xref: /linux/drivers/spi/spi-omap2-mcspi.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OMAP2 McSPI controller driver
4  *
5  * Copyright (C) 2005, 2006 Nokia Corporation
6  * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
7  *		Juha Yrjola <juha.yrjola@nokia.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/err.h>
20 #include <linux/clk.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/gcd.h>
27 
28 #include <linux/spi/spi.h>
29 
30 #include <linux/platform_data/spi-omap2-mcspi.h>
31 
32 #define OMAP2_MCSPI_MAX_FREQ		48000000
33 #define OMAP2_MCSPI_MAX_DIVIDER		4096
34 #define OMAP2_MCSPI_MAX_FIFODEPTH	64
35 #define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
36 #define SPI_AUTOSUSPEND_TIMEOUT		2000
37 
38 #define OMAP2_MCSPI_REVISION		0x00
39 #define OMAP2_MCSPI_SYSSTATUS		0x14
40 #define OMAP2_MCSPI_IRQSTATUS		0x18
41 #define OMAP2_MCSPI_IRQENABLE		0x1c
42 #define OMAP2_MCSPI_WAKEUPENABLE	0x20
43 #define OMAP2_MCSPI_SYST		0x24
44 #define OMAP2_MCSPI_MODULCTRL		0x28
45 #define OMAP2_MCSPI_XFERLEVEL		0x7c
46 
47 /* per-channel banks, 0x14 bytes each, first is: */
48 #define OMAP2_MCSPI_CHCONF0		0x2c
49 #define OMAP2_MCSPI_CHSTAT0		0x30
50 #define OMAP2_MCSPI_CHCTRL0		0x34
51 #define OMAP2_MCSPI_TX0			0x38
52 #define OMAP2_MCSPI_RX0			0x3c
53 
54 /* per-register bitmasks: */
55 #define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
56 
57 #define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
58 #define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
59 #define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
60 
61 #define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
62 #define OMAP2_MCSPI_CHCONF_POL		BIT(1)
63 #define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
64 #define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
65 #define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
66 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
67 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
68 #define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
69 #define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
70 #define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
71 #define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
72 #define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
73 #define OMAP2_MCSPI_CHCONF_IS		BIT(18)
74 #define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
75 #define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
76 #define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
77 #define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
78 #define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
79 
80 #define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
81 #define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
82 #define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
83 #define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
84 
85 #define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
86 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
87 
88 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
89 
90 /* We have 2 DMA channels per CS, one for RX and one for TX */
91 struct omap2_mcspi_dma {
92 	struct dma_chan *dma_tx;
93 	struct dma_chan *dma_rx;
94 
95 	struct completion dma_tx_completion;
96 	struct completion dma_rx_completion;
97 
98 	char dma_rx_ch_name[14];
99 	char dma_tx_ch_name[14];
100 };
101 
102 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103  * cache operations; better heuristics consider wordsize and bitrate.
104  */
105 #define DMA_MIN_BYTES			160
106 
107 
108 /*
109  * Used for context save and restore, structure members to be updated whenever
110  * corresponding registers are modified.
111  */
112 struct omap2_mcspi_regs {
113 	u32 modulctrl;
114 	u32 wakeupenable;
115 	struct list_head cs;
116 };
117 
118 struct omap2_mcspi {
119 	struct completion	txdone;
120 	struct spi_controller	*ctlr;
121 	/* Virtual base address of the controller */
122 	void __iomem		*base;
123 	unsigned long		phys;
124 	/* SPI1 has 4 channels, while SPI2 has 2 */
125 	struct omap2_mcspi_dma	*dma_channels;
126 	struct device		*dev;
127 	struct omap2_mcspi_regs ctx;
128 	struct clk		*ref_clk;
129 	int			fifo_depth;
130 	bool			target_aborted;
131 	unsigned int		pin_dir:1;
132 	size_t			max_xfer_len;
133 	u32			ref_clk_hz;
134 };
135 
136 struct omap2_mcspi_cs {
137 	void __iomem		*base;
138 	unsigned long		phys;
139 	int			word_len;
140 	u16			mode;
141 	struct list_head	node;
142 	/* Context save and restore shadow register */
143 	u32			chconf0, chctrl0;
144 };
145 
146 static inline void mcspi_write_reg(struct spi_controller *ctlr,
147 		int idx, u32 val)
148 {
149 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
150 
151 	writel_relaxed(val, mcspi->base + idx);
152 }
153 
154 static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx)
155 {
156 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
157 
158 	return readl_relaxed(mcspi->base + idx);
159 }
160 
161 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
162 		int idx, u32 val)
163 {
164 	struct omap2_mcspi_cs	*cs = spi->controller_state;
165 
166 	writel_relaxed(val, cs->base +  idx);
167 }
168 
169 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
170 {
171 	struct omap2_mcspi_cs	*cs = spi->controller_state;
172 
173 	return readl_relaxed(cs->base + idx);
174 }
175 
176 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
177 {
178 	struct omap2_mcspi_cs *cs = spi->controller_state;
179 
180 	return cs->chconf0;
181 }
182 
183 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
184 {
185 	struct omap2_mcspi_cs *cs = spi->controller_state;
186 
187 	cs->chconf0 = val;
188 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
189 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
190 }
191 
192 static inline int mcspi_bytes_per_word(int word_len)
193 {
194 	if (word_len <= 8)
195 		return 1;
196 	else if (word_len <= 16)
197 		return 2;
198 	else /* word_len <= 32 */
199 		return 4;
200 }
201 
202 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
203 		int is_read, int enable)
204 {
205 	u32 l, rw;
206 
207 	l = mcspi_cached_chconf0(spi);
208 
209 	if (is_read) /* 1 is read, 0 write */
210 		rw = OMAP2_MCSPI_CHCONF_DMAR;
211 	else
212 		rw = OMAP2_MCSPI_CHCONF_DMAW;
213 
214 	if (enable)
215 		l |= rw;
216 	else
217 		l &= ~rw;
218 
219 	mcspi_write_chconf0(spi, l);
220 }
221 
222 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
223 {
224 	struct omap2_mcspi_cs *cs = spi->controller_state;
225 	u32 l;
226 
227 	l = cs->chctrl0;
228 	if (enable)
229 		l |= OMAP2_MCSPI_CHCTRL_EN;
230 	else
231 		l &= ~OMAP2_MCSPI_CHCTRL_EN;
232 	cs->chctrl0 = l;
233 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
234 	/* Flash post-writes */
235 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
236 }
237 
238 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
239 {
240 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
241 	u32 l;
242 
243 	/* The controller handles the inverted chip selects
244 	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
245 	 * the inversion from the core spi_set_cs function.
