1 /* 2 * OMAP2 McSPI controller driver 3 * 4 * Copyright (C) 2005, 2006 Nokia Corporation 5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 6 * Juha Yrj�l� <juha.yrjola@nokia.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/pinctrl/consumer.h> 27 #include <linux/platform_device.h> 28 #include <linux/err.h> 29 #include <linux/clk.h> 30 #include <linux/io.h> 31 #include <linux/slab.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/gcd.h> 36 37 #include <linux/spi/spi.h> 38 #include <linux/gpio.h> 39 40 #include <linux/platform_data/spi-omap2-mcspi.h> 41 42 #define OMAP2_MCSPI_MAX_FREQ 48000000 43 #define OMAP2_MCSPI_MAX_DIVIDER 4096 44 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 45 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 46 #define SPI_AUTOSUSPEND_TIMEOUT 2000 47 48 #define OMAP2_MCSPI_REVISION 0x00 49 #define OMAP2_MCSPI_SYSSTATUS 0x14 50 #define OMAP2_MCSPI_IRQSTATUS 0x18 51 #define OMAP2_MCSPI_IRQENABLE 0x1c 52 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 53 #define OMAP2_MCSPI_SYST 0x24 54 #define OMAP2_MCSPI_MODULCTRL 0x28 55 #define OMAP2_MCSPI_XFERLEVEL 0x7c 56 57 /* per-channel banks, 0x14 bytes each, first is: */ 58 #define OMAP2_MCSPI_CHCONF0 0x2c 59 #define OMAP2_MCSPI_CHSTAT0 0x30 60 #define OMAP2_MCSPI_CHCTRL0 0x34 61 #define OMAP2_MCSPI_TX0 0x38 62 #define OMAP2_MCSPI_RX0 0x3c 63 64 /* per-register bitmasks: */ 65 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 66 67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 70 71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 72 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 83 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 86 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 87 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 88 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 89 90 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 91 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 92 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 93 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 94 95 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 97 98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 99 100 /* We have 2 DMA channels per CS, one for RX and one for TX */ 101 struct omap2_mcspi_dma { 102 struct dma_chan *dma_tx; 103 struct dma_chan *dma_rx; 104 105 struct completion dma_tx_completion; 106 struct completion dma_rx_completion; 107 108 char dma_rx_ch_name[14]; 109 char dma_tx_ch_name[14]; 110 }; 111 112 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 113 * cache operations; better heuristics consider wordsize and bitrate. 114 */ 115 #define DMA_MIN_BYTES 160 116 117 118 /* 119 * Used for context save and restore, structure members to be updated whenever 120 * corresponding registers are modified. 121 */ 122 struct omap2_mcspi_regs { 123 u32 modulctrl; 124 u32 wakeupenable; 125 struct list_head cs; 126 }; 127 128 struct omap2_mcspi { 129 struct spi_master *master; 130 /* Virtual base address of the controller */ 131 void __iomem *base; 132 unsigned long phys; 133 /* SPI1 has 4 channels, while SPI2 has 2 */ 134 struct omap2_mcspi_dma *dma_channels; 135 struct device *dev; 136 struct omap2_mcspi_regs ctx; 137 int fifo_depth; 138 unsigned int pin_dir:1; 139 }; 140 141 struct omap2_mcspi_cs { 142 void __iomem *base; 143 unsigned long phys; 144 int word_len; 145 u16 mode; 146 struct list_head node; 147 /* Context save and restore shadow register */ 148 u32 chconf0, chctrl0; 149 }; 150 151 static inline void mcspi_write_reg(struct spi_master *master, 152 int idx, u32 val) 153 { 154 