 			break;
611 		case READING_U16:
612 			*(u16 *) (pl022->rx) =
613 				(u16) readw(SSP_DR(pl022->virtbase));
614 			break;
615 		case READING_U32:
616 			*(u32 *) (pl022->rx) =
617 				readl(SSP_DR(pl022->virtbase));
618 			break;
619 		}
620 		pl022->rx += (pl022->cur_chip->n_bytes);
621 		pl022->exp_fifo_level--;
622 	}
623 	/*
624 	 * Write as much as possible up to the RX FIFO size
625 	 */
626 	while ((pl022->exp_fifo_level < pl022->vendor->fifodepth)
627 	       && (pl022->tx < pl022->tx_end)) {
628 		switch (pl022->write) {
629 		case WRITING_NULL:
630 			writew(0x0, SSP_DR(pl022->virtbase));
631 			break;
632 		case WRITING_U8:
633 			writew(*(u8 *) (pl022->tx), SSP_DR(pl022->virtbase));
634 			break;
635 		case WRITING_U16:
636 			writew((*(u16 *) (pl022->tx)), SSP_DR(pl022->virtbase));
637 			break;
638 		case WRITING_U32:
639 			writel(*(u32 *) (pl022->tx), SSP_DR(pl022->virtbase));
640 			break;
641 		}
642 		pl022->tx += (pl022->cur_chip->n_bytes);
643 		pl022->exp_fifo_level++;
644 		/*
645 		 * This inner reader takes care of things appearing in the RX
646 		 * FIFO as we're transmitting. This will happen a lot since the
647 		 * clock starts running when you put things into the TX FIFO,
648 		 * and then things are continuously clocked into the RX FIFO.
649 		 */
650 		while ((readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RNE)
651 		       && (pl022->rx < pl022->rx_end)) {
652 			switch (pl022->read) {
653 			case READING_NULL:
654 				readw(SSP_DR(pl022->virtbase));
655 				break;
656 			case READING_U8:
657 				*(u8 *) (pl022->rx) =
658 					readw(SSP_DR(pl022->virtbase)) & 0xFFU;
659 				break;
660 			case READING_U16:
661 				*(u16 *) (pl022->rx) =
662 					(u16) readw(SSP_DR(pl022->virtbase));
663 				break;
664 			case READING_U32:
665 				*(u32 *) (pl022->rx) =
666 					readl(SSP_DR(pl022->virtbase));
667 				break;
668 			}
669 			pl022->rx += (pl022->cur_chip->n_bytes);
670 			pl022->exp_fifo_level--;
671 		}
672 	}
673 	/*
674 	 * When we exit here the TX FIFO should be full and the RX FIFO
675 	 * should be empty
676 	 */
677 }
678 
679 /*
680  * This DMA functionality is only compiled in if we have
681  * access to the generic DMA devices/DMA engine.
682  */
683 #ifdef CONFIG_DMA_ENGINE
684 static void unmap_free_dma_scatter(struct pl022 *pl022)
685 {
686 	/* Unmap and free the SG tables */
687 	dma_unmap_sg(pl022->dma_tx_channel->device->dev, pl022->sgt_tx.sgl,
688 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
689 	dma_unmap_sg(pl022->dma_rx_channel->device->dev, pl022->sgt_rx.sgl,
690 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
691 	sg_free_table(&pl022->sgt_rx);
692 	sg_free_table(&pl022->sgt_tx);
693 }
694 
695 static void dma_callback(void *data)
696 {
697 	struct pl022 *pl022 = data;
698 
699 	BUG_ON(!pl022->sgt_rx.sgl);
700 
701 #ifdef VERBOSE_DEBUG
702 	/*
703 	 * Optionally dump out buffers to inspect contents, this is
704 	 * good if you want to convince yourself that the loopback
705 	 * read/write contents are the same, when adopting to a new
706 	 * DMA engine.
707 	 */
708 	{
709 		struct scatterlist *sg;
710 		unsigned int i;
711 
712 		dma_sync_sg_for_cpu(&pl022->adev->dev,
713 				    pl022->sgt_rx.sgl,
714 				    pl022->sgt_rx.nents,
715 				    DMA_FROM_DEVICE);
716 
717 		for_each_sg(pl022->sgt_rx.sgl, sg, pl022->sgt_rx.nents, i) {
718 			dev_dbg(&pl022->adev->dev, "SPI RX SG ENTRY: %d", i);
719 			print_hex_dump(KERN_ERR, "SPI RX: ",
720 				       DUMP_PREFIX_OFFSET,
721 				       16,
722 				       1,
723 				       sg_virt(sg),
724 				       sg_dma_len(sg),
725 				       1);
726 		}
727 		for_each_sg(pl022->sgt_tx.sgl, sg, pl022->sgt_tx.nents, i) {
728 			dev_dbg(&pl022->adev->dev, "SPI TX SG ENTRY: %d", i);
729 			print_hex_dump(KERN_ERR, "SPI TX: ",
730 				       DUMP_PREFIX_OFFSET,
731 				       16,
732 				       1,
733 				       sg_virt(sg),
734 				       sg_dma_len(sg),
735 				       1);
736 		}
737 	}
738 #endif
739 
740 	unmap_free_dma_scatter(pl022);
741 
742 	spi_finalize_current_transfer(pl022->host);
743 }
744 
745 static void setup_dma_scatter(struct pl022 *pl022,
746 			      void *buffer,
747 			      unsigned int length,
748 			      struct sg_table *sgtab)
749 {
750 	struct scatterlist *sg;
751 	int bytesleft = length;
752 	void *bufp = buffer;
753 	int mapbytes;
754 	int i;
755 
756 	if (buffer) {
757 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
758 			/*
759 			 * If there are less bytes left than what fits
760 			 * in the current page (plus page alignment offset)
761 			 * we just feed in this, else we stuff in as much
762 			 * as we can.
763 			 */
764 			mapbytes = min_t(int, bytesleft,
765 					 PAGE_SIZE - offset_in_page(bufp));
766 
767 			sg_set_page(sg, virt_to_page(bufp),
768 				    mapbytes, offset_in_page(bufp));
769 			bufp += mapbytes;
770 			bytesleft -= mapbytes;
771 			dev_dbg(&pl022->adev->dev,
772 				"set RX/TX target page @ %p, %d bytes, %d left\n",
773 				bufp, mapbytes, bytesleft);
774 		}
775 	} else {
776 		/* Map the dummy buffer on every page */
777 		for_each_sg(sgtab->sgl, sg, sgtab->nents, i) {
778 			mapbytes = min_t(int, bytesleft, PAGE_SIZE);
779 			sg_set_page(sg, virt_to_page(pl022->dummypage),
780 				    mapbytes, 0);
781 			bytesleft -= mapbytes;
782 			dev_dbg(&pl022->adev->dev,
783 				"set RX/TX to dummy page %d bytes, %d left\n",
784 				mapbytes, bytesleft);
785 
786 		}
787 	}
788 	BUG_ON(bytesleft);
789 }
790 
791 /**
792  * configure_dma - configures the channels for the next transfer
793  * @pl022: SSP driver's private data structure
794  */
795 static int configure_dma(struct pl022 *pl022)
796 {
797 	struct dma_slave_config rx_conf = {
798 		.src_addr = SSP_DR(pl022->phybase),
799 		.direction = DMA_DEV_TO_MEM,
800 		.device_fc = false,
801 	};
802 	struct dma_slave_config tx_conf = {
803 		.dst_addr = SSP_DR(pl022->phybase),
804 		.direction = DMA_MEM_TO_DEV,
805 		.device_fc = false,
806 	};
807 	unsigned int pages;
808 	int ret;
809 	int rx_sglen, tx_sglen;
810 	struct dma_chan *rxchan = pl022->dma_rx_channel;
811 	struct dma_chan *txchan = pl022->dma_tx_channel;
812 	struct dma_async_tx_descriptor *rxdesc;
813 	struct dma_async_tx_descriptor *txdesc;
814 
815 	/* Check that the channels are available */
816 	if (!rxchan || !txchan)
817 		return -ENODEV;
818 
819 	/*
820 	 * If supplied, the DMA burstsize should equal the FIFO trigger level.