246 	 */
247 	if (spi->mode & SPI_CS_HIGH)
248 		enable = !enable;
249 
250 	if (spi->controller_state) {
251 		int err = pm_runtime_resume_and_get(mcspi->dev);
252 		if (err < 0) {
253 			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
254 			return;
255 		}
256 
257 		l = mcspi_cached_chconf0(spi);
258 
259 		if (enable)
260 			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
261 		else
262 			l |= OMAP2_MCSPI_CHCONF_FORCE;
263 
264 		mcspi_write_chconf0(spi, l);
265 
266 		pm_runtime_mark_last_busy(mcspi->dev);
267 		pm_runtime_put_autosuspend(mcspi->dev);
268 	}
269 }
270 
271 static void omap2_mcspi_set_mode(struct spi_controller *ctlr)
272 {
273 	struct omap2_mcspi	*mcspi = spi_controller_get_devdata(ctlr);
274 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
275 	u32 l;
276 
277 	/*
278 	 * Choose host or target mode
279 	 */
280 	l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL);
281 	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
282 	if (spi_controller_is_target(ctlr)) {
283 		l |= (OMAP2_MCSPI_MODULCTRL_MS);
284 	} else {
285 		l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
286 		l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
287 	}
288 	mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l);
289 
290 	ctx->modulctrl = l;
291 }
292 
293 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
294 				struct spi_transfer *t, int enable)
295 {
296 	struct spi_controller *ctlr = spi->controller;
297 	struct omap2_mcspi_cs *cs = spi->controller_state;
298 	struct omap2_mcspi *mcspi;
299 	unsigned int wcnt;
300 	int max_fifo_depth, bytes_per_word;
301 	u32 chconf, xferlevel;
302 
303 	mcspi = spi_controller_get_devdata(ctlr);
304 
305 	chconf = mcspi_cached_chconf0(spi);
306 	if (enable) {
307 		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
308 		if (t->len % bytes_per_word != 0)
309 			goto disable_fifo;
310 
311 		if (t->rx_buf != NULL && t->tx_buf != NULL)
312 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
313 		else
314 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
315 
316 		wcnt = t->len / bytes_per_word;
317 		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
318 			goto disable_fifo;
319 
320 		xferlevel = wcnt << 16;
321 		if (t->rx_buf != NULL) {
322 			chconf |= OMAP2_MCSPI_CHCONF_FFER;
323 			xferlevel |= (bytes_per_word - 1) << 8;
324 		}
325 
326 		if (t->tx_buf != NULL) {
327 			chconf |= OMAP2_MCSPI_CHCONF_FFET;
328 			xferlevel |= bytes_per_word - 1;
329 		}
330 
331 		mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel);
332 		mcspi_write_chconf0(spi, chconf);
333 		mcspi->fifo_depth = max_fifo_depth;
334 
335 		return;
336 	}
337 
338 disable_fifo:
339 	if (t->rx_buf != NULL)
340 		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
341 
342 	if (t->tx_buf != NULL)
343 		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
344 
345 	mcspi_write_chconf0(spi, chconf);
346 	mcspi->fifo_depth = 0;
347 }
348 
349 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
350 {
351 	unsigned long timeout;
352 
353 	timeout = jiffies + msecs_to_jiffies(1000);
354 	while (!(readl_relaxed(reg) & bit)) {
355 		if (time_after(jiffies, timeout)) {
356 			if (!(readl_relaxed(reg) & bit))
357 				return -ETIMEDOUT;
358 			else
359 				return 0;
360 		}
361 		cpu_relax();
362 	}
363 	return 0;
364 }
365 
366 static int mcspi_wait_for_completion(struct  omap2_mcspi *mcspi,
367 				     struct completion *x)
368 {
369 	if (spi_controller_is_target(mcspi->ctlr)) {
370 		if (wait_for_completion_interruptible(x) ||
371 		    mcspi->target_aborted)
372 			return -EINTR;
373 	} else {
374 		wait_for_completion(x);
375 	}
376 
377 	return 0;
378 }
379 
380 static void omap2_mcspi_rx_callback(void *data)
381 {
382 	struct spi_device *spi = data;
383 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
384 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
385 
386 	/* We must disable the DMA RX request */
387 	omap2_mcspi_set_dma_req(spi, 1, 0);
388 
389 	complete(&mcspi_dma->dma_rx_completion);
390 }
391 
392 static void omap2_mcspi_tx_callback(void *data)
393 {
394 	struct spi_device *spi = data;
395 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
396 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
397 
398 	/* We must disable the DMA TX request */
399 	omap2_mcspi_set_dma_req(spi, 0, 0);
400 
401 	complete(&mcspi_dma->dma_tx_completion);
402 }
403 
404 static void omap2_mcspi_tx_dma(struct spi_device *spi,
405 				struct spi_transfer *xfer,
406 				struct dma_slave_config cfg)
407 {
408 	struct omap2_mcspi	*mcspi;
409 	struct omap2_mcspi_dma  *mcspi_dma;
410 	struct dma_async_tx_descriptor *tx;
411 
412 	mcspi = spi_controller_get_devdata(spi->controller);
413 	mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
414 
415 	dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
416 
417 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
418 				     xfer->tx_sg.nents,
419 				     DMA_MEM_TO_DEV,
420 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
421 	if (tx) {
422 		tx->callback = omap2_mcspi_tx_callback;
423 		tx->callback_param = spi;
424 		dmaengine_submit(tx);
425 	} else {
426 		/* FIXME: fall back to PIO? */
427 	}
428 	dma_async_issue_pending(mcspi_dma->dma_tx);
429 	omap2_mcspi_set_dma_req(spi, 0, 1);
430 }
431 
432 static unsigned
433 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
434 				struct dma_slave_config cfg,
435 				unsigned es)
436 {
437 	struct omap2_mcspi	*mcspi;
438 	struct omap2_mcspi_dma  *mcspi_dma;
439 	unsigned int		count, transfer_reduction = 0;
440 	struct scatterlist	*sg_out[2];
441 	int			nb_sizes = 0, out_mapped_nents[2], ret, x;
442 	size_t			sizes[2];
443 	u32			l;
444 	int			elements = 0;
445 	int			word_len, element_count;
446 	struct omap2_mcspi_cs	*cs = spi->controller_state;
447 	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
448 	struct dma_async_tx_descriptor *tx;
449 
450 	mcspi = spi_controller_get_devdata(spi->controller);
451 	mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
452 	count = xfer->len;
453 
454 	/*
455 	 *  In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
456 	 *  it mentions reducing DMA transfer length by one element in host
457 	 *  normal mode.
