1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Marvell Orion SPI controller driver 4 * 5 * Author: Shadi Ammouri <shadi@marvell.com> 6 * Copyright (C) 2007-2008 Marvell Ltd. 7 */ 8 9 #include <linux/interrupt.h> 10 #include <linux/delay.h> 11 #include <linux/platform_device.h> 12 #include <linux/err.h> 13 #include <linux/io.h> 14 #include <linux/spi/spi.h> 15 #include <linux/module.h> 16 #include <linux/pm_runtime.h> 17 #include <linux/of.h> 18 #include <linux/of_address.h> 19 #include <linux/of_device.h> 20 #include <linux/clk.h> 21 #include <linux/sizes.h> 22 #include <asm/unaligned.h> 23 24 #define DRIVER_NAME "orion_spi" 25 26 /* Runtime PM autosuspend timeout: PM is fairly light on this driver */ 27 #define SPI_AUTOSUSPEND_TIMEOUT 200 28 29 /* Some SoCs using this driver support up to 8 chip selects. 30 * It is up to the implementer to only use the chip selects 31 * that are available. 32 */ 33 #define ORION_NUM_CHIPSELECTS 8 34 35 #define ORION_SPI_WAIT_RDY_MAX_LOOP 2000 /* in usec */ 36 37 #define ORION_SPI_IF_CTRL_REG 0x00 38 #define ORION_SPI_IF_CONFIG_REG 0x04 39 #define ORION_SPI_IF_RXLSBF BIT(14) 40 #define ORION_SPI_IF_TXLSBF BIT(13) 41 #define ORION_SPI_DATA_OUT_REG 0x08 42 #define ORION_SPI_DATA_IN_REG 0x0c 43 #define ORION_SPI_INT_CAUSE_REG 0x10 44 #define ORION_SPI_TIMING_PARAMS_REG 0x18 45 46 /* Register for the "Direct Mode" */ 47 #define SPI_DIRECT_WRITE_CONFIG_REG 0x20 48 49 #define ORION_SPI_TMISO_SAMPLE_MASK (0x3 << 6) 50 #define ORION_SPI_TMISO_SAMPLE_1 (1 << 6) 51 #define ORION_SPI_TMISO_SAMPLE_2 (2 << 6) 52 53 #define ORION_SPI_MODE_CPOL (1 << 11) 54 #define ORION_SPI_MODE_CPHA (1 << 12) 55 #define ORION_SPI_IF_8_16_BIT_MODE (1 << 5) 56 #define ORION_SPI_CLK_PRESCALE_MASK 0x1F 57 #define ARMADA_SPI_CLK_PRESCALE_MASK 0xDF 58 #define ORION_SPI_MODE_MASK (ORION_SPI_MODE_CPOL | \ 59 ORION_SPI_MODE_CPHA) 60 #define ORION_SPI_CS_MASK 0x1C 61 #define ORION_SPI_CS_SHIFT 2 62 #define ORION_SPI_CS(cs) ((cs << ORION_SPI_CS_SHIFT) & \ 63 ORION_SPI_CS_MASK) 64 65 enum orion_spi_type { 66 ORION_SPI, 67 ARMADA_SPI, 68 }; 69 70 struct orion_spi_dev { 71 enum orion_spi_type typ; 72 /* 73 * min_divisor and max_hz should be exclusive, the only we can 74 * have both is for managing the armada-370-spi case with old 75 * device tree 76 */ 77 unsigned long max_hz; 78 unsigned int min_divisor; 79 unsigned int max_divisor; 80 u32 prescale_mask; 81 bool is_errata_50mhz_ac; 82 }; 83 84 struct orion_direct_acc { 85 void __iomem *vaddr; 86 u32 size; 87 }; 88 89 struct orion_child_options { 90 struct orion_direct_acc direct_access; 91 }; 92 93 struct orion_spi { 94 struct spi_master *master; 95 void __iomem *base; 96 struct clk *clk; 97 struct clk *axi_clk; 98 const struct orion_spi_dev *devdata; 99 struct device *dev; 100 101 struct orion_child_options child[ORION_NUM_CHIPSELECTS]; 102 }; 103 104 #ifdef CONFIG_PM 105 static int orion_spi_runtime_suspend(struct device *dev); 106 static int orion_spi_runtime_resume(struct device *dev); 107 #endif 108 109 static inline void __iomem *spi_reg(struct orion_spi *orion_spi, u32 reg) 110 { 111 return orion_spi->base + reg; 112 } 113 114 static inline void 115 orion_spi_setbits(struct orion_spi *orion_spi, u32 reg, u32 mask) 116 { 117 void __iomem *reg_addr = spi_reg(orion_spi, reg); 118 u32 val; 119 120 val = readl(reg_addr); 121 val |= mask; 122 writel(val, reg_addr); 123 } 124 125 static inline void 126 