821 	 * Notice that the DMA engine uses one-to-one mapping. Since we can
822 	 * not trigger on 2 elements this needs explicit mapping rather than
823 	 * calculation.
824 	 */
825 	switch (pl022->rx_lev_trig) {
826 	case SSP_RX_1_OR_MORE_ELEM:
827 		rx_conf.src_maxburst = 1;
828 		break;
829 	case SSP_RX_4_OR_MORE_ELEM:
830 		rx_conf.src_maxburst = 4;
831 		break;
832 	case SSP_RX_8_OR_MORE_ELEM:
833 		rx_conf.src_maxburst = 8;
834 		break;
835 	case SSP_RX_16_OR_MORE_ELEM:
836 		rx_conf.src_maxburst = 16;
837 		break;
838 	case SSP_RX_32_OR_MORE_ELEM:
839 		rx_conf.src_maxburst = 32;
840 		break;
841 	default:
842 		rx_conf.src_maxburst = pl022->vendor->fifodepth >> 1;
843 		break;
844 	}
845 
846 	switch (pl022->tx_lev_trig) {
847 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
848 		tx_conf.dst_maxburst = 1;
849 		break;
850 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
851 		tx_conf.dst_maxburst = 4;
852 		break;
853 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
854 		tx_conf.dst_maxburst = 8;
855 		break;
856 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
857 		tx_conf.dst_maxburst = 16;
858 		break;
859 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
860 		tx_conf.dst_maxburst = 32;
861 		break;
862 	default:
863 		tx_conf.dst_maxburst = pl022->vendor->fifodepth >> 1;
864 		break;
865 	}
866 
867 	switch (pl022->read) {
868 	case READING_NULL:
869 		/* Use the same as for writing */
870 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
871 		break;
872 	case READING_U8:
873 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
874 		break;
875 	case READING_U16:
876 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
877 		break;
878 	case READING_U32:
879 		rx_conf.src_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
880 		break;
881 	}
882 
883 	switch (pl022->write) {
884 	case WRITING_NULL:
885 		/* Use the same as for reading */
886 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_UNDEFINED;
887 		break;
888 	case WRITING_U8:
889 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_1_BYTE;
890 		break;
891 	case WRITING_U16:
892 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES;
893 		break;
894 	case WRITING_U32:
895 		tx_conf.dst_addr_width = DMA_SLAVE_BUSWIDTH_4_BYTES;
896 		break;
897 	}
898 
899 	/* SPI peculiarity: we need to read and write the same width */
900 	if (rx_conf.src_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
901 		rx_conf.src_addr_width = tx_conf.dst_addr_width;
902 	if (tx_conf.dst_addr_width == DMA_SLAVE_BUSWIDTH_UNDEFINED)
903 		tx_conf.dst_addr_width = rx_conf.src_addr_width;
904 	BUG_ON(rx_conf.src_addr_width != tx_conf.dst_addr_width);
905 
906 	dmaengine_slave_config(rxchan, &rx_conf);
907 	dmaengine_slave_config(txchan, &tx_conf);
908 
909 	/* Create sglists for the transfers */
910 	pages = DIV_ROUND_UP(pl022->cur_transfer->len, PAGE_SIZE);
911 	dev_dbg(&pl022->adev->dev, "using %d pages for transfer\n", pages);
912 
913 	ret = sg_alloc_table(&pl022->sgt_rx, pages, GFP_ATOMIC);
914 	if (ret)
915 		goto err_alloc_rx_sg;
916 
917 	ret = sg_alloc_table(&pl022->sgt_tx, pages, GFP_ATOMIC);
918 	if (ret)
919 		goto err_alloc_tx_sg;
920 
921 	/* Fill in the scatterlists for the RX+TX buffers */
922 	setup_dma_scatter(pl022, pl022->rx,
923 			  pl022->cur_transfer->len, &pl022->sgt_rx);
924 	setup_dma_scatter(pl022, pl022->tx,
925 			  pl022->cur_transfer->len, &pl022->sgt_tx);
926 
927 	/* Map DMA buffers */
928 	rx_sglen = dma_map_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
929 			   pl022->sgt_rx.nents, DMA_FROM_DEVICE);
930 	if (!rx_sglen)
931 		goto err_rx_sgmap;
932 
933 	tx_sglen = dma_map_sg(txchan->device->dev, pl022->sgt_tx.sgl,
934 			   pl022->sgt_tx.nents, DMA_TO_DEVICE);
935 	if (!tx_sglen)
936 		goto err_tx_sgmap;
937 
938 	/* Send both scatterlists */
939 	rxdesc = dmaengine_prep_slave_sg(rxchan,
940 				      pl022->sgt_rx.sgl,
941 				      rx_sglen,
942 				      DMA_DEV_TO_MEM,
943 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
944 	if (!rxdesc)
945 		goto err_rxdesc;
946 
947 	txdesc = dmaengine_prep_slave_sg(txchan,
948 				      pl022->sgt_tx.sgl,
949 				      tx_sglen,
950 				      DMA_MEM_TO_DEV,
951 				      DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
952 	if (!txdesc)
953 		goto err_txdesc;
954 
955 	/* Put the callback on the RX transfer only, that should finish last */
956 	rxdesc->callback = dma_callback;
957 	rxdesc->callback_param = pl022;
958 
959 	/* Submit and fire RX and TX with TX last so we're ready to read! */
960 	dmaengine_submit(rxdesc);
961 	dmaengine_submit(txdesc);
962 	dma_async_issue_pending(rxchan);
963 	dma_async_issue_pending(txchan);
964 	pl022->dma_running = true;
965 
966 	return 0;
967 
968 err_txdesc:
969 	dmaengine_terminate_all(txchan);
970 err_rxdesc:
971 	dmaengine_terminate_all(rxchan);
972 	dma_unmap_sg(txchan->device->dev, pl022->sgt_tx.sgl,
973 		     pl022->sgt_tx.nents, DMA_TO_DEVICE);
974 err_tx_sgmap:
975 	dma_unmap_sg(rxchan->device->dev, pl022->sgt_rx.sgl,
976 		     pl022->sgt_rx.nents, DMA_FROM_DEVICE);
977 err_rx_sgmap:
978 	sg_free_table(&pl022->sgt_tx);
979 err_alloc_tx_sg:
980 	sg_free_table(&pl022->sgt_rx);
981 err_alloc_rx_sg:
982 	return -ENOMEM;
983 }
984 
985 static int pl022_dma_probe(struct pl022 *pl022)
986 {
987 	dma_cap_mask_t mask;
988 
989 	/* Try to acquire a generic DMA engine slave channel */
990 	dma_cap_zero(mask);
991 	dma_cap_set(DMA_SLAVE, mask);
992 	/*
993 	 * We need both RX and TX channels to do DMA, else do none
994 	 * of them.