458 	 */
459 	if (mcspi->fifo_depth == 0)
460 		transfer_reduction = es;
461 
462 	word_len = cs->word_len;
463 	l = mcspi_cached_chconf0(spi);
464 
465 	if (word_len <= 8)
466 		element_count = count;
467 	else if (word_len <= 16)
468 		element_count = count >> 1;
469 	else /* word_len <= 32 */
470 		element_count = count >> 2;
471 
472 
473 	dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
474 
475 	/*
476 	 *  Reduce DMA transfer length by one more if McSPI is
477 	 *  configured in turbo mode.
478 	 */
479 	if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
480 		transfer_reduction += es;
481 
482 	if (transfer_reduction) {
483 		/* Split sgl into two. The second sgl won't be used. */
484 		sizes[0] = count - transfer_reduction;
485 		sizes[1] = transfer_reduction;
486 		nb_sizes = 2;
487 	} else {
488 		/*
489 		 * Don't bother splitting the sgl. This essentially
490 		 * clones the original sgl.
491 		 */
492 		sizes[0] = count;
493 		nb_sizes = 1;
494 	}
495 
496 	ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
497 		       sizes, sg_out, out_mapped_nents, GFP_KERNEL);
498 
499 	if (ret < 0) {
500 		dev_err(&spi->dev, "sg_split failed\n");
501 		return 0;
502 	}
503 
504 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
505 				     out_mapped_nents[0], DMA_DEV_TO_MEM,
506 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
507 	if (tx) {
508 		tx->callback = omap2_mcspi_rx_callback;
509 		tx->callback_param = spi;
510 		dmaengine_submit(tx);
511 	} else {
512 		/* FIXME: fall back to PIO? */
513 	}
514 
515 	dma_async_issue_pending(mcspi_dma->dma_rx);
516 	omap2_mcspi_set_dma_req(spi, 1, 1);
517 
518 	ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
519 	if (ret || mcspi->target_aborted) {
520 		dmaengine_terminate_sync(mcspi_dma->dma_rx);
521 		omap2_mcspi_set_dma_req(spi, 1, 0);
522 		return 0;
523 	}
524 
525 	for (x = 0; x < nb_sizes; x++)
526 		kfree(sg_out[x]);
527 
528 	if (mcspi->fifo_depth > 0)
529 		return count;
530 
531 	/*
532 	 *  Due to the DMA transfer length reduction the missing bytes must
533 	 *  be read manually to receive all of the expected data.
534 	 */
535 	omap2_mcspi_set_enable(spi, 0);
536 
537 	elements = element_count - 1;
538 
539 	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
540 		elements--;
541 
542 		if (!mcspi_wait_for_reg_bit(chstat_reg,
543 					    OMAP2_MCSPI_CHSTAT_RXS)) {
544 			u32 w;
545 
546 			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
547 			if (word_len <= 8)
548 				((u8 *)xfer->rx_buf)[elements++] = w;
549 			else if (word_len <= 16)
550 				((u16 *)xfer->rx_buf)[elements++] = w;
551 			else /* word_len <= 32 */
552 				((u32 *)xfer->rx_buf)[elements++] = w;
553 		} else {
554 			int bytes_per_word = mcspi_bytes_per_word(word_len);
555 			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
556 			count -= (bytes_per_word << 1);
557 			omap2_mcspi_set_enable(spi, 1);
558 			return count;
559 		}
560 	}
561 	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
562 		u32 w;
563 
564 		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
565 		if (word_len <= 8)
566 			((u8 *)xfer->rx_buf)[elements] = w;
567 		else if (word_len <= 16)
568 			((u16 *)xfer->rx_buf)[elements] = w;
569 		else /* word_len <= 32 */
570 			((u32 *)xfer->rx_buf)[elements] = w;
571 	} else {
572 		dev_err(&spi->dev, "DMA RX last word empty\n");
573 		count -= mcspi_bytes_per_word(word_len);
574 	}
575 	omap2_mcspi_set_enable(spi, 1);
576 	return count;
577 }
578 
579 static unsigned
580 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
581 {
582 	struct omap2_mcspi	*mcspi;
583 	struct omap2_mcspi_cs	*cs = spi->controller_state;
584 	struct omap2_mcspi_dma  *mcspi_dma;
585 	unsigned int		count;
586 	u8			*rx;
587 	const u8		*tx;
588 	struct dma_slave_config	cfg;
589 	enum dma_slave_buswidth width;
590 	unsigned es;
591 	void __iomem		*chstat_reg;
592 	void __iomem            *irqstat_reg;
593 	int			wait_res;
594 
595 	mcspi = spi_controller_get_devdata(spi->controller);
596 	mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)];
597 
598 	if (cs->word_len <= 8) {
599 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
600 		es = 1;
601 	} else if (cs->word_len <= 16) {
602 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
603 		es = 2;
604 	} else {
605 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
606 		es = 4;
607 	}
608 
609 	count = xfer->len;
610 
611 	memset(&cfg, 0, sizeof(cfg));
612 	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
613 	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
614 	cfg.src_addr_width = width;
615 	cfg.dst_addr_width = width;
616 	cfg.src_maxburst = 1;
617 	cfg.dst_maxburst = 1;
618 
619 	rx = xfer->rx_buf;
620 	tx = xfer->tx_buf;
621 
622 	mcspi->target_aborted = false;
623 	reinit_completion(&mcspi_dma->dma_tx_completion);
624 	reinit_completion(&mcspi_dma->dma_rx_completion);
625 	reinit_completion(&mcspi->txdone);
626 	if (tx) {
627 		/* Enable EOW IRQ to know end of tx in target mode */
628 		if (spi_controller_is_target(spi->controller))
629 			mcspi_write_reg(spi->controller,
630 					OMAP2_MCSPI_IRQENABLE,
631 					OMAP2_MCSPI_IRQSTATUS_EOW);
632 		omap2_mcspi_tx_dma(spi, xfer, cfg);
633 	}
634 
635 	if (rx != NULL)
636 		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
637 
638 	if (tx != NULL) {
639 		int ret;
640 
641 		ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
642 		if (ret || mcspi->target_aborted) {
643 			dmaengine_terminate_sync(mcspi_dma->dma_tx);
644 			omap2_mcspi_set_dma_req(spi, 0, 0);
645 			return 0;
646 		}
647 
648 		if (spi_controller_is_target(mcspi->ctlr)) {
649 			ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
650 			if (ret || mcspi->target_aborted)
651 				return 0;
652 		}
653 
654 		if (mcspi->fifo_depth > 0) {
655 			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
656 
657 			if (mcspi_wait_for_reg_bit(irqstat_reg,
658 						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
659 				dev_err(&spi->dev, "EOW timed out\n");
660 
661 			mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS,
662 					OMAP2_MCSPI_IRQSTATUS_EOW);
663 		}
664 
665 		/* for TX_ONLY mode, be sure all words have shifted out */
666 		if (rx == NULL) {
667 			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
668 			if (mcspi->fifo_depth > 0) {