orion_spi_clrbits(struct orion_spi *orion_spi, u32 reg, u32 mask) 127 { 128 void __iomem *reg_addr = spi_reg(orion_spi, reg); 129 u32 val; 130 131 val = readl(reg_addr); 132 val &= ~mask; 133 writel(val, reg_addr); 134 } 135 136 static int orion_spi_baudrate_set(struct spi_device *spi, unsigned int speed) 137 { 138 u32 tclk_hz; 139 u32 rate; 140 u32 prescale; 141 u32 reg; 142 struct orion_spi *orion_spi; 143 const struct orion_spi_dev *devdata; 144 145 orion_spi = spi_master_get_devdata(spi->master); 146 devdata = orion_spi->devdata; 147 148 tclk_hz = clk_get_rate(orion_spi->clk); 149 150 if (devdata->typ == ARMADA_SPI) { 151 /* 152 * Given the core_clk (tclk_hz) and the target rate (speed) we 153 * determine the best values for SPR (in [0 .. 15]) and SPPR (in 154 * [0..7]) such that 155 * 156 * core_clk / (SPR * 2 ** SPPR) 157 * 158 * is as big as possible but not bigger than speed. 159 */ 160 161 /* best integer divider: */ 162 unsigned divider = DIV_ROUND_UP(tclk_hz, speed); 163 unsigned spr, sppr; 164 165 if (divider < 16) { 166 /* This is the easy case, divider is less than 16 */ 167 spr = divider; 168 sppr = 0; 169 170 } else { 171 unsigned two_pow_sppr; 172 /* 173 * Find the highest bit set in divider. This and the 174 * three next bits define SPR (apart from rounding). 175 * SPPR is then the number of zero bits that must be 176 * appended: 177 */ 178 sppr = fls(divider) - 4; 179 180 /* 181 * As SPR only has 4 bits, we have to round divider up 182 * to the next multiple of 2 ** sppr. 183 */ 184 two_pow_sppr = 1 << sppr; 185 divider = (divider + two_pow_sppr - 1) & -two_pow_sppr; 186 187 /* 188 * recalculate sppr as rounding up divider might have 189 * increased it enough to change the position of the 190 * highest set bit. In this case the bit that now 191 * doesn't make it into SPR is 0, so there is no need to 192 * round again. 193 */ 194 sppr = fls(divider) - 4; 195 spr = divider >> sppr; 196 197 /* 198 * Now do range checking. SPR is constructed to have a 199 * width of 4 bits, so this is fine for sure. So we 200 * still need to check for sppr to fit into 3 bits: 201 */ 202 if (sppr > 7) 203 return -EINVAL; 204 } 205 206 prescale = ((sppr & 0x6) << 5) | ((sppr & 0x1) << 4) | spr; 207 } else { 208 /* 209 * the supported rates are: 4,6,8...30 210 * round up as we look for equal or less speed 211 */ 212 rate = DIV_ROUND_UP(tclk_hz, speed); 213 rate = roundup(rate, 2); 214 215 /* check if requested speed is too small */ 216 if (rate > 30) 217 return -EINVAL; 218 219 if (rate < 4) 220 rate = 4; 221 222 /* Convert the rate to SPI clock divisor value. */ 223 prescale = 0x10 + rate/2; 224 } 225 226 reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); 227 reg = ((reg & ~devdata->prescale_mask) | prescale); 228 writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); 229 230 return 0; 231 } 232 233 static void 234 orion_spi_mode_set(struct spi_device *spi) 235 { 236 u32 reg; 237 struct orion_spi *orion_spi; 238 239 orion_spi = spi_master_get_devdata(spi->master); 240 241 reg = readl(spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); 242 reg &= ~ORION_SPI_MODE_MASK; 243 if (spi->mode & SPI_CPOL) 244 reg |= ORION_SPI_MODE_CPOL; 245 if (spi->mode & SPI_CPHA) 246 reg |= ORION_SPI_MODE_CPHA; 247 if (spi->mode & SPI_LSB_FIRST) 248 reg |= ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF; 249 else 250 reg &= ~(ORION_SPI_IF_RXLSBF | ORION_SPI_IF_TXLSBF); 