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 155 156 writel_relaxed(val, mcspi->base + idx); 157 } 158 159 static inline u32 mcspi_read_reg(struct spi_master *master, int idx) 160 { 161 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 162 163 return readl_relaxed(mcspi->base + idx); 164 } 165 166 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 167 int idx, u32 val) 168 { 169 struct omap2_mcspi_cs *cs = spi->controller_state; 170 171 writel_relaxed(val, cs->base + idx); 172 } 173 174 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 175 { 176 struct omap2_mcspi_cs *cs = spi->controller_state; 177 178 return readl_relaxed(cs->base + idx); 179 } 180 181 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 182 { 183 struct omap2_mcspi_cs *cs = spi->controller_state; 184 185 return cs->chconf0; 186 } 187 188 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 189 { 190 struct omap2_mcspi_cs *cs = spi->controller_state; 191 192 cs->chconf0 = val; 193 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 194 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 195 } 196 197 static inline int mcspi_bytes_per_word(int word_len) 198 { 199 if (word_len <= 8) 200 return 1; 201 else if (word_len <= 16) 202 return 2; 203 else /* word_len <= 32 */ 204 return 4; 205 } 206 207 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 208 int is_read, int enable) 209 { 210 u32 l, rw; 211 212 l = mcspi_cached_chconf0(spi); 213 214 if (is_read) /* 1 is read, 0 write */ 215 rw = OMAP2_MCSPI_CHCONF_DMAR; 216 else 217 rw = OMAP2_MCSPI_CHCONF_DMAW; 218 219 if (enable) 220 l |= rw; 221 else 222 l &= ~rw; 223 224 mcspi_write_chconf0(spi, l); 225 } 226 227 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 228 { 229 struct omap2_mcspi_cs *cs = spi->controller_state; 230 u32 l; 231 232 l = cs->chctrl0; 233 if (enable) 234 l |= OMAP2_MCSPI_CHCTRL_EN; 235 else 236 l &= ~OMAP2_MCSPI_CHCTRL_EN; 237 cs->chctrl0 = l; 238 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 239 /* Flash post-writes */ 240 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 241 } 242 243 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) 244 { 245 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 246 u32 l; 247 248 /* The controller handles the inverted chip selects 249 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert 250 * the inversion from the core spi_set_cs function. 251 */ 252 if (spi->mode & SPI_CS_HIGH) 253 enable = !enable; 254 255 if (spi->controller_state) { 256 int err = pm_runtime_get_sync(mcspi->dev); 257 if (err < 0) { 258 dev_err(mcspi->dev, "failed to get sync: %d\n", err); 259 return; 260 } 261 262 l = mcspi_cached_chconf0(spi); 263 264 if (enable) 265 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 266 else 267 l |= OMAP2_MCSPI_CHCONF_FORCE; 268 269 mcspi_write_chconf0(spi, l); 270 271 pm_runtime_mark_last_busy(mcspi->dev); 272 pm_runtime_put_autosuspend(mcspi->dev); 273 } 274 } 275 276 static void omap2_mcspi_set_master_mode(struct spi_master *master) 277 { 278 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 279 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 280 u32 l; 281 282 /* 283 * Setup when switching from (reset default) slave mode 284 * to single-channel master mode 285 */ 286 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); 287 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS); 288 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 289 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); 290 291 ctx->modulctrl = l; 292 } 293 294 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 295 struct spi_transfer *t, int enable) 296 { 297 struct