669 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
670 						OMAP2_MCSPI_CHSTAT_TXFFE);
671 				if (wait_res < 0)
672 					dev_err(&spi->dev, "TXFFE timed out\n");
673 			} else {
674 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
675 						OMAP2_MCSPI_CHSTAT_TXS);
676 				if (wait_res < 0)
677 					dev_err(&spi->dev, "TXS timed out\n");
678 			}
679 			if (wait_res >= 0 &&
680 				(mcspi_wait_for_reg_bit(chstat_reg,
681 					OMAP2_MCSPI_CHSTAT_EOT) < 0))
682 				dev_err(&spi->dev, "EOT timed out\n");
683 		}
684 	}
685 	return count;
686 }
687 
688 static unsigned
689 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
690 {
691 	struct omap2_mcspi_cs	*cs = spi->controller_state;
692 	unsigned int		count, c;
693 	u32			l;
694 	void __iomem		*base = cs->base;
695 	void __iomem		*tx_reg;
696 	void __iomem		*rx_reg;
697 	void __iomem		*chstat_reg;
698 	int			word_len;
699 
700 	count = xfer->len;
701 	c = count;
702 	word_len = cs->word_len;
703 
704 	l = mcspi_cached_chconf0(spi);
705 
706 	/* We store the pre-calculated register addresses on stack to speed
707 	 * up the transfer loop. */
708 	tx_reg		= base + OMAP2_MCSPI_TX0;
709 	rx_reg		= base + OMAP2_MCSPI_RX0;
710 	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
711 
712 	if (c < (word_len>>3))
713 		return 0;
714 
715 	if (word_len <= 8) {
716 		u8		*rx;
717 		const u8	*tx;
718 
719 		rx = xfer->rx_buf;
720 		tx = xfer->tx_buf;
721 
722 		do {
723 			c -= 1;
724 			if (tx != NULL) {
725 				if (mcspi_wait_for_reg_bit(chstat_reg,
726 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
727 					dev_err(&spi->dev, "TXS timed out\n");
728 					goto out;
729 				}
730 				dev_vdbg(&spi->dev, "write-%d %02x\n",
731 						word_len, *tx);
732 				writel_relaxed(*tx++, tx_reg);
733 			}
734 			if (rx != NULL) {
735 				if (mcspi_wait_for_reg_bit(chstat_reg,
736 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
737 					dev_err(&spi->dev, "RXS timed out\n");
738 					goto out;
739 				}
740 
741 				if (c == 1 && tx == NULL &&
742 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
743 					omap2_mcspi_set_enable(spi, 0);
744 					*rx++ = readl_relaxed(rx_reg);
745 					dev_vdbg(&spi->dev, "read-%d %02x\n",
746 						    word_len, *(rx - 1));
747 					if (mcspi_wait_for_reg_bit(chstat_reg,
748 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
749 						dev_err(&spi->dev,
750 							"RXS timed out\n");
751 						goto out;
752 					}
753 					c = 0;
754 				} else if (c == 0 && tx == NULL) {
755 					omap2_mcspi_set_enable(spi, 0);
756 				}
757 
758 				*rx++ = readl_relaxed(rx_reg);
759 				dev_vdbg(&spi->dev, "read-%d %02x\n",
760 						word_len, *(rx - 1));
761 			}
762 			/* Add word delay between each word */
763 			spi_delay_exec(&xfer->word_delay, xfer);
764 		} while (c);
765 	} else if (word_len <= 16) {
766 		u16		*rx;
767 		const u16	*tx;
768 
769 		rx = xfer->rx_buf;
770 		tx = xfer->tx_buf;
771 		do {
772 			c -= 2;
773 			if (tx != NULL) {
774 				if (mcspi_wait_for_reg_bit(chstat_reg,
775 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
776 					dev_err(&spi->dev, "TXS timed out\n");
777 					goto out;
778 				}
779 				dev_vdbg(&spi->dev, "write-%d %04x\n",
780 						word_len, *tx);
781 				writel_relaxed(*tx++, tx_reg);
782 			}
783 			if (rx != NULL) {
784 				if (mcspi_wait_for_reg_bit(chstat_reg,
785 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
786 					dev_err(&spi->dev, "RXS timed out\n");
787 					goto out;
788 				}
789 
790 				if (c == 2 && tx == NULL &&
791 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
792 					omap2_mcspi_set_enable(spi, 0);
793 					*rx++ = readl_relaxed(rx_reg);
794 					dev_vdbg(&spi->dev, "read-%d %04x\n",
795 						    word_len, *(rx - 1));
796 					if (mcspi_wait_for_reg_bit(chstat_reg,
797 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
798 						dev_err(&spi->dev,
799 							"RXS timed out\n");
800 						goto out;
801 					}
802 					c = 0;
803 				} else if (c == 0 && tx == NULL) {
804 					omap2_mcspi_set_enable(spi, 0);
805 				}
806 
807 				*rx++ = readl_relaxed(rx_reg);
808 				dev_vdbg(&spi->dev, "read-%d %04x\n",
809 						word_len, *(rx - 1));
810 			}
811 			/* Add word delay between each word */
812 			spi_delay_exec(&xfer->word_delay, xfer);
813 		} while (c >= 2);
814 	} else if (word_len <= 32) {
815 		u32		*rx;
816 		const u32	*tx;
817 
818 		rx = xfer->rx_buf;
819 		tx = xfer->tx_buf;
820 		do {
821 			c -= 4;
822 			if (tx != NULL) {
823 				if (mcspi_wait_for_reg_bit(chstat_reg,
824 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
825 					dev_err(&spi->dev, "TXS timed out\n");
826 					goto out;
827 				}
828 				dev_vdbg(&spi->dev, "write-%d %08x\n",
829 						word_len, *tx);
830 				writel_relaxed(*tx++, tx_reg);
831 			}
832 			if (rx != NULL) {
833 				if (mcspi_wait_for_reg_bit(chstat_reg,
834 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
835 					dev_err(&spi->dev, "RXS timed out\n");
836 					goto out;
837 				}
838 
839 				if (c == 4 && tx == NULL &&
840 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
841 					omap2_mcspi_set_enable(spi, 0);
842 					*rx++ = readl_relaxed(rx_reg);
843 					dev_vdbg(&spi->dev, "read-%d %08x\n",
844 						    word_len, *(rx - 1));
845 					if (mcspi_wait_for_reg_bit(chstat_reg,
846 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
847 						dev_err(&spi->dev,
848 							"RXS timed out\n");
849 						goto out;
850 					}
851 					c = 0;
852 				} else if (c == 0 && tx == NULL) {
853 					omap2_mcspi_set_enable(spi, 0);
854 				}
855 
856 				*rx++ = readl_relaxed(rx_reg);
857 				dev_vdbg(&spi->dev, "read-%d %08x\n",
858 						word_len, *(rx - 1));
859 			}
860 			/* Add word delay between each word */
861 			spi_delay_exec(&xfer->word_delay, xfer);
862 		} while (c >= 4);
863 	}
864 
865 	/* for TX_ONLY mode, be sure all words have shifted out */
866 	if (xfer->rx_buf == NULL) {
867 		if (mcspi_wait_for_reg_bit(chstat_reg,
868 				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
869 			dev_err(&spi->dev, "TXS timed out\n");
870 		} else if (mcspi_wait_for_reg_bit(chstat_reg,
871 				OMAP2_MCSPI_CHSTAT_EOT) < 0)
872 			dev_err(&spi->dev, "EOT timed out\n");
873 
874 		/* disable chan to purge rx datas received in TX_ONLY transfer,
875 		 * otherwise these rx datas will affect the direct following
876 		 * RX_ONLY transfer.