251 252 writel(reg, spi_reg(orion_spi, ORION_SPI_IF_CONFIG_REG)); 253 } 254 255 static void 256 orion_spi_50mhz_ac_timing_erratum(struct spi_device *spi, unsigned int speed) 257 { 258 u32 reg; 259 struct orion_spi *orion_spi; 260 261 orion_spi = spi_master_get_devdata(spi->master); 262 263 /* 264 * Erratum description: (Erratum NO. FE-9144572) The device 265 * SPI interface supports frequencies of up to 50 MHz. 266 * However, due to this erratum, when the device core clock is 267 * 250 MHz and the SPI interfaces is configured for 50MHz SPI 268 * clock and CPOL=CPHA=1 there might occur data corruption on 269 * reads from the SPI device. 270 * Erratum Workaround: 271 * Work in one of the following configurations: 272 * 1. Set CPOL=CPHA=0 in "SPI Interface Configuration 273 * Register". 274 * 2. Set TMISO_SAMPLE value to 0x2 in "SPI Timing Parameters 1 275 * Register" before setting the interface. 276 */ 277 reg = readl(spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG)); 278 reg &= ~ORION_SPI_TMISO_SAMPLE_MASK; 279 280 if (clk_get_rate(orion_spi->clk) == 250000000 && 281 speed == 50000000 && spi->mode & SPI_CPOL && 282 spi->mode & SPI_CPHA) 283 reg |= ORION_SPI_TMISO_SAMPLE_2; 284 else 285 reg |= ORION_SPI_TMISO_SAMPLE_1; /* This is the default value */ 286 287 writel(reg, spi_reg(orion_spi, ORION_SPI_TIMING_PARAMS_REG)); 288 } 289 290 /* 291 * called only when no transfer is active on the bus 292 */ 293 static int 294 orion_spi_setup_transfer(struct spi_device *spi, struct spi_transfer *t) 295 { 296 struct orion_spi *orion_spi; 297 unsigned int speed = spi->max_speed_hz; 298 unsigned int bits_per_word = spi->bits_per_word; 299 int rc; 300 301 orion_spi = spi_master_get_devdata(spi->master); 302 303 if ((t != NULL) && t->speed_hz) 304 speed = t->speed_hz; 305 306 if ((t != NULL) && t->bits_per_word) 307 bits_per_word = t->bits_per_word; 308 309 orion_spi_mode_set(spi); 310 311 if (orion_spi->devdata->is_errata_50mhz_ac) 312 orion_spi_50mhz_ac_timing_erratum(spi, speed); 313 314 rc = orion_spi_baudrate_set(spi, speed); 315 if (rc) 316 return rc; 317 318 if (bits_per_word == 16) 319 orion_spi_setbits(orion_spi, ORION_SPI_IF_CONFIG_REG, 320 ORION_SPI_IF_8_16_BIT_MODE); 321 else 322 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CONFIG_REG, 323 ORION_SPI_IF_8_16_BIT_MODE); 324 325 return 0; 326 } 327 328 static void orion_spi_set_cs(struct spi_device *spi, bool enable) 329 { 330 struct orion_spi *orion_spi; 331 332 orion_spi = spi_master_get_devdata(spi->master); 333 334 /* 335 * If this line is using a GPIO to control chip select, this internal 336 * .set_cs() function will still be called, so we clear any previous 337 * chip select. The CS we activate will not have any elecrical effect, 338 * as it is handled by a GPIO, but that doesn't matter. What we need 339 * is to deassert the old chip select and assert some other chip select. 340 */ 341 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, ORION_SPI_CS_MASK); 342 orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 343 ORION_SPI_CS(spi->chip_select)); 344 345 /* 346 * Chip select logic is inverted from spi_set_cs(). For lines using a 347 * GPIO to do chip select SPI_CS_HIGH is enforced and inversion happens 348 * in the GPIO library, but we don't care about that, because in those 349 * cases we are dealing with an unused native CS anyways so the polarity 350 * doesn't matter. 