995 	 */
996 	pl022->dma_rx_channel = dma_request_channel(mask,
997 					    pl022->host_info->dma_filter,
998 					    pl022->host_info->dma_rx_param);
999 	if (!pl022->dma_rx_channel) {
1000 		dev_dbg(&pl022->adev->dev, "no RX DMA channel!\n");
1001 		goto err_no_rxchan;
1002 	}
1003 
1004 	pl022->dma_tx_channel = dma_request_channel(mask,
1005 					    pl022->host_info->dma_filter,
1006 					    pl022->host_info->dma_tx_param);
1007 	if (!pl022->dma_tx_channel) {
1008 		dev_dbg(&pl022->adev->dev, "no TX DMA channel!\n");
1009 		goto err_no_txchan;
1010 	}
1011 
1012 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1013 	if (!pl022->dummypage)
1014 		goto err_no_dummypage;
1015 
1016 	dev_info(&pl022->adev->dev, "setup for DMA on RX %s, TX %s\n",
1017 		 dma_chan_name(pl022->dma_rx_channel),
1018 		 dma_chan_name(pl022->dma_tx_channel));
1019 
1020 	return 0;
1021 
1022 err_no_dummypage:
1023 	dma_release_channel(pl022->dma_tx_channel);
1024 err_no_txchan:
1025 	dma_release_channel(pl022->dma_rx_channel);
1026 	pl022->dma_rx_channel = NULL;
1027 err_no_rxchan:
1028 	dev_err(&pl022->adev->dev,
1029 			"Failed to work in dma mode, work without dma!\n");
1030 	return -ENODEV;
1031 }
1032 
1033 static int pl022_dma_autoprobe(struct pl022 *pl022)
1034 {
1035 	struct device *dev = &pl022->adev->dev;
1036 	struct dma_chan *chan;
1037 	int err;
1038 
1039 	/* automatically configure DMA channels from platform, normally using DT */
1040 	chan = dma_request_chan(dev, "rx");
1041 	if (IS_ERR(chan)) {
1042 		err = PTR_ERR(chan);
1043 		goto err_no_rxchan;
1044 	}
1045 
1046 	pl022->dma_rx_channel = chan;
1047 
1048 	chan = dma_request_chan(dev, "tx");
1049 	if (IS_ERR(chan)) {
1050 		err = PTR_ERR(chan);
1051 		goto err_no_txchan;
1052 	}
1053 
1054 	pl022->dma_tx_channel = chan;
1055 
1056 	pl022->dummypage = kmalloc(PAGE_SIZE, GFP_KERNEL);
1057 	if (!pl022->dummypage) {
1058 		err = -ENOMEM;
1059 		goto err_no_dummypage;
1060 	}
1061 
1062 	return 0;
1063 
1064 err_no_dummypage:
1065 	dma_release_channel(pl022->dma_tx_channel);
1066 	pl022->dma_tx_channel = NULL;
1067 err_no_txchan:
1068 	dma_release_channel(pl022->dma_rx_channel);
1069 	pl022->dma_rx_channel = NULL;
1070 err_no_rxchan:
1071 	return err;
1072 }
1073 
1074 static void terminate_dma(struct pl022 *pl022)
1075 {
1076 	if (!pl022->dma_running)
1077 		return;
1078 
1079 	struct dma_chan *rxchan = pl022->dma_rx_channel;
1080 	struct dma_chan *txchan = pl022->dma_tx_channel;
1081 
1082 	dmaengine_terminate_all(rxchan);
1083 	dmaengine_terminate_all(txchan);
1084 	unmap_free_dma_scatter(pl022);
1085 	pl022->dma_running = false;
1086 }
1087 
1088 static void pl022_dma_remove(struct pl022 *pl022)
1089 {
1090 	terminate_dma(pl022);
1091 	if (pl022->dma_tx_channel)
1092 		dma_release_channel(pl022->dma_tx_channel);
1093 	if (pl022->dma_rx_channel)
1094 		dma_release_channel(pl022->dma_rx_channel);
1095 	kfree(pl022->dummypage);
1096 }
1097 
1098 #else
1099 static inline int configure_dma(struct pl022 *pl022)
1100 {
1101 	return -ENODEV;
1102 }
1103 
1104 static inline int pl022_dma_autoprobe(struct pl022 *pl022)
1105 {
1106 	return 0;
1107 }
1108 
1109 static inline int pl022_dma_probe(struct pl022 *pl022)
1110 {
1111 	return 0;
1112 }
1113 
1114 static inline void terminate_dma(struct pl022 *pl022)
1115 {
1116 }
1117 
1118 static inline void pl022_dma_remove(struct pl022 *pl022)
1119 {
1120 }
1121 #endif
1122 
1123 /**
1124  * pl022_interrupt_handler - Interrupt handler for SSP controller
1125  * @irq: IRQ number
1126  * @dev_id: Local device data
1127  *
1128  * This function handles interrupts generated for an interrupt based transfer.
1129  * If a receive overrun (ROR) interrupt is there then we disable SSP, flag the
1130  * current message's state as STATE_ERROR and schedule the tasklet
1131  * pump_transfers which will do the postprocessing of the current message by
1132  * calling giveback(). Otherwise it reads data from RX FIFO till there is no
1133  * more data, and writes data in TX FIFO till it is not full. If we complete
1134  * the transfer we move to the next transfer and schedule the tasklet.
1135  */
1136 static irqreturn_t pl022_interrupt_handler(int irq, void *dev_id)
1137 {
1138 	struct pl022 *pl022 = dev_id;
1139 	u16 irq_status = 0;
1140 	/* Read the Interrupt Status Register */
1141 	irq_status = readw(SSP_MIS(pl022->virtbase));
1142 
1143 	if (unlikely(!irq_status))
1144 		return IRQ_NONE;
1145 
1146 	/*
1147 	 * This handles the FIFO interrupts, the timeout
1148 	 * interrupts are flatly ignored, they cannot be
1149 	 * trusted.
1150 	 */
1151 	if (unlikely(irq_status & SSP_MIS_MASK_RORMIS)) {
1152 		/*
1153 		 * Overrun interrupt - bail out since our Data has been
1154 		 * corrupted
1155 		 */
1156 		dev_err(&pl022->adev->dev, "FIFO overrun\n");
1157 		if (readw(SSP_SR(pl022->virtbase)) & SSP_SR_MASK_RFF)
1158 			dev_err(&pl022->adev->dev,
1159 				"RXFIFO is full\n");
1160 
1161 		/*
1162 		 * Disable and clear interrupts, disable SSP,
1163 		 * mark message with bad status so it can be
1164 		 * retried.
1165 		 */
1166 		writew(DISABLE_ALL_INTERRUPTS,
1167 		       SSP_IMSC(pl022->virtbase));
1168 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1169 		writew((readw(SSP_CR1(pl022->virtbase)) &
1170 			(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1171 		pl022->cur_transfer->error |= SPI_TRANS_FAIL_IO;
1172 		spi_finalize_current_transfer(pl022->host);
1173 		return IRQ_HANDLED;
1174 	}
1175 
1176 	readwriter(pl022);
1177 
1178 	if (pl022->tx == pl022->tx_end) {
1179 		/* Disable Transmit interrupt, enable receive interrupt */
1180 		writew((readw(SSP_IMSC(pl022->virtbase)) &
1181 		       ~SSP_IMSC_MASK_TXIM) | SSP_IMSC_MASK_RXIM,
1182 		       SSP_IMSC(pl022->virtbase));
1183 	}
1184 
1185 	/*
1186 	 * Since all transactions must write as much as shall be read,
1187 	 * we can conclude the entire transaction once RX is complete.
1188 	 * At this point, all TX will always be finished.
1189 	 */
1190 	if (pl022->rx >= pl022->rx_end) {
1191 		writew(DISABLE_ALL_INTERRUPTS,
1192 		       SSP_IMSC(pl022->virtbase));
1193 		writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1194 		if (unlikely(pl022->rx > pl022->rx_end)) {
1195 			dev_warn(&pl022->adev->dev, "read %u surplus "
1196 				 "bytes (did you request an odd "
1197 				 "number of bytes on a 16bit bus?)\n",
1198 				 (u32) (pl022->rx - pl022->rx_end));
1199 		}
1200 		spi_finalize_current_transfer(pl022->host);
1201 		return IRQ_HANDLED;
1202 	}
1203 
1204 	return IRQ_HANDLED;
1205 }
1206 
1207 /*
1208  * This sets up the pointers to memory for the next message to
1209  * send out on the SPI bus.