877 		 */
878 		omap2_mcspi_set_enable(spi, 0);
879 	}
880 out:
881 	omap2_mcspi_set_enable(spi, 1);
882 	return count - c;
883 }
884 
885 static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz)
886 {
887 	u32 div;
888 
889 	for (div = 0; div < 15; div++)
890 		if (speed_hz >= (ref_clk_hz >> div))
891 			return div;
892 
893 	return 15;
894 }
895 
896 /* called only when no transfer is active to this device */
897 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
898 		struct spi_transfer *t)
899 {
900 	struct omap2_mcspi_cs *cs = spi->controller_state;
901 	struct omap2_mcspi *mcspi;
902 	u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0;
903 	u8 word_len = spi->bits_per_word;
904 	u32 speed_hz = spi->max_speed_hz;
905 
906 	mcspi = spi_controller_get_devdata(spi->controller);
907 
908 	if (t != NULL && t->bits_per_word)
909 		word_len = t->bits_per_word;
910 
911 	cs->word_len = word_len;
912 
913 	if (t && t->speed_hz)
914 		speed_hz = t->speed_hz;
915 
916 	ref_clk_hz = mcspi->ref_clk_hz;
917 	speed_hz = min_t(u32, speed_hz, ref_clk_hz);
918 	if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) {
919 		clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz);
920 		speed_hz = ref_clk_hz >> clkd;
921 		clkg = 0;
922 	} else {
923 		div = (ref_clk_hz + speed_hz - 1) / speed_hz;
924 		speed_hz = ref_clk_hz / div;
925 		clkd = (div - 1) & 0xf;
926 		extclk = (div - 1) >> 4;
927 		clkg = OMAP2_MCSPI_CHCONF_CLKG;
928 	}
929 
930 	l = mcspi_cached_chconf0(spi);
931 
932 	/* standard 4-wire host mode:  SCK, MOSI/out, MISO/in, nCS
933 	 * REVISIT: this controller could support SPI_3WIRE mode.
934 	 */
935 	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
936 		l &= ~OMAP2_MCSPI_CHCONF_IS;
937 		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
938 		l |= OMAP2_MCSPI_CHCONF_DPE0;
939 	} else {
940 		l |= OMAP2_MCSPI_CHCONF_IS;
941 		l |= OMAP2_MCSPI_CHCONF_DPE1;
942 		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
943 	}
944 
945 	/* wordlength */
946 	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
947 	l |= (word_len - 1) << 7;
948 
949 	/* set chipselect polarity; manage with FORCE */
950 	if (!(spi->mode & SPI_CS_HIGH))
951 		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
952 	else
953 		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
954 
955 	/* set clock divisor */
956 	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
957 	l |= clkd << 2;
958 
959 	/* set clock granularity */
960 	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
961 	l |= clkg;
962 	if (clkg) {
963 		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
964 		cs->chctrl0 |= extclk << 8;
965 		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
966 	}
967 
968 	/* set SPI mode 0..3 */
969 	if (spi->mode & SPI_CPOL)
970 		l |= OMAP2_MCSPI_CHCONF_POL;
971 	else
972 		l &= ~OMAP2_MCSPI_CHCONF_POL;
973 	if (spi->mode & SPI_CPHA)
974 		l |= OMAP2_MCSPI_CHCONF_PHA;
975 	else
976 		l &= ~OMAP2_MCSPI_CHCONF_PHA;
977 
978 	mcspi_write_chconf0(spi, l);
979 
980 	cs->mode = spi->mode;
981 
982 	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
983 			speed_hz,
984 			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
985 			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
986 
987 	return 0;
988 }
989 
990 /*
991  * Note that we currently allow DMA only if we get a channel
992  * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
993  */
994 static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
995 				   struct omap2_mcspi_dma *mcspi_dma)
996 {
997 	int ret = 0;
998 
999 	mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
1000 					     mcspi_dma->dma_rx_ch_name);
1001 	if (IS_ERR(mcspi_dma->dma_rx)) {
1002 		ret = PTR_ERR(mcspi_dma->dma_rx);
1003 		mcspi_dma->dma_rx = NULL;
1004 		goto no_dma;
1005 	}
1006 
1007 	mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1008 					     mcspi_dma->dma_tx_ch_name);
1009 	if (IS_ERR(mcspi_dma->dma_tx)) {
1010 		ret = PTR_ERR(mcspi_dma->dma_tx);
1011 		mcspi_dma->dma_tx = NULL;
1012 		dma_release_channel(mcspi_dma->dma_rx);
1013 		mcspi_dma->dma_rx = NULL;
1014 	}
1015 
1016 	init_completion(&mcspi_dma->dma_rx_completion);
1017 	init_completion(&mcspi_dma->dma_tx_completion);
1018 
1019 no_dma:
1020 	return ret;
1021 }
1022 
1023 static void omap2_mcspi_release_dma(struct spi_controller *ctlr)
1024 {
1025 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1026 	struct omap2_mcspi_dma	*mcspi_dma;
1027 	int i;
1028 
1029 	for (i = 0; i < ctlr->num_chipselect; i++) {
1030 		mcspi_dma = &mcspi->dma_channels[i];
1031 
1032 		if (mcspi_dma->dma_rx) {
1033 			dma_release_channel(mcspi_dma->dma_rx);
1034 			mcspi_dma->dma_rx = NULL;
1035 		}
1036 		if (mcspi_dma->dma_tx) {
1037 			dma_release_channel(mcspi_dma->dma_tx);
1038 			mcspi_dma->dma_tx = NULL;
1039 		}
1040 	}
1041 }
1042 
1043 static void omap2_mcspi_cleanup(struct spi_device *spi)
1044 {
1045 	struct omap2_mcspi_cs	*cs;
1046 
1047 	if (spi->controller_state) {
1048 		/* Unlink controller state from context save list */
1049 		cs = spi->controller_state;
1050 		list_del(&cs->node);
1051 
1052 		kfree(cs);
1053 	}
1054 }
1055 
1056 static int omap2_mcspi_setup(struct spi_device *spi)
1057 {
1058 	bool			initial_setup = false;
1059 	int			ret;
1060 	struct omap2_mcspi	*mcspi = spi_controller_get_devdata(spi->controller);
1061 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1062 	struct omap2_mcspi_cs	*cs = spi->controller_state;
1063 
1064 	if (!cs) {
1065 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1066 		if (!cs)
1067 			return -ENOMEM;
1068 		cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14;
1069 		cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14;
1070 		cs->mode = 0;
1071 		cs->chconf0 = 0;
1072 		cs->chctrl0 = 0;
1073 		spi->controller_state = cs;
1074 		/* Link this to context save list */
1075 		list_add_tail(&cs->node, &ctx->cs);
1076 		initial_setup = true;
1077 	}
1078 
1079 	ret = pm_runtime_resume_and_get(mcspi->dev);
1080 	if (ret < 0) {
1081 		if (initial_setup)