351 */ 352 if (!enable) 353 orion_spi_setbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1); 354 else 355 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1); 356 } 357 358 static inline int orion_spi_wait_till_ready(struct orion_spi *orion_spi) 359 { 360 int i; 361 362 for (i = 0; i < ORION_SPI_WAIT_RDY_MAX_LOOP; i++) { 363 if (readl(spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG))) 364 return 1; 365 366 udelay(1); 367 } 368 369 return -1; 370 } 371 372 static inline int 373 orion_spi_write_read_8bit(struct spi_device *spi, 374 const u8 **tx_buf, u8 **rx_buf) 375 { 376 void __iomem *tx_reg, *rx_reg, *int_reg; 377 struct orion_spi *orion_spi; 378 bool cs_single_byte; 379 380 cs_single_byte = spi->mode & SPI_CS_WORD; 381 382 orion_spi = spi_master_get_devdata(spi->master); 383 384 if (cs_single_byte) 385 orion_spi_set_cs(spi, 0); 386 387 tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); 388 rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); 389 int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); 390 391 /* clear the interrupt cause register */ 392 writel(0x0, int_reg); 393 394 if (tx_buf && *tx_buf) 395 writel(*(*tx_buf)++, tx_reg); 396 else 397 writel(0, tx_reg); 398 399 if (orion_spi_wait_till_ready(orion_spi) < 0) { 400 if (cs_single_byte) { 401 orion_spi_set_cs(spi, 1); 402 /* Satisfy some SLIC devices requirements */ 403 udelay(4); 404 } 405 dev_err(&spi->dev, "TXS timed out\n"); 406 return -1; 407 } 408 409 if (rx_buf && *rx_buf) 410 *(*rx_buf)++ = readl(rx_reg); 411 412 if (cs_single_byte) { 413 orion_spi_set_cs(spi, 1); 414 /* Satisfy some SLIC devices requirements */ 415 udelay(4); 416 } 417 418 return 1; 419 } 420 421 static inline int 422 orion_spi_write_read_16bit(struct spi_device *spi, 423 const u16 **tx_buf, u16 **rx_buf) 424 { 425 void __iomem *tx_reg, *rx_reg, *int_reg; 426 struct orion_spi *orion_spi; 427 428 if (spi->mode & SPI_CS_WORD) { 429 dev_err(&spi->dev, "SPI_CS_WORD is only supported for 8 bit words\n"); 430 return -1; 431 } 432 433 orion_spi = spi_master_get_devdata(spi->master); 434 tx_reg = spi_reg(orion_spi, ORION_SPI_DATA_OUT_REG); 435 rx_reg = spi_reg(orion_spi, ORION_SPI_DATA_IN_REG); 436 int_reg = spi_reg(orion_spi, ORION_SPI_INT_CAUSE_REG); 437 438 /* clear the interrupt cause register */ 439 writel(0x0, int_reg); 440 441 if (tx_buf && *tx_buf) 442 writel(__cpu_to_le16(get_unaligned((*tx_buf)++)), tx_reg); 443 else 444 writel(0, tx_reg); 445 446 if (orion_spi_wait_till_ready(orion_spi) < 0) { 447 dev_err(&spi->dev, "TXS timed out\n"); 448 return -1; 449 } 450 451 if (rx_buf && *rx_buf) 452 put_unaligned(__le16_to_cpu(readl(rx_reg)), (*rx_buf)++); 453 454 return 1; 455 } 456 457 static unsigned int 458 orion_spi_write_read(struct spi_device *spi, struct spi_transfer *xfer) 459 { 460 unsigned int count; 461 int word_len; 462 struct orion_spi *orion_spi; 463 int cs = spi->chip_select; 464 void __iomem *vaddr; 465 466 word_len = spi->bits_per_word; 467 count = xfer->len; 468 469 orion_spi = spi_master_get_devdata(spi->master); 470 471 /* 472 * Use SPI direct write mode if base address is available 473 * and SPI_CS_WORD flag is not set. 474 * Otherwise fall back to PIO mode for this transfer. 