spi_master *master = spi->master; 298 struct omap2_mcspi_cs *cs = spi->controller_state; 299 struct omap2_mcspi *mcspi; 300 unsigned int wcnt; 301 int max_fifo_depth, fifo_depth, bytes_per_word; 302 u32 chconf, xferlevel; 303 304 mcspi = spi_master_get_devdata(master); 305 306 chconf = mcspi_cached_chconf0(spi); 307 if (enable) { 308 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 309 if (t->len % bytes_per_word != 0) 310 goto disable_fifo; 311 312 if (t->rx_buf != NULL && t->tx_buf != NULL) 313 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 314 else 315 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 316 317 fifo_depth = gcd(t->len, max_fifo_depth); 318 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0) 319 goto disable_fifo; 320 321 wcnt = t->len / bytes_per_word; 322 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 323 goto disable_fifo; 324 325 xferlevel = wcnt << 16; 326 if (t->rx_buf != NULL) { 327 chconf |= OMAP2_MCSPI_CHCONF_FFER; 328 xferlevel |= (fifo_depth - 1) << 8; 329 } 330 if (t->tx_buf != NULL) { 331 chconf |= OMAP2_MCSPI_CHCONF_FFET; 332 xferlevel |= fifo_depth - 1; 333 } 334 335 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel); 336 mcspi_write_chconf0(spi, chconf); 337 mcspi->fifo_depth = fifo_depth; 338 339 return; 340 } 341 342 disable_fifo: 343 if (t->rx_buf != NULL) 344 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 345 346 if (t->tx_buf != NULL) 347 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 348 349 mcspi_write_chconf0(spi, chconf); 350 mcspi->fifo_depth = 0; 351 } 352 353 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi) 354 { 355 struct spi_master *spi_cntrl = mcspi->master; 356 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 357 struct omap2_mcspi_cs *cs; 358 359 /* McSPI: context restore */ 360 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 361 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 362 363 list_for_each_entry(cs, &ctx->cs, node) 364 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 365 } 366 367 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 368 { 369 unsigned long timeout; 370 371 timeout = jiffies + msecs_to_jiffies(1000); 372 while (!(readl_relaxed(reg) & bit)) { 373 if (time_after(jiffies, timeout)) { 374 if (!(readl_relaxed(reg) & bit)) 375 return -ETIMEDOUT; 376 else 377 return 0; 378 } 379 cpu_relax(); 380 } 381 return 0; 382 } 383 384 static void omap2_mcspi_rx_callback(void *data) 385 { 386 struct spi_device *spi = data; 387 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 388 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 389 390 /* We must disable the DMA RX request */ 391 omap2_mcspi_set_dma_req(spi, 1, 0); 392 393 complete(&mcspi_dma->dma_rx_completion); 394 } 395 396 static void omap2_mcspi_tx_callback(void *data) 397 { 398 struct spi_device *spi = data; 399 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 400 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 401 402 /* We must disable the DMA TX request */ 403 omap2_mcspi_set_dma_req(spi, 0, 0); 404 405 complete(&mcspi_dma->dma_tx_completion); 406 } 407 408 static void omap2_mcspi_tx_dma(struct spi_device *spi, 409 struct spi_transfer *xfer, 410 struct dma_slave_config cfg) 411 { 412 struct omap2_mcspi *mcspi; 413 struct omap2_mcspi_dma *mcspi_dma; 414 unsigned int count; 415 416 mcspi = spi_master_get_devdata(spi->master); 417 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 418 count = xfer->len; 419 420 if (mcspi_dma->dma_tx) { 421 struct dma_async_tx_descriptor *tx; 422 423 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 424 425 