1082 			omap2_mcspi_cleanup(spi);
1083 
1084 		return ret;
1085 	}
1086 
1087 	ret = omap2_mcspi_setup_transfer(spi, NULL);
1088 	if (ret && initial_setup)
1089 		omap2_mcspi_cleanup(spi);
1090 
1091 	pm_runtime_mark_last_busy(mcspi->dev);
1092 	pm_runtime_put_autosuspend(mcspi->dev);
1093 
1094 	return ret;
1095 }
1096 
1097 static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1098 {
1099 	struct omap2_mcspi *mcspi = data;
1100 	u32 irqstat;
1101 
1102 	irqstat	= mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS);
1103 	if (!irqstat)
1104 		return IRQ_NONE;
1105 
1106 	/* Disable IRQ and wakeup target xfer task */
1107 	mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0);
1108 	if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1109 		complete(&mcspi->txdone);
1110 
1111 	return IRQ_HANDLED;
1112 }
1113 
1114 static int omap2_mcspi_target_abort(struct spi_controller *ctlr)
1115 {
1116 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1117 	struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1118 
1119 	mcspi->target_aborted = true;
1120 	complete(&mcspi_dma->dma_rx_completion);
1121 	complete(&mcspi_dma->dma_tx_completion);
1122 	complete(&mcspi->txdone);
1123 
1124 	return 0;
1125 }
1126 
1127 static int omap2_mcspi_transfer_one(struct spi_controller *ctlr,
1128 				    struct spi_device *spi,
1129 				    struct spi_transfer *t)
1130 {
1131 
1132 	/* We only enable one channel at a time -- the one whose message is
1133 	 * -- although this controller would gladly
1134 	 * arbitrate among multiple channels.  This corresponds to "single
1135 	 * channel" host mode.  As a side effect, we need to manage the
1136 	 * chipselect with the FORCE bit ... CS != channel enable.
1137 	 */
1138 
1139 	struct omap2_mcspi		*mcspi;
1140 	struct omap2_mcspi_dma		*mcspi_dma;
1141 	struct omap2_mcspi_cs		*cs;
1142 	struct omap2_mcspi_device_config *cd;
1143 	int				par_override = 0;
1144 	int				status = 0;
1145 	u32				chconf;
1146 
1147 	mcspi = spi_controller_get_devdata(ctlr);
1148 	mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0);
1149 	cs = spi->controller_state;
1150 	cd = spi->controller_data;
1151 
1152 	/*
1153 	 * The target driver could have changed spi->mode in which case
1154 	 * it will be different from cs->mode (the current hardware setup).
1155 	 * If so, set par_override (even though its not a parity issue) so
1156 	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1157 	 * with the correct mode on the first iteration of the loop below.
1158 	 */
1159 	if (spi->mode != cs->mode)
1160 		par_override = 1;
1161 
1162 	omap2_mcspi_set_enable(spi, 0);
1163 
1164 	if (spi_get_csgpiod(spi, 0))
1165 		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1166 
1167 	if (par_override ||
1168 	    (t->speed_hz != spi->max_speed_hz) ||
1169 	    (t->bits_per_word != spi->bits_per_word)) {
1170 		par_override = 1;
1171 		status = omap2_mcspi_setup_transfer(spi, t);
1172 		if (status < 0)
1173 			goto out;
1174 		if (t->speed_hz == spi->max_speed_hz &&
1175 		    t->bits_per_word == spi->bits_per_word)
1176 			par_override = 0;
1177 	}
1178 	if (cd && cd->cs_per_word) {
1179 		chconf = mcspi->ctx.modulctrl;
1180 		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1181 		mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, chconf);
1182 		mcspi->ctx.modulctrl =
1183 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1184 	}
1185 
1186 	chconf = mcspi_cached_chconf0(spi);
1187 	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1188 	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1189 
1190 	if (t->tx_buf == NULL)
1191 		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1192 	else if (t->rx_buf == NULL)
1193 		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1194 
1195 	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1196 		/* Turbo mode is for more than one word */
1197 		if (t->len > ((cs->word_len + 7) >> 3))
1198 			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1199 	}
1200 
1201 	mcspi_write_chconf0(spi, chconf);
1202 
1203 	if (t->len) {
1204 		unsigned	count;
1205 
1206 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1207 		    ctlr->cur_msg_mapped &&
1208 		    ctlr->can_dma(ctlr, spi, t))
1209 			omap2_mcspi_set_fifo(spi, t, 1);
1210 
1211 		omap2_mcspi_set_enable(spi, 1);
1212 
1213 		/* RX_ONLY mode needs dummy data in TX reg */
1214 		if (t->tx_buf == NULL)
1215 			writel_relaxed(0, cs->base
1216 					+ OMAP2_MCSPI_TX0);
1217 
1218 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1219 		    ctlr->cur_msg_mapped &&
1220 		    ctlr->can_dma(ctlr, spi, t))
1221 			count = omap2_mcspi_txrx_dma(spi, t);
1222 		else
1223 			count = omap2_mcspi_txrx_pio(spi, t);
1224 
1225 		if (count != t->len) {
1226 			status = -EIO;
1227 			goto out;
1228 		}
1229 	}
1230 
1231 	omap2_mcspi_set_enable(spi, 0);
1232 
1233 	if (mcspi->fifo_depth > 0)
1234 		omap2_mcspi_set_fifo(spi, t, 0);
1235 
1236 out:
1237 	/* Restore defaults if they were overriden */
1238 	if (par_override) {
1239 		par_override = 0;
1240 		status = omap2_mcspi_setup_transfer(spi, NULL);
1241 	}
1242 
1243 	if (cd && cd->cs_per_word) {
1244 		chconf = mcspi->ctx.modulctrl;
1245 		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1246 		mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, chconf);
1247 		mcspi->ctx.modulctrl =
1248 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1249 	}
1250 
1251 	omap2_mcspi_set_enable(spi, 0);
1252 
1253 	if (spi_get_csgpiod(spi, 0))
1254 		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1255 
1256 	if (mcspi->fifo_depth > 0 && t)
1257 		omap2_mcspi_set_fifo(spi, t, 0);
1258 
1259 	return status;
1260 }
1261 
1262 static int omap2_mcspi_prepare_message(struct spi_controller *ctlr,
1263 				       struct spi_message *msg)
1264 {
1265 	struct omap2_mcspi	*mcspi = spi_controller_get_devdata(ctlr);
1266 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1267 	struct omap2_mcspi_cs	*cs;
1268 
1269 	/* Only a single channel can have the FORCE bit enabled
1270 	 * in its chconf0 register.