1210  */
1211 static int set_up_next_transfer(struct pl022 *pl022,
1212 				struct spi_transfer *transfer)
1213 {
1214 	int residue;
1215 
1216 	/* Sanity check the message for this bus width */
1217 	residue = pl022->cur_transfer->len % pl022->cur_chip->n_bytes;
1218 	if (unlikely(residue != 0)) {
1219 		dev_err(&pl022->adev->dev,
1220 			"message of %u bytes to transmit but the current "
1221 			"chip bus has a data width of %u bytes!\n",
1222 			pl022->cur_transfer->len,
1223 			pl022->cur_chip->n_bytes);
1224 		dev_err(&pl022->adev->dev, "skipping this message\n");
1225 		return -EIO;
1226 	}
1227 	pl022->tx = (void *)transfer->tx_buf;
1228 	pl022->tx_end = pl022->tx + pl022->cur_transfer->len;
1229 	pl022->rx = (void *)transfer->rx_buf;
1230 	pl022->rx_end = pl022->rx + pl022->cur_transfer->len;
1231 	pl022->write =
1232 	    pl022->tx ? pl022->cur_chip->write : WRITING_NULL;
1233 	pl022->read = pl022->rx ? pl022->cur_chip->read : READING_NULL;
1234 	return 0;
1235 }
1236 
1237 static int do_interrupt_dma_transfer(struct pl022 *pl022)
1238 {
1239 	int ret;
1240 
1241 	/*
1242 	 * Default is to enable all interrupts except RX -
1243 	 * this will be enabled once TX is complete
1244 	 */
1245 	u32 irqflags = (u32)(ENABLE_ALL_INTERRUPTS & ~SSP_IMSC_MASK_RXIM);
1246 
1247 	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1248 	if (ret)
1249 		return ret;
1250 
1251 	/* If we're using DMA, set up DMA here */
1252 	if (pl022->cur_chip->enable_dma) {
1253 		/* Configure DMA transfer */
1254 		if (configure_dma(pl022)) {
1255 			dev_dbg(&pl022->adev->dev,
1256 				"configuration of DMA failed, fall back to interrupt mode\n");
1257 			goto err_config_dma;
1258 		}
1259 		/* Disable interrupts in DMA mode, IRQ from DMA controller */
1260 		irqflags = DISABLE_ALL_INTERRUPTS;
1261 	}
1262 err_config_dma:
1263 	/* Enable SSP, turn on interrupts */
1264 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1265 	       SSP_CR1(pl022->virtbase));
1266 	writew(irqflags, SSP_IMSC(pl022->virtbase));
1267 	return 1;
1268 }
1269 
1270 static void print_current_status(struct pl022 *pl022)
1271 {
1272 	u32 read_cr0;
1273 	u16 read_cr1, read_dmacr, read_sr;
1274 
1275 	if (pl022->vendor->extended_cr)
1276 		read_cr0 = readl(SSP_CR0(pl022->virtbase));
1277 	else
1278 		read_cr0 = readw(SSP_CR0(pl022->virtbase));
1279 	read_cr1 = readw(SSP_CR1(pl022->virtbase));
1280 	read_dmacr = readw(SSP_DMACR(pl022->virtbase));
1281 	read_sr = readw(SSP_SR(pl022->virtbase));
1282 
1283 	dev_warn(&pl022->adev->dev, "spi-pl022 CR0: %x\n", read_cr0);
1284 	dev_warn(&pl022->adev->dev, "spi-pl022 CR1: %x\n", read_cr1);
1285 	dev_warn(&pl022->adev->dev, "spi-pl022 DMACR: %x\n", read_dmacr);
1286 	dev_warn(&pl022->adev->dev, "spi-pl022 SR: %x\n", read_sr);
1287 	dev_warn(&pl022->adev->dev,
1288 			"spi-pl022 exp_fifo_level/fifodepth: %u/%d\n",
1289 			pl022->exp_fifo_level,
1290 			pl022->vendor->fifodepth);
1291 
1292 }
1293 
1294 static int do_polling_transfer(struct pl022 *pl022)
1295 {
1296 	int ret;
1297 	unsigned long time, timeout;
1298 
1299 	/* Configuration Changing Per Transfer */
1300 	ret = set_up_next_transfer(pl022, pl022->cur_transfer);
1301 	if (ret)
1302 		return ret;
1303 	/* Flush FIFOs and enable SSP */
1304 	flush(pl022);
1305 	writew((readw(SSP_CR1(pl022->virtbase)) | SSP_CR1_MASK_SSE),
1306 		SSP_CR1(pl022->virtbase));
1307 
1308 	dev_dbg(&pl022->adev->dev, "polling transfer ongoing ...\n");
1309 
1310 	timeout = jiffies + msecs_to_jiffies(SPI_POLLING_TIMEOUT);
1311 	while (pl022->tx < pl022->tx_end || pl022->rx < pl022->rx_end) {
1312 		time = jiffies;
1313 		readwriter(pl022);
1314 		if (time_after(time, timeout)) {
1315 			dev_warn(&pl022->adev->dev,
1316 			"%s: timeout!\n", __func__);
1317 			print_current_status(pl022);
1318 			return -ETIMEDOUT;
1319 		}
1320 		cpu_relax();
1321 	}
1322 
1323 	return 0;
1324 }
1325 
1326 static int pl022_transfer_one(struct spi_controller *host, struct spi_device *spi,
1327 			      struct spi_transfer *transfer)
1328 {
1329 	struct pl022 *pl022 = spi_controller_get_devdata(host);
1330 
1331 	pl022->cur_transfer = transfer;
1332 
1333 	/* Setup the SPI using the per chip configuration */
1334 	pl022->cur_chip = spi_get_ctldata(spi);
1335 	pl022->cur_cs = spi_get_chipselect(spi, 0);
1336 
1337 	restore_state(pl022);
1338 	flush(pl022);
1339 
1340 	if (pl022->cur_chip->xfer_type == POLLING_TRANSFER)
1341 		return do_polling_transfer(pl022);
1342 	else
1343 		return do_interrupt_dma_transfer(pl022);
1344 }
1345 
1346 static void pl022_handle_err(struct spi_controller *ctlr, struct spi_message *message)
1347 {
1348 	struct pl022 *pl022 = spi_controller_get_devdata(ctlr);
1349 
1350 	terminate_dma(pl022);
1351 	writew(DISABLE_ALL_INTERRUPTS, SSP_IMSC(pl022->virtbase));
1352 	writew(CLEAR_ALL_INTERRUPTS, SSP_ICR(pl022->virtbase));
1353 }
1354 
1355 static int pl022_unprepare_transfer_hardware(struct spi_controller *host)
1356 {
1357 	struct pl022 *pl022 = spi_controller_get_devdata(host);
1358 
1359 	/* nothing more to do - disable spi/ssp and power off */
1360 	writew((readw(SSP_CR1(pl022->virtbase)) &
1361 		(~SSP_CR1_MASK_SSE)), SSP_CR1(pl022->virtbase));
1362 
1363 	return 0;
1364 }
1365 
1366 static int verify_controller_parameters(struct pl022 *pl022,
1367 				struct pl022_config_chip const *chip_info)
1368 {
1369 	if ((chip_info->iface < SSP_INTERFACE_MOTOROLA_SPI)
1370 	    || (chip_info->iface > SSP_INTERFACE_UNIDIRECTIONAL)) {
1371 		dev_err(&pl022->adev->dev,
1372 			"interface is configured incorrectly\n");
1373 		return -EINVAL;
1374 	}
1375 	if ((chip_info->iface == SSP_INTERFACE_UNIDIRECTIONAL) &&
1376 	    (!pl022->vendor->unidir)) {
1377 		dev_err(&pl022->adev->dev,
1378 			"unidirectional mode not supported in this "
1379 			"hardware version\n");
1380 		return -EINVAL;
1381 	}
1382 	if ((chip_info->hierarchy != SSP_MASTER)
1383 	    && (chip_info->hierarchy != SSP_SLAVE)) {
1384 		dev_err(&pl022->adev->dev,
1385 			"hierarchy is configured incorrectly\n");
1386 		return -EINVAL;
1387 	}
1388 	if ((chip_info->com_mode != INTERRUPT_TRANSFER)
1389 	    && (chip_info->com_mode != DMA_TRANSFER)
1390 	    && (chip_info->com_mode != POLLING_TRANSFER)) {
1391 		dev_err(&pl022->adev->dev,
1392 			"Communication mode is configured incorrectly\n");
1393 		return -EINVAL;
1394 	}
1395 	switch (chip_info->rx_lev_trig) {
1396 	case SSP_RX_1_OR_MORE_ELEM:
1397 	case SSP_RX_4_OR_MORE_ELEM:
1398 	case SSP_RX_8_OR_MORE_ELEM:
1399 		/* These are always OK, all variants can handle this */
1400 		break;
1401 	case SSP_RX_16_OR_MORE_ELEM:
1402 		if (pl022->vendor->fifodepth < 16) {
1403 			dev_err(&pl022->adev->dev,
1404 			"RX FIFO Trigger Level is configured incorrectly\n");
1405 			return -EINVAL;
1406 		}
1407 		break;
1408 	case SSP_RX_32_OR_MORE_ELEM:
1409 		if (pl022->vendor->fifodepth < 32) {
1410 			dev_err(&pl022->adev->dev,
1411 			"RX FIFO Trigger Level is configured incorrectly\n");
1412 			return -EINVAL;
1413 		}
1414 		break;
1415 	default:
1416 		dev_err(&pl022->adev->dev,
1417 			"RX FIFO Trigger Level is configured incorrectly\n");
1418 		return -EINVAL;
1419 	}
1420 	switch (chip_info->tx_lev_trig) {
1421 	case SSP_TX_1_OR_MORE_EMPTY_LOC:
1422 	case SSP_TX_4_OR_MORE_EMPTY_LOC:
1423 	case SSP_TX_8_OR_MORE_EMPTY_LOC:
1424 		/* These are always OK, all variants can handle this */
1425 		break;
1426 	case SSP_TX_16_OR_MORE_EMPTY_LOC:
1427 		if (pl022->vendor->fifodepth < 16) {
1428 			dev_err(&pl022->adev->dev,
1429 			"TX FIFO Trigger Level is configured incorrectly\n");
1430 			return -EINVAL;
1431 		}
1432 		break;
1433 	case SSP_TX_32_OR_MORE_EMPTY_LOC:
1434 		if (pl022->vendor->fifodepth < 32) {
1435 			dev_err(&pl022->adev->dev,
1436 			"TX FIFO Trigger Level is configured incorrectly\n");
1437 			return -EINVAL;
1438 		}
1439 		break;
1440 	default:
1441 		dev_err(&pl022->adev->dev,
1442 			"TX FIFO Trigger Level is configured incorrectly\n");
1443 		return -EINVAL;
1444 	}
1445 	if (chip_info->iface == SSP_INTERFACE_NATIONAL_MICROWIRE) {
1446 		if ((chip_info->ctrl_len < SSP_BITS_4)
1447 		    || (chip_info->ctrl_len > SSP_BITS_32)) {
1448 			dev_err(&pl022->adev->dev,
1449 				"CTRL LEN is configured incorrectly\n");
1450 			return -EINVAL;
1451 		}
1452 		if ((chip_info->wait_state != SSP_MWIRE_WAIT_ZERO)
1453 		    && (chip_info->wait_state != SSP_MWIRE_WAIT_ONE)) {
1454 			dev_err(&pl022->adev->dev,
1455 				"Wait State is configured incorrectly\n");
1456 			return -EINVAL;
1457 		}
1458 		/* Half duplex is only available in the ST Micro version */
1459 		if (pl022->vendor->extended_cr) {
1460 			if ((chip_info->duplex !=
1461 			     SSP_MICROWIRE_CHANNEL_FULL_DUPLEX)
1462 			    && (chip_info->duplex !=
1463 				SSP_MICROWIRE_CHANNEL_HALF_DUPLEX)) {
1464 				dev_err(&pl022->adev->dev,
1465 					"Microwire duplex mode is configured incorrectly\n");
1466 				return -EINVAL;
1467 			}
1468 		} else {
1469 			if (chip_info->duplex != SSP_MICROWIRE_CHANNEL_FULL_DUPLEX) {
1470 				dev_err(&pl022->adev->dev,
1471 					"Microwire half duplex mode requested,"
1472 					" but this is only available in the"
1473 					" ST version of PL022\n");
1474 				return -EINVAL;
1475 			}
1476 		}
1477 	}
1478 	return 0;
1479 }
1480 
1481 static inline u32 spi_rate(u32 rate, u16 cpsdvsr, u16 scr)
1482 {
1483 	return rate / (cpsdvsr * (1 + scr));
1484 }
1485 
1486 static int calculate_effective_freq(struct pl022 *pl022, int freq, struct
1487 				    ssp_clock_params * clk_freq)
1488 {
1489 	/* Lets calculate the frequency parameters */
1490 	u16 cpsdvsr = CPSDVR_MIN, scr = SCR_MIN;
1491 	u32 rate, max_tclk, min_tclk, best_freq = 0, best_cpsdvsr = 0,
1492 		best_scr = 0, tmp, found = 0;
1493 
1494 	rate = clk_get_rate(pl022->clk);
1495 	/* cpsdvscr = 2 & scr 0 */
1496 	max_tclk = spi_rate(rate, CPSDVR_MIN, SCR_MIN);
1497 	/* cpsdvsr = 254 & scr = 255 */
1498 	min_tclk = spi_rate(rate, CPSDVR_MAX, SCR_MAX);
1499 
1500 	if (freq > max_tclk)
1501 		dev_warn(&pl022->adev->dev,
1502 			"Max speed that can be programmed is %d Hz, you requested %d\n",
1503 			max_tclk, freq);
1504 
1505 	if (freq < min_tclk) {
1506 		dev_err(&pl022->adev->dev,
1507 			"Requested frequency: %d Hz is less than minimum possible %d Hz\n",
1508 			freq, min_tclk);
1509 		return -EINVAL;
1510 	}
1511 
1512 	/*
1513 	 * best_freq will give closest possible available rate (<= requested
1514 	 * freq) for all values of scr & cpsdvsr.
1515 	 */
1516 	while ((cpsdvsr <= CPSDVR_MAX) && !found) {
1517 		while (scr <= SCR_MAX) {
1518 			tmp = spi_rate(rate, cpsdvsr, scr);
1519 
1520 			if (tmp > freq) {
1521 				/* we need lower freq */
1522 				scr++;
1523 				continue;
1524 			}
1525 
1526 			/*
1527 			 * If found exact value, mark found and break.
1528 			 * If found more closer value, update and break.
1529 			 */
1530 			if (tmp > best_freq) {
1531 				best_freq = tmp;
1532 				best_cpsdvsr = cpsdvsr;
1533 				best_scr = scr;
1534 
1535 				if (tmp == freq)
1536 					found = 1;
1537 			}
1538 			/*
1539 			 * increased scr will give lower rates, which are not
1540 			 * required
1541 			 */
1542 			break;
1543 		}
1544 		cpsdvsr += 2;
1545 		scr = SCR_MIN;
1546 	}
1547 
1548 	WARN(!best_freq, "pl022: Matching cpsdvsr and scr not found for %d Hz rate \n",
1549 			freq);
1550 
1551 	clk_freq->cpsdvsr = (u8) (best_cpsdvsr & 0xFF);
1552 	clk_freq->scr = (u8) (best_scr & 0xFF);
1553 	dev_dbg(&pl022->adev->dev,
1554 		"SSP Target Frequency is: %u, Effective Frequency is %u\n",
1555 		freq, best_freq);
1556 	dev_dbg(&pl022->adev->dev, "SSP cpsdvsr = %d, scr = %d\n",
1557 		clk_freq->cpsdvsr, clk_freq->scr);
1558 
1559 	return 0;
1560 }
1561 
1562 /*
1563  * A piece of default chip info unless the platform
1564  * supplies it.
1565  */
1566 static const struct pl022_config_chip pl022_default_chip_info = {
1567 	.com_mode = INTERRUPT_TRANSFER,
1568 	.iface = SSP_INTERFACE_MOTOROLA_SPI,
1569 	.hierarchy = SSP_MASTER,
1570 	.slave_tx_disable = DO_NOT_DRIVE_TX,
1571 	.rx_lev_trig = SSP_RX_1_OR_MORE_ELEM,
1572 	.tx_lev_trig = SSP_TX_1_OR_MORE_EMPTY_LOC,
1573 	.ctrl_len = SSP_BITS_8,
1574 	.wait_state = SSP_MWIRE_WAIT_ZERO,
1575 	.duplex = SSP_MICROWIRE_CHANNEL_FULL_DUPLEX,
1576 };
1577 
1578 /**
1579  * pl022_setup - setup function registered to SPI host framework
1580  * @spi: spi device which is requesting setup
1581  *
1582  * This function is registered to the SPI framework for this SPI host
1583  * controller. If it is the first time when setup is called by this device,
1584  * this function will initialize the runtime state for this chip and save
1585  * the same in the device structure. Else it will update the runtime info
1586  * with the updated chip info. Nothing is really being written to the
1587  * controller hardware here, that is not done until the actual transfer
1588  * commence.