475 */ 476 vaddr = orion_spi->child[cs].direct_access.vaddr; 477 478 if (vaddr && xfer->tx_buf && word_len == 8 && (spi->mode & SPI_CS_WORD) == 0) { 479 unsigned int cnt = count / 4; 480 unsigned int rem = count % 4; 481 482 /* 483 * Send the TX-data to the SPI device via the direct 484 * mapped address window 485 */ 486 iowrite32_rep(vaddr, xfer->tx_buf, cnt); 487 if (rem) { 488 u32 *buf = (u32 *)xfer->tx_buf; 489 490 iowrite8_rep(vaddr, &buf[cnt], rem); 491 } 492 493 return count; 494 } 495 496 if (word_len == 8) { 497 const u8 *tx = xfer->tx_buf; 498 u8 *rx = xfer->rx_buf; 499 500 do { 501 if (orion_spi_write_read_8bit(spi, &tx, &rx) < 0) 502 goto out; 503 count--; 504 spi_delay_exec(&xfer->word_delay, xfer); 505 } while (count); 506 } else if (word_len == 16) { 507 const u16 *tx = xfer->tx_buf; 508 u16 *rx = xfer->rx_buf; 509 510 do { 511 if (orion_spi_write_read_16bit(spi, &tx, &rx) < 0) 512 goto out; 513 count -= 2; 514 spi_delay_exec(&xfer->word_delay, xfer); 515 } while (count); 516 } 517 518 out: 519 return xfer->len - count; 520 } 521 522 static int orion_spi_transfer_one(struct spi_master *master, 523 struct spi_device *spi, 524 struct spi_transfer *t) 525 { 526 int status = 0; 527 528 status = orion_spi_setup_transfer(spi, t); 529 if (status < 0) 530 return status; 531 532 if (t->len) 533 orion_spi_write_read(spi, t); 534 535 return status; 536 } 537 538 static int orion_spi_setup(struct spi_device *spi) 539 { 540 int ret; 541 #ifdef CONFIG_PM 542 struct orion_spi *orion_spi = spi_master_get_devdata(spi->master); 543 struct device *dev = orion_spi->dev; 544 545 orion_spi_runtime_resume(dev); 546 #endif 547 548 ret = orion_spi_setup_transfer(spi, NULL); 549 550 #ifdef CONFIG_PM 551 orion_spi_runtime_suspend(dev); 552 #endif 553 554 return ret; 555 } 556 557 static int orion_spi_reset(struct orion_spi *orion_spi) 558 { 559 /* Verify that the CS is deasserted */ 560 orion_spi_clrbits(orion_spi, ORION_SPI_IF_CTRL_REG, 0x1); 561 562 /* Don't deassert CS between the direct mapped SPI transfers */ 563 writel(0, spi_reg(orion_spi, SPI_DIRECT_WRITE_CONFIG_REG)); 564 565 return 0; 566 } 567 568 static const struct orion_spi_dev orion_spi_dev_data = { 569 .typ = ORION_SPI, 570 .min_divisor = 4, 571 .max_divisor = 30, 572 .prescale_mask = ORION_SPI_CLK_PRESCALE_MASK, 573 }; 574 575 static const struct orion_spi_dev armada_370_spi_dev_data = { 576 .typ = ARMADA_SPI, 577 .min_divisor = 4, 578 .max_divisor = 1920, 579 .max_hz = 50000000, 580 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, 581 }; 582 583 static const struct orion_spi_dev armada_xp_spi_dev_data = { 584 .typ = ARMADA_SPI, 585 .max_hz = 50000000, 586 .max_divisor = 1920, 587 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, 588 }; 589 590 static const struct orion_spi_dev armada_375_spi_dev_data = { 591 .typ = ARMADA_SPI, 592 .min_divisor = 15, 593 .max_divisor = 1920, 594 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, 595 }; 596 597 static const struct orion_spi_dev armada_380_spi_dev_data = { 598 .typ = ARMADA_SPI, 599 .max_hz = 50000000, 600 .max_divisor = 1920, 601 .prescale_mask = ARMADA_SPI_CLK_PRESCALE_MASK, 602 .is_errata_50mhz_ac = true, 603 }; 604 605 static const struct of_device_id orion_spi_of_match_table[] = { 606 { 607 .compatible = "marvell,orion-spi", 608 .data = &orion_spi_dev_data, 609 }, 610 { 611 .compatible = "marvell,armada-370-spi", 612 .data = &armada_370_spi_dev_data, 613 }, 614 { 615 .compatible = "marvell,armada-375-spi", 616 .data = &armada_375_spi_dev_data, 617 }, 618 { 619 .compatible = "marvell,armada-380-spi", 620 .data = &armada_380_spi_dev_data, 621 }, 