1271 	 * Scan all channels and disable them except the current one.
1272 	 * A FORCE can remain from a last transfer having cs_change enabled
1273 	 */
1274 	list_for_each_entry(cs, &ctx->cs, node) {
1275 		if (msg->spi->controller_state == cs)
1276 			continue;
1277 
1278 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1279 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1280 			writel_relaxed(cs->chconf0,
1281 					cs->base + OMAP2_MCSPI_CHCONF0);
1282 			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1283 		}
1284 	}
1285 
1286 	return 0;
1287 }
1288 
1289 static bool omap2_mcspi_can_dma(struct spi_controller *ctlr,
1290 				struct spi_device *spi,
1291 				struct spi_transfer *xfer)
1292 {
1293 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1294 	struct omap2_mcspi_dma *mcspi_dma =
1295 		&mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1296 
1297 	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1298 		return false;
1299 
1300 	if (spi_controller_is_target(ctlr))
1301 		return true;
1302 
1303 	ctlr->dma_rx = mcspi_dma->dma_rx;
1304 	ctlr->dma_tx = mcspi_dma->dma_tx;
1305 
1306 	return (xfer->len >= DMA_MIN_BYTES);
1307 }
1308 
1309 static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1310 {
1311 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller);
1312 	struct omap2_mcspi_dma *mcspi_dma =
1313 		&mcspi->dma_channels[spi_get_chipselect(spi, 0)];
1314 
1315 	if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1316 		return mcspi->max_xfer_len;
1317 
1318 	return SIZE_MAX;
1319 }
1320 
1321 static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1322 {
1323 	struct spi_controller	*ctlr = mcspi->ctlr;
1324 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1325 	int			ret = 0;
1326 
1327 	ret = pm_runtime_resume_and_get(mcspi->dev);
1328 	if (ret < 0)
1329 		return ret;
1330 
1331 	mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE,
1332 			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1333 	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1334 
1335 	omap2_mcspi_set_mode(ctlr);
1336 	pm_runtime_mark_last_busy(mcspi->dev);
1337 	pm_runtime_put_autosuspend(mcspi->dev);
1338 	return 0;
1339 }
1340 
1341 static int omap_mcspi_runtime_suspend(struct device *dev)
1342 {
1343 	int error;
1344 
1345 	error = pinctrl_pm_select_idle_state(dev);
1346 	if (error)
1347 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1348 
1349 	return 0;
1350 }
1351 
1352 /*
1353  * When SPI wake up from off-mode, CS is in activate state. If it was in
1354  * inactive state when driver was suspend, then force it to inactive state at
1355  * wake up.
1356  */
1357 static int omap_mcspi_runtime_resume(struct device *dev)
1358 {
1359 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1360 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1361 	struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1362 	struct omap2_mcspi_cs *cs;
1363 	int error;
1364 
1365 	error = pinctrl_pm_select_default_state(dev);
1366 	if (error)
1367 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1368 
1369 	/* McSPI: context restore */
1370 	mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1371 	mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1372 
1373 	list_for_each_entry(cs, &ctx->cs, node) {
1374 		/*
1375 		 * We need to toggle CS state for OMAP take this
1376 		 * change in account.