1589  */
1590 static int pl022_setup(struct spi_device *spi)
1591 {
1592 	struct pl022_config_chip const *chip_info;
1593 	struct pl022_config_chip chip_info_dt;
1594 	struct chip_data *chip;
1595 	struct ssp_clock_params clk_freq = { .cpsdvsr = 0, .scr = 0};
1596 	int status = 0;
1597 	struct pl022 *pl022 = spi_controller_get_devdata(spi->controller);
1598 	unsigned int bits = spi->bits_per_word;
1599 	u32 tmp;
1600 	struct device_node *np = spi->dev.of_node;
1601 
1602 	if (!spi->max_speed_hz)
1603 		return -EINVAL;
1604 
1605 	/* Get controller_state if one is supplied */
1606 	chip = spi_get_ctldata(spi);
1607 
1608 	if (chip == NULL) {
1609 		chip = kzalloc(sizeof(struct chip_data), GFP_KERNEL);
1610 		if (!chip)
1611 			return -ENOMEM;
1612 		dev_dbg(&spi->dev,
1613 			"allocated memory for controller's runtime state\n");
1614 	}
1615 
1616 	/* Get controller data if one is supplied */
1617 	chip_info = spi->controller_data;
1618 
1619 	if (chip_info == NULL) {
1620 		if (np) {
1621 			chip_info_dt = pl022_default_chip_info;
1622 
1623 			chip_info_dt.hierarchy = SSP_MASTER;
1624 			of_property_read_u32(np, "pl022,interface",
1625 				&chip_info_dt.iface);
1626 			of_property_read_u32(np, "pl022,com-mode",
1627 				&chip_info_dt.com_mode);
1628 			of_property_read_u32(np, "pl022,rx-level-trig",
1629 				&chip_info_dt.rx_lev_trig);
1630 			of_property_read_u32(np, "pl022,tx-level-trig",
1631 				&chip_info_dt.tx_lev_trig);
1632 			of_property_read_u32(np, "pl022,ctrl-len",
1633 				&chip_info_dt.ctrl_len);
1634 			of_property_read_u32(np, "pl022,wait-state",
1635 				&chip_info_dt.wait_state);
1636 			of_property_read_u32(np, "pl022,duplex",
1637 				&chip_info_dt.duplex);
1638 
1639 			chip_info = &chip_info_dt;
1640 		} else {
1641 			chip_info = &pl022_default_chip_info;
1642 			/* spi_board_info.controller_data not is supplied */
1643 			dev_dbg(&spi->dev,
1644 				"using default controller_data settings\n");
1645 		}
1646 	} else
1647 		dev_dbg(&spi->dev,
1648 			"using user supplied controller_data settings\n");
1649 
1650 	/*
1651 	 * We can override with custom divisors, else we use the board
1652 	 * frequency setting
1653 	 */
1654 	if ((0 == chip_info->clk_freq.cpsdvsr)
1655 	    && (0 == chip_info->clk_freq.scr)) {
1656 		status = calculate_effective_freq(pl022,
1657 						  spi->max_speed_hz,
1658 						  &clk_freq);
1659 		if (status < 0)
1660 			goto err_config_params;
1661 	} else {
1662 		memcpy(&clk_freq, &chip_info->clk_freq, sizeof(clk_freq));
1663 		if ((clk_freq.cpsdvsr % 2) != 0)
1664 			clk_freq.cpsdvsr =
1665 				clk_freq.cpsdvsr - 1;
1666 	}
1667 	if ((clk_freq.cpsdvsr < CPSDVR_MIN)
1668 	    || (clk_freq.cpsdvsr > CPSDVR_MAX)) {
1669 		status = -EINVAL;
1670 		dev_err(&spi->dev,
1671 			"cpsdvsr is configured incorrectly\n");
1672 		goto err_config_params;
1673 	}
1674 
1675 	status = verify_controller_parameters(pl022, chip_info);
1676 	if (status) {
1677 		dev_err(&spi->dev, "controller data is incorrect");
1678 		goto err_config_params;
1679 	}
1680 
1681 	pl022->rx_lev_trig = chip_info->rx_lev_trig;
1682 	pl022->tx_lev_trig = chip_info->tx_lev_trig;
1683 
1684 	/* Now set controller state based on controller data */
1685 	chip->xfer_type = chip_info->com_mode;
1686 
1687 	/* Check bits per word with vendor specific range */
1688 	if ((bits <= 3) || (bits > pl022->vendor->max_bpw)) {
1689 		status = -ENOTSUPP;
1690 		dev_err(&spi->dev, "illegal data size for this controller!\n");
1691 		dev_err(&spi->dev, "This controller can only handle 4 <= n <= %d bit words\n",
1692 				pl022->vendor->max_bpw);
1693 		goto err_config_params;
1694 	} else if (bits <= 8) {
1695 		dev_dbg(&spi->dev, "4 <= n <=8 bits per word\n");
1696 		chip->n_bytes = 1;
1697 		chip->read = READING_U8;
1698 		chip->write = WRITING_U8;
1699 	} else if (bits <= 16) {
1700 		dev_dbg(&spi->dev, "9 <= n <= 16 bits per word\n");
1701 		chip->n_bytes = 2;
1702 		chip->read = READING_U16;
1703 		chip->write = WRITING_U16;
1704 	} else {
1705 		dev_dbg(&spi->dev, "17 <= n <= 32 bits per word\n");
1706 		chip->n_bytes = 4;
1707 		chip->read = READING_U32;
1708 		chip->write = WRITING_U32;
1709 	}
1710 
1711 	/* Now Initialize all register settings required for this chip */
1712 	chip->cr0 = 0;
1713 	chip->cr1 = 0;
1714 	chip->dmacr = 0;
1715 	chip->cpsr = 0;
1716 	if ((chip_info->com_mode == DMA_TRANSFER)
1717 	    && ((pl022->host_info)->enable_dma)) {
1718 		chip->enable_dma = true;
1719 		dev_dbg(&spi->dev, "DMA mode set in controller state\n");
1720 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1721 			       SSP_DMACR_MASK_RXDMAE, 0);
1722 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_ENABLED,
1723 			       SSP_DMACR_MASK_TXDMAE, 1);
1724 	} else {
1725 		chip->enable_dma = false;
1726 		dev_dbg(&spi->dev, "DMA mode NOT set in controller state\n");
1727 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1728 			       SSP_DMACR_MASK_RXDMAE, 0);
1729 		SSP_WRITE_BITS(chip->dmacr, SSP_DMA_DISABLED,
1730 			       SSP_DMACR_MASK_TXDMAE, 1);
1731 	}
1732 
1733 	chip->cpsr = clk_freq.cpsdvsr;
1734 
1735 	/* Special setup for the ST micro extended control registers */
1736 	if (pl022->vendor->extended_cr) {
1737 		u32 etx;
1738 
1739 		if (pl022->vendor->pl023) {
1740 			/* These bits are only in the PL023 */
1741 			SSP_WRITE_BITS(chip->cr1, chip_info->clkdelay,
1742 				       SSP_CR1_MASK_FBCLKDEL_ST, 13);
1743 		} else {
1744 			/* These bits are in the PL022 but not PL023 */
1745 			SSP_WRITE_BITS(chip->cr0, chip_info->duplex,
1746 				       SSP_CR0_MASK_HALFDUP_ST, 5);
1747 			SSP_WRITE_BITS(chip->cr0, chip_info->ctrl_len,
1748 				       SSP_CR0_MASK_CSS_ST, 16);
1749 			SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1750 				       SSP_CR0_MASK_FRF_ST, 21);
1751 			SSP_WRITE_BITS(chip->cr1, chip_info->wait_state,
1752 				       SSP_CR1_MASK_MWAIT_ST, 6);
1753 		}
1754 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1755 			       SSP_CR0_MASK_DSS_ST, 0);
1756 
1757 		if (spi->mode & SPI_LSB_FIRST) {
1758 			tmp = SSP_RX_LSB;
1759 			etx = SSP_TX_LSB;
1760 		} else {
1761 			tmp = SSP_RX_MSB;
1762 			etx = SSP_TX_MSB;
1763 		}
1764 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_RENDN_ST, 4);
1765 		SSP_WRITE_BITS(chip->cr1, etx, SSP_CR1_MASK_TENDN_ST, 5);
1766 		SSP_WRITE_BITS(chip->cr1, chip_info->rx_lev_trig,
1767 			       SSP_CR1_MASK_RXIFLSEL_ST, 7);
1768 		SSP_WRITE_BITS(chip->cr1, chip_info->tx_lev_trig,
1769 			       SSP_CR1_MASK_TXIFLSEL_ST, 10);
1770 	} else {
1771 		SSP_WRITE_BITS(chip->cr0, bits - 1,
1772 			       SSP_CR0_MASK_DSS, 0);
1773 		SSP_WRITE_BITS(chip->cr0, chip_info->iface,
1774 			       SSP_CR0_MASK_FRF, 4);
1775 	}
1776 
1777 	/* Stuff that is common for all versions */
1778 	if (spi->mode & SPI_CPOL)
1779 		tmp = SSP_CLK_POL_IDLE_HIGH;
1780 	else
1781 		tmp = SSP_CLK_POL_IDLE_LOW;
1782 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPO, 6);
1783 
1784 	if (spi->mode & SPI_CPHA)