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl, 426 xfer->tx_sg.nents, 427 DMA_MEM_TO_DEV, 428 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 429 if (tx) { 430 tx->callback = omap2_mcspi_tx_callback; 431 tx->callback_param = spi; 432 dmaengine_submit(tx); 433 } else { 434 /* FIXME: fall back to PIO? */ 435 } 436 } 437 dma_async_issue_pending(mcspi_dma->dma_tx); 438 omap2_mcspi_set_dma_req(spi, 0, 1); 439 440 } 441 442 static unsigned 443 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 444 struct dma_slave_config cfg, 445 unsigned es) 446 { 447 struct omap2_mcspi *mcspi; 448 struct omap2_mcspi_dma *mcspi_dma; 449 unsigned int count, transfer_reduction = 0; 450 struct scatterlist *sg_out[2]; 451 int nb_sizes = 0, out_mapped_nents[2], ret, x; 452 size_t sizes[2]; 453 u32 l; 454 int elements = 0; 455 int word_len, element_count; 456 struct omap2_mcspi_cs *cs = spi->controller_state; 457 mcspi = spi_master_get_devdata(spi->master); 458 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 459 count = xfer->len; 460 461 /* 462 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM 463 * it mentions reducing DMA transfer length by one element in master 464 * normal mode. 465 */ 466 if (mcspi->fifo_depth == 0) 467 transfer_reduction = es; 468 469 word_len = cs->word_len; 470 l = mcspi_cached_chconf0(spi); 471 472 if (word_len <= 8) 473 element_count = count; 474 else if (word_len <= 16) 475 element_count = count >> 1; 476 else /* word_len <= 32 */ 477 element_count = count >> 2; 478 479 if (mcspi_dma->dma_rx) { 480 struct dma_async_tx_descriptor *tx; 481 482 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 483 484 /* 485 * Reduce DMA transfer length by one more if McSPI is 486 * configured in turbo mode. 487 */ 488 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 489 transfer_reduction += es; 490 491 if (transfer_reduction) { 492 /* Split sgl into two. The second sgl won't be used. */ 493 sizes[0] = count - transfer_reduction; 494 sizes[1] = transfer_reduction; 495 nb_sizes = 2; 496 } else { 497 /* 498 * Don't bother splitting the sgl. This essentially 499 * clones the original sgl. 500 */ 501 sizes[0] = count; 502 nb_sizes = 1; 503 } 504 505 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 506 0, nb_sizes, 507 sizes, 508 sg_out, out_mapped_nents, 509 GFP_KERNEL); 510 511 if (ret < 0) { 512 dev_err(&spi->dev, "sg_split failed\n"); 513 return 0; 514 } 515 516 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, 517 sg_out[0], 518 out_mapped_nents[0], 519 DMA_DEV_TO_MEM, 520 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 521 if (tx) { 522 tx->callback = omap2_mcspi_rx_callback; 523 tx->callback_param = spi; 524 dmaengine_submit(tx); 525 } else { 526 /* FIXME: fall back to PIO? */ 527 } 528 } 529 530 dma_async_issue_pending(mcspi_dma->dma_rx); 531 omap2_mcspi_set_dma_req(spi, 1, 1); 532 533 wait_for_completion(&mcspi_dma->dma_rx_completion); 534 535 for (x = 0; x < nb_sizes; x++) 536 kfree(sg_out[x]); 537 538 if (mcspi->fifo_depth > 0) 539 return count; 540 541 /* 542 * Due to the DMA transfer length reduction the missing bytes must 543 * be read manually to receive all of the expected data. 544 */ 545 omap2_mcspi_set_enable(spi, 0); 546 547 elements = element_count - 1; 548 549 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 550 elements--; 551 552 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 553 & OMAP2_MCSPI_CHSTAT_RXS)) { 554 u32 w; 555 556 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 557 if (word_len <= 8) 558 ((u8 *)xfer->rx_buf)[elements++] = w; 559 else if (word_len <= 16) 560 ((u16 *)xfer->rx_buf)[elements++] = w; 561 else /* word_len <= 32 */ 562 ((u32 *)xfer->rx_buf)[elements++] = w; 563 } else { 564 int bytes_per_word = mcspi_bytes_per_word(word_len); 565 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 566 count -= (bytes_per_word << 1); 567 omap2_mcspi_set_enable(spi, 1); 568 return count; 569 } 570 } 571 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 572 & OMAP2_MCSPI_CHSTAT_RXS)) { 573 u32 w; 574 575 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 576 if (word_len <= 8) 577 ((u8 *)xfer->rx_buf)[elements] = w; 578 else if (word_len <= 16) 579 ((u16 *)xfer->rx_buf)[elements] = w; 580 else /* word_len <= 32 */ 581 ((u32 *)xfer->rx_buf)[elements] = w; 582 } else { 583 dev_err(&spi->dev, "DMA RX last word empty\n"); 584 count -= mcspi_bytes_per_word(word_len); 585 } 586 omap2_mcspi_set_enable(spi, 1); 587 return count; 588 } 589 590 static unsigned 591 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 592 { 593 struct omap2_mcspi *mcspi; 594 struct omap2_mcspi_cs *cs = spi->controller_state; 595 struct omap2_mcspi_dma *mcspi_dma; 596 unsigned int count; 597 u32 l; 598 u8 *rx; 599 const u8 *tx; 600 struct dma_slave_config cfg; 601 enum dma_slave_buswidth width; 602 unsigned es; 603 u32 burst; 604 void __iomem *chstat_reg; 605 void __iomem *irqstat_reg; 606 int wait_res; 607 608 mcspi = spi_master_get_devdata(spi->master); 609 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 610 l = mcspi_cached_chconf0(spi); 611 612 613 if (cs->word_len <= 8) { 614 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 615 es = 1; 616 } else if (cs->word_len <= 16) { 617 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 618 es = 2; 619 } else { 620 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 621 es = 4; 622 } 623 624 count = xfer->len; 625 burst = 1; 626 627 if (mcspi->fifo_depth > 0) { 628 if (count > mcspi->fifo_depth) 629 burst = mcspi->fifo_depth / es; 630 else 631 burst = count / es; 632 } 633 634 memset(&cfg, 0, sizeof(cfg)); 635 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 636 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 637 cfg.src_addr_width = width; 638 cfg.dst_addr_width = width; 639 cfg.src_maxburst = burst; 640 cfg.dst_maxburst = burst; 641 642 rx = xfer->rx_buf; 643 tx = xfer->tx_buf; 644 645 if (tx != NULL) 646 omap2_mcspi_tx_dma(spi, xfer, cfg); 647 648 if (rx != NULL) 649 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 650 651 if (tx != NULL) { 652 wait_for_completion(&mcspi_dma->dma_tx_completion); 653 654 if (mcspi->fifo_depth > 0) { 655 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 656 657 if (mcspi_wait_for_reg_bit(irqstat_reg, 658 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 659 dev_err(&spi->dev, "EOW timed out\n"); 660 661 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS, 662 OMAP2_MCSPI_IRQSTATUS_EOW); 663 } 664 665 /* for TX_ONLY mode, be sure all words have shifted out */ 666 if (rx == NULL) { 667 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 668 if (mcspi->fifo_depth > 0) { 669 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 670 OMAP2_MCSPI_CHSTAT_TXFFE); 671 if (wait_res < 0) 672 dev_err(&spi->dev, "TXFFE timed out\n"); 673 } else { 674 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 675 OMAP2_MCSPI_CHSTAT_TXS); 676 if (wait_res < 0) 677 dev_err(&spi->dev, "TXS timed out\n"); 678 } 679 if (wait_res >= 0 && 680 (mcspi_wait_for_reg_bit(chstat_reg, 681 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 682 dev_err(&spi->dev, "EOT timed out\n"); 683 } 684 } 685 return count; 686 } 687 688 static unsigned 689 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 690 { 691 struct