1377 		 */
1378 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1379 			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1380 			writel_relaxed(cs->chconf0,
1381 				       cs->base + OMAP2_MCSPI_CHCONF0);
1382 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1383 			writel_relaxed(cs->chconf0,
1384 				       cs->base + OMAP2_MCSPI_CHCONF0);
1385 		} else {
1386 			writel_relaxed(cs->chconf0,
1387 				       cs->base + OMAP2_MCSPI_CHCONF0);
1388 		}
1389 	}
1390 
1391 	return 0;
1392 }
1393 
1394 static struct omap2_mcspi_platform_config omap2_pdata = {
1395 	.regs_offset = 0,
1396 };
1397 
1398 static struct omap2_mcspi_platform_config omap4_pdata = {
1399 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1400 };
1401 
1402 static struct omap2_mcspi_platform_config am654_pdata = {
1403 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1404 	.max_xfer_len = SZ_4K - 1,
1405 };
1406 
1407 static const struct of_device_id omap_mcspi_of_match[] = {
1408 	{
1409 		.compatible = "ti,omap2-mcspi",
1410 		.data = &omap2_pdata,
1411 	},
1412 	{
1413 		.compatible = "ti,omap4-mcspi",
1414 		.data = &omap4_pdata,
1415 	},
1416 	{
1417 		.compatible = "ti,am654-mcspi",
1418 		.data = &am654_pdata,
1419 	},
1420 	{ },
1421 };
1422 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1423 
1424 static int omap2_mcspi_probe(struct platform_device *pdev)
1425 {
1426 	struct spi_controller	*ctlr;
1427 	const struct omap2_mcspi_platform_config *pdata;
1428 	struct omap2_mcspi	*mcspi;
1429 	struct resource		*r;
1430 	int			status = 0, i;
1431 	u32			regs_offset = 0;
1432 	struct device_node	*node = pdev->dev.of_node;
1433 	const struct of_device_id *match;
1434 
1435 	if (of_property_read_bool(node, "spi-slave"))
1436 		ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi));
1437 	else
1438 		ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi));
1439 	if (!ctlr)
1440 		return -ENOMEM;
1441 
1442 	/* the spi->mode bits understood by this driver: */
1443 	ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1444 	ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1445 	ctlr->setup = omap2_mcspi_setup;
1446 	ctlr->auto_runtime_pm = true;
1447 	ctlr->prepare_message = omap2_mcspi_prepare_message;
1448 	ctlr->can_dma = omap2_mcspi_can_dma;
1449 	ctlr->transfer_one = omap2_mcspi_transfer_one;
1450 	ctlr->set_cs = omap2_mcspi_set_cs;
1451 	ctlr->cleanup = omap2_mcspi_cleanup;
1452 	ctlr->target_abort = omap2_mcspi_target_abort;
1453 	ctlr->dev.of_node = node;
1454 	ctlr->use_gpio_descriptors = true;
1455 
1456 	platform_set_drvdata(pdev, ctlr);
1457 
1458 	mcspi = spi_controller_get_devdata(ctlr);
1459 	mcspi->ctlr = ctlr;
1460 
1461 	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1462 	if (match) {
1463 		u32 num_cs = 1; /* default number of chipselect */
1464 		pdata = match->data;
1465 
1466 		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1467 		ctlr->num_chipselect = num_cs;
1468 		if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in"))
1469 			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1470 	} else {
1471 		pdata = dev_get_platdata(&pdev->dev);
1472 		ctlr->num_chipselect = pdata->num_cs;
1473 		mcspi->pin_dir = pdata->pin_dir;
1474 	}
1475 	regs_offset = pdata->regs_offset;
1476 	if (pdata->max_xfer_len) {
1477 		mcspi->max_xfer_len = pdata->max_xfer_len;
1478 		ctlr->max_transfer_size = omap2_mcspi_max_xfer_size;
1479 	}
1480 
1481 	mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r);
1482 	if (IS_ERR(mcspi->base)) {
1483 		status = PTR_ERR(mcspi->base);
1484 		goto free_ctlr;
1485 	}
1486 	mcspi->phys = r->start + regs_offset;
1487 	mcspi->base += regs_offset;
1488 
1489 	mcspi->dev = &pdev->dev;
1490 
1491 	INIT_LIST_HEAD(&mcspi->ctx.cs);
1492 
1493 	mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect,
1494 					   sizeof(struct omap2_mcspi_dma),
1495 					   GFP_KERNEL);
1496 	if (mcspi->dma_channels == NULL) {
1497 		status = -ENOMEM;
1498 		goto free_ctlr;
1499 	}
1500 
1501 	for (i = 0; i < ctlr->num_chipselect; i++) {
1502 		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1503 		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1504 
1505 		status = omap2_mcspi_request_dma(mcspi,
1506 						 &mcspi->dma_channels[i]);
1507 		if (status == -EPROBE_DEFER)
1508 			goto free_ctlr;
1509 	}
1510 
1511 	status = platform_get_irq(pdev, 0);
1512 	if (status < 0)
1513 		goto free_ctlr;
1514 	init_completion(&mcspi->txdone);
1515 	status = devm_request_irq(&pdev->dev, status,
1516 				  omap2_mcspi_irq_handler, 0, pdev->name,
1517 				  mcspi);
1518 	if (status) {
1519 		dev_err(&pdev->dev, "Cannot request IRQ");
1520 		goto free_ctlr;
1521 	}
1522 
1523 	mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL);
1524 	if (mcspi->ref_clk)
1525 		mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk);
1526 	else
1527 		mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ;
1528 	ctlr->max_speed_hz = mcspi->ref_clk_hz;
1529 	ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15;
1530 
1531 	pm_runtime_use_autosuspend(&pdev->dev);
1532 	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1533 	pm_runtime_enable(&pdev->dev);
1534 
1535 	status = omap2_mcspi_controller_setup(mcspi);
1536 	if (status < 0)
1537 		goto disable_pm;
1538 
1539 	status = devm_spi_register_controller(&pdev->dev, ctlr);
1540 	if (status < 0)
1541 		goto disable_pm;
1542 
1543 	return status;
1544 
1545 disable_pm:
1546 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1547 	pm_runtime_put_sync(&pdev->dev);
1548 	pm_runtime_disable(&pdev->dev);
1549 free_ctlr:
1550 	omap2_mcspi_release_dma(ctlr);
1551 	spi_controller_put(ctlr);
1552 	return status;
1553 }
1554 
1555 static void omap2_mcspi_remove(struct platform_device *pdev)
1556 {
1557 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1558 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1559 
1560 	omap2_mcspi_release_dma(ctlr);
1561 
1562 	pm_runtime_dont_use_autosuspend(mcspi->dev);
1563 	pm_runtime_put_sync(mcspi->dev);
1564 	pm_runtime_disable(&pdev->dev);
1565 }
1566 
1567 /* work with hotplug and coldplug */
1568 MODULE_ALIAS("platform:omap2_mcspi");
1569 
1570 static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1571 {
1572 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1573 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1574 	int error;
1575 
1576 	error = pinctrl_pm_select_sleep_state(dev);
1577 	if (error)
1578 		dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1579 			 __func__, error);
1580 
1581 	error = spi_controller_suspend(ctlr);
1582 	if (error)
1583 		dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n",
1584 			 __func__, error);
1585 
1586 	return pm_runtime_force_suspend(dev);
1587 }
1588 
1589 static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1590 {
1591 	struct spi_controller *ctlr = dev_get_drvdata(dev);
1592 	struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr);
1593 	int error;
1594 
1595 	error = spi_controller_resume(ctlr);
1596 	if (error)
1597 		dev_warn(mcspi->dev, "%s: controller resume failed: %i\n",
1598 			 __func__, error);
1599 
1600 	return pm_runtime_force_resume(dev);
1601 }
1602 
1603 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1604 	SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1605 				omap2_mcspi_resume)
1606 	.runtime_suspend	= omap_mcspi_runtime_suspend,
1607 	.runtime_resume		= omap_mcspi_runtime_resume,
1608 };
1609 
1610 static struct platform_driver omap2_mcspi_driver = {
1611 	.driver = {
1612 		.name =		"omap2_mcspi",
1613 		.pm =		&omap2_mcspi_pm_ops,
1614 		.of_match_table = omap_mcspi_of_match,
1615 	},
1616 	.probe =	omap2_mcspi_probe,
1617 	.remove_new =	omap2_mcspi_remove,
1618 };
1619 
1620 module_platform_driver(omap2_mcspi_driver);
1621 MODULE_LICENSE("GPL");
1622