1785 		tmp = SSP_CLK_SECOND_EDGE;
1786 	else
1787 		tmp = SSP_CLK_FIRST_EDGE;
1788 	SSP_WRITE_BITS(chip->cr0, tmp, SSP_CR0_MASK_SPH, 7);
1789 
1790 	SSP_WRITE_BITS(chip->cr0, clk_freq.scr, SSP_CR0_MASK_SCR, 8);
1791 	/* Loopback is available on all versions except PL023 */
1792 	if (pl022->vendor->loopback) {
1793 		if (spi->mode & SPI_LOOP)
1794 			tmp = LOOPBACK_ENABLED;
1795 		else
1796 			tmp = LOOPBACK_DISABLED;
1797 		SSP_WRITE_BITS(chip->cr1, tmp, SSP_CR1_MASK_LBM, 0);
1798 	}
1799 	SSP_WRITE_BITS(chip->cr1, SSP_DISABLED, SSP_CR1_MASK_SSE, 1);
1800 	SSP_WRITE_BITS(chip->cr1, chip_info->hierarchy, SSP_CR1_MASK_MS, 2);
1801 	SSP_WRITE_BITS(chip->cr1, chip_info->slave_tx_disable, SSP_CR1_MASK_SOD,
1802 		3);
1803 
1804 	/* Save controller_state */
1805 	spi_set_ctldata(spi, chip);
1806 	return status;
1807  err_config_params:
1808 	spi_set_ctldata(spi, NULL);
1809 	kfree(chip);
1810 	return status;
1811 }
1812 
1813 /**
1814  * pl022_cleanup - cleanup function registered to SPI host framework
1815  * @spi: spi device which is requesting cleanup
1816  *
1817  * This function is registered to the SPI framework for this SPI host
1818  * controller. It will free the runtime state of chip.
1819  */
1820 static void pl022_cleanup(struct spi_device *spi)
1821 {
1822 	struct chip_data *chip = spi_get_ctldata(spi);
1823 
1824 	spi_set_ctldata(spi, NULL);
1825 	kfree(chip);
1826 }
1827 
1828 static struct pl022_ssp_controller *
1829 pl022_platform_data_dt_get(struct device *dev)
1830 {
1831 	struct device_node *np = dev->of_node;
1832 	struct pl022_ssp_controller *pd;
1833 
1834 	if (!np) {
1835 		dev_err(dev, "no dt node defined\n");
1836 		return NULL;
1837 	}
1838 
1839 	pd = devm_kzalloc(dev, sizeof(struct pl022_ssp_controller), GFP_KERNEL);
1840 	if (!pd)
1841 		return NULL;
1842 
1843 	pd->bus_id = -1;
1844 	of_property_read_u32(np, "pl022,autosuspend-delay",
1845 			     &pd->autosuspend_delay);
1846 	pd->rt = of_property_read_bool(np, "pl022,rt");
1847 
1848 	return pd;
1849 }
1850 
1851 static int pl022_probe(struct amba_device *adev, const struct amba_id *id)
1852 {
1853 	struct device *dev = &adev->dev;
1854 	struct pl022_ssp_controller *platform_info =
1855 			dev_get_platdata(&adev->dev);
1856 	struct spi_controller *host;
1857 	struct pl022 *pl022 = NULL;	/*Data for this driver */
1858 	int status = 0;
1859 
1860 	dev_info(&adev->dev,
1861 		 "ARM PL022 driver, device ID: 0x%08x\n", adev->periphid);
1862 	if (!platform_info && IS_ENABLED(CONFIG_OF))
1863 		platform_info = pl022_platform_data_dt_get(dev);
1864 
1865 	if (!platform_info) {
1866 		dev_err(dev, "probe: no platform data defined\n");
1867 		return -ENODEV;
1868 	}
1869 
1870 	/* Allocate host with space for data */
1871 	host = spi_alloc_host(dev, sizeof(struct pl022));
1872 	if (host == NULL) {
1873 		dev_err(&adev->dev, "probe - cannot alloc SPI host\n");
1874 		return -ENOMEM;
1875 	}
1876 
1877 	pl022 = spi_controller_get_devdata(host);
1878 	pl022->host = host;
1879 	pl022->host_info = platform_info;
1880 	pl022->adev = adev;
1881 	pl022->vendor = id->data;
1882 
1883 	/*
1884 	 * Bus Number Which has been Assigned to this SSP controller
1885 	 * on this board
1886 	 */
1887 	host->bus_num = platform_info->bus_id;
1888 	host->cleanup = pl022_cleanup;
1889 	host->setup = pl022_setup;
1890 	host->auto_runtime_pm = true;
1891 	host->transfer_one = pl022_transfer_one;
1892 	host->set_cs = pl022_cs_control;
1893 	host->handle_err = pl022_handle_err;
1894 	host->unprepare_transfer_hardware = pl022_unprepare_transfer_hardware;
1895 	host->rt = platform_info->rt;
1896 	host->dev.of_node = dev->of_node;
1897 	host->use_gpio_descriptors = true;
1898 
1899 	/*
1900 	 * Supports mode 0-3, loopback, and active low CS. Transfers are
1901 	 * always MS bit first on the original pl022.
1902 	 */
1903 	host->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH | SPI_LOOP;
1904 	if (pl022->vendor->extended_cr)
1905 		host->mode_bits |= SPI_LSB_FIRST;
1906 
1907 	dev_dbg(&adev->dev, "BUSNO: %d\n", host->bus_num);
1908 
1909 	status = amba_request_regions(adev, NULL);
1910 	if (status)
1911 		goto err_no_ioregion;
1912 
1913 	pl022->phybase = adev->res.start;
1914 	pl022->virtbase = devm_ioremap(dev, adev->res.start,
1915 				       resource_size(&adev->res));
1916 	if (pl022->virtbase == NULL) {
1917 		status = -ENOMEM;
1918 		goto err_no_ioremap;
1919 	}
1920 	dev_info(&adev->dev, "mapped registers from %pa to %p\n",
1921 		&adev->res.start, pl022->virtbase);
1922 
1923 	pl022->clk = devm_clk_get_enabled(&adev->dev, NULL);
1924 	if (IS_ERR(pl022->clk)) {
1925 		status = PTR_ERR(pl022->clk);
1926 		dev_err(&adev->dev, "could not retrieve SSP/SPI bus clock\n");
1927 		goto err_no_clk;
1928 	}
1929 
1930 	/* Disable SSP */
1931 	writew((readw(SSP_CR1(pl022->virtbase)) & (~SSP_CR1_MASK_SSE)),
1932 	       SSP_CR1(pl022->virtbase));
1933 	load_ssp_default_config(pl022);
1934 
1935 	status = devm_request_irq(dev, adev->irq[0], pl022_interrupt_handler,
1936 				  0, "pl022", pl022);
1937 	if (status < 0) {
1938 		dev_err(&adev->dev, "probe - cannot get IRQ (%d)\n", status);
1939 		goto err_no_irq;
1940 	}
1941 
1942 	/* Get DMA channels, try autoconfiguration first */
1943 	status = pl022_dma_autoprobe(pl022);
1944 	if (status == -EPROBE_DEFER) {
1945 		dev_dbg(dev, "deferring probe to get DMA channel\n");
1946 		goto err_no_irq;
1947 	}
1948 
1949 	/* If that failed, use channels from platform_info */
1950 	if (status == 0)
1951 		platform_info->enable_dma = 1;
1952 	else if (platform_info->enable_dma) {
1953 		status = pl022_dma_probe(pl022);
1954 		if (status != 0)
1955 			platform_info->enable_dma = 0;
1956 	}
1957 
1958 	/* Register with the SPI framework */
1959 	amba_set_drvdata(adev, pl022);
1960 	status = devm_spi_register_controller(&adev->dev, host);
1961 	if (status != 0) {
1962 		dev_err_probe(&adev->dev, status,
1963 			      "problem registering spi host\n");
1964 		goto err_spi_register;
1965 	}
1966 	dev_dbg(dev, "probe succeeded\n");
1967 
1968 	/* let runtime pm put suspend */
1969 	if (platform_info->autosuspend_delay > 0) {
1970 		dev_info(&adev->dev,
1971 			"will use autosuspend for runtime pm, delay %dms\n",
1972 			platform_info->autosuspend_delay);
1973 		pm_runtime_set_autosuspend_delay(dev,
1974 			platform_info->autosuspend_delay);
1975 		pm_runtime_use_autosuspend(dev);
1976 	}
1977 	pm_runtime_put(dev);
1978 
1979 	return 0;
1980 
1981  err_spi_register:
1982 	if (platform_info->enable_dma)
1983 		pl022_dma_remove(pl022);
1984  err_no_irq:
1985  err_no_clk:
1986  err_no_ioremap:
1987 	amba_release_regions(adev);
1988  err_no_ioregion:
1989 	spi_controller_put(host);
1990 	return status;
1991 }
1992 
1993 static void
1994 pl022_remove(struct amba_device *adev)
1995 {
1996 	struct pl022 *pl022 = amba_get_drvdata(adev);
1997 
1998 	if (!pl022)
1999 		return;
2000 
2001 	/*
2002 	 * undo pm_runtime_put() in probe.  I assume that we're not
2003 	 * accessing the primecell here.