622 { 623 .compatible = "marvell,armada-390-spi", 624 .data = &armada_xp_spi_dev_data, 625 }, 626 { 627 .compatible = "marvell,armada-xp-spi", 628 .data = &armada_xp_spi_dev_data, 629 }, 630 631 {} 632 }; 633 MODULE_DEVICE_TABLE(of, orion_spi_of_match_table); 634 635 static int orion_spi_probe(struct platform_device *pdev) 636 { 637 const struct orion_spi_dev *devdata; 638 struct spi_master *master; 639 struct orion_spi *spi; 640 struct resource *r; 641 unsigned long tclk_hz; 642 int status = 0; 643 struct device_node *np; 644 645 master = spi_alloc_master(&pdev->dev, sizeof(*spi)); 646 if (master == NULL) { 647 dev_dbg(&pdev->dev, "master allocation failed\n"); 648 return -ENOMEM; 649 } 650 651 if (pdev->id != -1) 652 master->bus_num = pdev->id; 653 if (pdev->dev.of_node) { 654 u32 cell_index; 655 656 if (!of_property_read_u32(pdev->dev.of_node, "cell-index", 657 &cell_index)) 658 master->bus_num = cell_index; 659 } 660 661 /* we support all 4 SPI modes and LSB first option */ 662 master->mode_bits = SPI_CPHA | SPI_CPOL | SPI_LSB_FIRST | SPI_CS_WORD; 663 master->set_cs = orion_spi_set_cs; 664 master->transfer_one = orion_spi_transfer_one; 665 master->num_chipselect = ORION_NUM_CHIPSELECTS; 666 master->setup = orion_spi_setup; 667 master->bits_per_word_mask = SPI_BPW_MASK(8) | SPI_BPW_MASK(16); 668 master->auto_runtime_pm = true; 669 master->use_gpio_descriptors = true; 670 master->flags = SPI_MASTER_GPIO_SS; 671 672 platform_set_drvdata(pdev, master); 673 674 spi = spi_master_get_devdata(master); 675 spi->master = master; 676 spi->dev = &pdev->dev; 677 678 devdata = device_get_match_data(&pdev->dev); 679 devdata = devdata ? devdata : &orion_spi_dev_data; 680 spi->devdata = devdata; 681 682 spi->clk = devm_clk_get(&pdev->dev, NULL); 683 if (IS_ERR(spi->clk)) { 684 status = PTR_ERR(spi->clk); 685 goto out; 686 } 687 688 status = clk_prepare_enable(spi->clk); 689 if (status) 690 goto out; 691 692 /* The following clock is only used by some SoCs */ 693 spi->axi_clk = devm_clk_get(&pdev->dev, "axi"); 694 if (PTR_ERR(spi->axi_clk) == -EPROBE_DEFER) { 695 status = -EPROBE_DEFER; 696 goto out_rel_clk; 697 } 698 if (!IS_ERR(spi->axi_clk)) 699 clk_prepare_enable(spi->axi_clk); 700 701 tclk_hz = clk_get_rate(spi->clk); 702 703 /* 704 * With old device tree, armada-370-spi could be used with 705 * Armada XP, however for this SoC the maximum frequency is 706 * 50MHz instead of tclk/4. On Armada 370, tclk cannot be 707 * higher than 200MHz. So, in order to be able to handle both 708 * SoCs, we can take the minimum of 50MHz and tclk/4. 709 */ 710 if (of_device_is_compatible(pdev->dev.of_node, 711 "marvell,armada-370-spi")) 712 master->max_speed_hz = min(devdata->max_hz, 713 DIV_ROUND_UP(tclk_hz, devdata->min_divisor)); 714 else if (devdata->min_divisor) 715 master->max_speed_hz = 716 DIV_ROUND_UP(tclk_hz, devdata->min_divisor); 717 else 718 master->max_speed_hz = devdata->max_hz; 719 master->min_speed_hz = DIV_ROUND_UP(tclk_hz, devdata->max_divisor); 720 721 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 722 spi->base = devm_ioremap_resource(&pdev->dev, r); 723 if (IS_ERR(spi->base)) { 724 status = PTR_ERR(spi->base); 725 goto out_rel_axi_clk; 726 } 727 728 for_each_available_child_of_node(pdev->dev.of_node, np) { 729 struct orion_direct_acc *dir_acc; 730 u32 cs; 731 732 /* Get chip-select number from the "reg" property */ 733 status = of_property_read_u32(np, "reg", &cs); 734 if (status) { 735 dev_err(&pdev->dev, 736 "%pOF has no valid 'reg' property (%d)\n", 737 np, status); 738 continue; 739 } 740 741 /* 742 * Check if an address is configured for this SPI device. If 743 * not, the MBus mapping via the 'ranges' property in the 'soc' 744 * node is not configured and this device should not use the 745 * direct mode. In this case, just continue with the next 746 * device. 