2004 	 */
2005 	pm_runtime_get_noresume(&adev->dev);
2006 
2007 	load_ssp_default_config(pl022);
2008 	if (pl022->host_info->enable_dma)
2009 		pl022_dma_remove(pl022);
2010 
2011 	amba_release_regions(adev);
2012 }
2013 
2014 #ifdef CONFIG_PM_SLEEP
2015 static int pl022_suspend(struct device *dev)
2016 {
2017 	struct pl022 *pl022 = dev_get_drvdata(dev);
2018 	int ret;
2019 
2020 	ret = spi_controller_suspend(pl022->host);
2021 	if (ret)
2022 		return ret;
2023 
2024 	ret = pm_runtime_force_suspend(dev);
2025 	if (ret) {
2026 		spi_controller_resume(pl022->host);
2027 		return ret;
2028 	}
2029 
2030 	pinctrl_pm_select_sleep_state(dev);
2031 
2032 	dev_dbg(dev, "suspended\n");
2033 	return 0;
2034 }
2035 
2036 static int pl022_resume(struct device *dev)
2037 {
2038 	struct pl022 *pl022 = dev_get_drvdata(dev);
2039 	int ret;
2040 
2041 	ret = pm_runtime_force_resume(dev);
2042 	if (ret)
2043 		dev_err(dev, "problem resuming\n");
2044 
2045 	/* Start the queue running */
2046 	ret = spi_controller_resume(pl022->host);
2047 	if (!ret)
2048 		dev_dbg(dev, "resumed\n");
2049 
2050 	return ret;
2051 }
2052 #endif
2053 
2054 #ifdef CONFIG_PM
2055 static int pl022_runtime_suspend(struct device *dev)
2056 {
2057 	struct pl022 *pl022 = dev_get_drvdata(dev);
2058 
2059 	clk_disable_unprepare(pl022->clk);
2060 	pinctrl_pm_select_idle_state(dev);
2061 
2062 	return 0;
2063 }
2064 
2065 static int pl022_runtime_resume(struct device *dev)
2066 {
2067 	struct pl022 *pl022 = dev_get_drvdata(dev);
2068 
2069 	pinctrl_pm_select_default_state(dev);
2070 	clk_prepare_enable(pl022->clk);
2071 
2072 	return 0;
2073 }
2074 #endif
2075 
2076 static const struct dev_pm_ops pl022_dev_pm_ops = {
2077 	SET_SYSTEM_SLEEP_PM_OPS(pl022_suspend, pl022_resume)
2078 	SET_RUNTIME_PM_OPS(pl022_runtime_suspend, pl022_runtime_resume, NULL)
2079 };
2080 
2081 static struct vendor_data vendor_arm = {
2082 	.fifodepth = 8,
2083 	.max_bpw = 16,
2084 	.unidir = false,
2085 	.extended_cr = false,
2086 	.pl023 = false,
2087 	.loopback = true,
2088 	.internal_cs_ctrl = false,
2089 };
2090 
2091 static struct vendor_data vendor_st = {
2092 	.fifodepth = 32,
2093 	.max_bpw = 32,
2094 	.unidir = false,
2095 	.extended_cr = true,
2096 	.pl023 = false,
2097 	.loopback = true,
2098 	.internal_cs_ctrl = false,
2099 };
2100 
2101 static struct vendor_data vendor_st_pl023 = {
2102 	.fifodepth = 32,
2103 	.max_bpw = 32,
2104 	.unidir = false,
2105 	.extended_cr = true,
2106 	.pl023 = true,
2107 	.loopback = false,
2108 	.internal_cs_ctrl = false,
2109 };
2110 
2111 static struct vendor_data vendor_lsi = {
2112 	.fifodepth = 8,
2113 	.max_bpw = 16,
2114 	.unidir = false,
2115 	.extended_cr = false,
2116 	.pl023 = false,
2117 	.loopback = true,
2118 	.internal_cs_ctrl = true,
2119 };
2120 
2121 static const struct amba_id pl022_ids[] = {
2122 	{
2123 		/*
2124 		 * ARM PL022 variant, this has a 16bit wide
2125 		 * and 8 locations deep TX/RX FIFO
2126 		 */
2127 		.id	= 0x00041022,
2128 		.mask	= 0x000fffff,
2129 		.data	= &vendor_arm,
2130 	},
2131 	{
2132 		/*
2133 		 * ST Micro derivative, this has 32bit wide
2134 		 * and 32 locations deep TX/RX FIFO
2135 		 */
2136 		.id	= 0x01080022,
2137 		.mask	= 0xffffffff,
2138 		.data	= &vendor_st,
2139 	},
2140 	{
2141 		/*
2142 		 * ST-Ericsson derivative "PL023" (this is not
2143 		 * an official ARM number), this is a PL022 SSP block
2144 		 * stripped to SPI mode only, it has 32bit wide
2145 		 * and 32 locations deep TX/RX FIFO but no extended
2146 		 * CR0/CR1 register
2147 		 */
2148 		.id	= 0x00080023,
2149 		.mask	= 0xffffffff,
2150 		.data	= &vendor_st_pl023,
2151 	},
2152 	{
2153 		/*
2154 		 * PL022 variant that has a chip select control register whih
2155 		 * allows control of 5 output signals nCS[0:4].
2156 		 */
2157 		.id	= 0x000b6022,
2158 		.mask	= 0x000fffff,
2159 		.data	= &vendor_lsi,
2160 	},
2161 	{ 0, 0 },
2162 };
2163 
2164 MODULE_DEVICE_TABLE(amba, pl022_ids);
2165 
2166 static struct amba_driver pl022_driver = {
2167 	.drv = {
2168 		.name	= "ssp-pl022",
2169 		.pm	= &pl022_dev_pm_ops,
2170 	},
2171 	.id_table	= pl022_ids,
2172 	.probe		= pl022_probe,
2173 	.remove		= pl022_remove,
2174 };
2175 
2176 static int __init pl022_init(void)
2177 {
2178 	return amba_driver_register(&pl022_driver);
2179 }
2180 subsys_initcall(pl022_init);
2181 
2182 static void __exit pl022_exit(void)
2183 {
2184 	amba_driver_unregister(&pl022_driver);
2185 }
2186 module_exit(pl022_exit);
2187 
2188 MODULE_AUTHOR("Linus Walleij <linus.walleij@stericsson.com>");
2189 MODULE_DESCRIPTION("PL022 SSP Controller Driver");
2190 MODULE_LICENSE("GPL");
2191