747 */ 748 status = of_address_to_resource(pdev->dev.of_node, cs + 1, r); 749 if (status) 750 continue; 751 752 /* 753 * Only map one page for direct access. This is enough for the 754 * simple TX transfer which only writes to the first word. 755 * This needs to get extended for the direct SPI NOR / SPI NAND 756 * support, once this gets implemented. 757 */ 758 dir_acc = &spi->child[cs].direct_access; 759 dir_acc->vaddr = devm_ioremap(&pdev->dev, r->start, PAGE_SIZE); 760 if (!dir_acc->vaddr) { 761 status = -ENOMEM; 762 goto out_rel_axi_clk; 763 } 764 dir_acc->size = PAGE_SIZE; 765 766 dev_info(&pdev->dev, "CS%d configured for direct access\n", cs); 767 } 768 769 pm_runtime_set_active(&pdev->dev); 770 pm_runtime_use_autosuspend(&pdev->dev); 771 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 772 pm_runtime_enable(&pdev->dev); 773 774 status = orion_spi_reset(spi); 775 if (status < 0) 776 goto out_rel_pm; 777 778 master->dev.of_node = pdev->dev.of_node; 779 status = spi_register_master(master); 780 if (status < 0) 781 goto out_rel_pm; 782 783 return status; 784 785 out_rel_pm: 786 pm_runtime_disable(&pdev->dev); 787 out_rel_axi_clk: 788 clk_disable_unprepare(spi->axi_clk); 789 out_rel_clk: 790 clk_disable_unprepare(spi->clk); 791 out: 792 spi_master_put(master); 793 return status; 794 } 795 796 797 static int orion_spi_remove(struct platform_device *pdev) 798 { 799 struct spi_master *master = platform_get_drvdata(pdev); 800 struct orion_spi *spi = spi_master_get_devdata(master); 801 802 pm_runtime_get_sync(&pdev->dev); 803 clk_disable_unprepare(spi->axi_clk); 804 clk_disable_unprepare(spi->clk); 805 806 spi_unregister_master(master); 807 pm_runtime_disable(&pdev->dev); 808 809 return 0; 810 } 811 812 MODULE_ALIAS("platform:" DRIVER_NAME); 813 814 #ifdef CONFIG_PM 815 static int orion_spi_runtime_suspend(struct device *dev) 816 { 817 struct spi_master *master = dev_get_drvdata(dev); 818 struct orion_spi *spi = spi_master_get_devdata(master); 819 820 clk_disable_unprepare(spi->axi_clk); 821 clk_disable_unprepare(spi->clk); 822 return 0; 823 } 824 825 static int orion_spi_runtime_resume(struct device *dev) 826 { 827 struct spi_master *master = dev_get_drvdata(dev); 828 struct orion_spi *spi = spi_master_get_devdata(master); 829 830 if (!IS_ERR(spi->axi_clk)) 831 clk_prepare_enable(spi->axi_clk); 832 return clk_prepare_enable(spi->clk); 833 } 834 #endif 835 836 static const struct dev_pm_ops orion_spi_pm_ops = { 837 SET_RUNTIME_PM_OPS(orion_spi_runtime_suspend, 838 orion_spi_runtime_resume, 839 NULL) 840 }; 841 842 static struct platform_driver orion_spi_driver = { 843 .driver = { 844 .name = DRIVER_NAME, 845 .pm = &orion_spi_pm_ops, 846 .of_match_table = of_match_ptr(orion_spi_of_match_table), 847 }, 848 .probe = orion_spi_probe, 849 .remove = orion_spi_remove, 850 }; 851 852 module_platform_driver(orion_spi_driver); 853 854 MODULE_DESCRIPTION("Orion SPI driver"); 855 MODULE_AUTHOR("Shadi Ammouri <shadi@marvell.com>"); 856 MODULE_LICENSE("GPL"); 857