omap2_mcspi *mcspi; 692 struct omap2_mcspi_cs *cs = spi->controller_state; 693 unsigned int count, c; 694 u32 l; 695 void __iomem *base = cs->base; 696 void __iomem *tx_reg; 697 void __iomem *rx_reg; 698 void __iomem *chstat_reg; 699 int word_len; 700 701 mcspi = spi_master_get_devdata(spi->master); 702 count = xfer->len; 703 c = count; 704 word_len = cs->word_len; 705 706 l = mcspi_cached_chconf0(spi); 707 708 /* We store the pre-calculated register addresses on stack to speed 709 * up the transfer loop. */ 710 tx_reg = base + OMAP2_MCSPI_TX0; 711 rx_reg = base + OMAP2_MCSPI_RX0; 712 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 713 714 if (c < (word_len>>3)) 715 return 0; 716 717 if (word_len <= 8) { 718 u8 *rx; 719 const u8 *tx; 720 721 rx = xfer->rx_buf; 722 tx = xfer->tx_buf; 723 724 do { 725 c -= 1; 726 if (tx != NULL) { 727 if (mcspi_wait_for_reg_bit(chstat_reg, 728 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 729 dev_err(&spi->dev, "TXS timed out\n"); 730 goto out; 731 } 732 dev_vdbg(&spi->dev, "write-%d %02x\n", 733 word_len, *tx); 734 writel_relaxed(*tx++, tx_reg); 735 } 736 if (rx != NULL) { 737 if (mcspi_wait_for_reg_bit(chstat_reg, 738 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 739 dev_err(&spi->dev, "RXS timed out\n"); 740 goto out; 741 } 742 743 if (c == 1 && tx == NULL && 744 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 745 omap2_mcspi_set_enable(spi, 0); 746 *rx++ = readl_relaxed(rx_reg); 747 dev_vdbg(&spi->dev, "read-%d %02x\n", 748 word_len, *(rx - 1)); 749 if (mcspi_wait_for_reg_bit(chstat_reg, 750 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 751 dev_err(&spi->dev, 752 "RXS timed out\n"); 753 goto out; 754 } 755 c = 0; 756 } else if (c == 0 && tx == NULL) { 757 omap2_mcspi_set_enable(spi, 0); 758 } 759 760 *rx++ = readl_relaxed(rx_reg); 761 dev_vdbg(&spi->dev, "read-%d %02x\n", 762 word_len, *(rx - 1)); 763 } 764 } while (c); 765 } else if (word_len <= 16) { 766 u16 *rx; 767 const u16 *tx; 768 769 rx = xfer->rx_buf; 770 tx = xfer->tx_buf; 771 do { 772 c -= 2; 773 if (tx != NULL) { 774 if (mcspi_wait_for_reg_bit(chstat_reg, 775 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 776 dev_err(&spi->dev, "TXS timed out\n"); 777 goto out; 778 } 779 dev_vdbg(&spi->dev, "write-%d %04x\n", 780 word_len, *tx); 781 writel_relaxed(*tx++, tx_reg); 782 } 783 if (rx != NULL) { 784 if (mcspi_wait_for_reg_bit(chstat_reg, 785 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 786 dev_err(&spi->dev, "RXS timed out\n"); 787 goto out; 788 } 789 790 if (c == 2 && tx == NULL && 791 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 792 omap2_mcspi_set_enable(spi, 0); 793 *rx++ = readl_relaxed(rx_reg); 794 dev_vdbg(&spi->dev, "read-%d %04x\n", 795 word_len, *(rx - 1)); 796 if (mcspi_wait_for_reg_bit(chstat_reg, 797 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 798 dev_err(&spi->dev, 799 "RXS timed out\n"); 800 goto out; 801 } 802 c = 0; 803 } else if (c == 0 && tx == NULL) { 804 omap2_mcspi_set_enable(spi, 0); 805 } 806 807 *rx++ = readl_relaxed(rx_reg); 808 dev_vdbg(&spi->dev, "read-%d %04x\n", 809 word_len, *(rx - 1)); 810 } 811 } while (c >= 2); 812 } else if (word_len <= 32) { 813 u32 *rx; 814 const u32 *tx; 815 816 rx = xfer->rx_buf; 817 tx = xfer->tx_buf; 818 do { 819 c -= 4; 820 if (tx != NULL) { 821 if (mcspi_wait_for_reg_bit(chstat_reg, 822 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 823 dev_err(&spi->dev, "TXS timed out\n"); 824 goto out; 825 } 826 dev_vdbg(&spi->dev, "write-%d %08x\n", 827 word_len, *tx); 828 writel_relaxed(*tx++, tx_reg); 829 } 830 if (rx != NULL) { 831 if (mcspi_wait_for_reg_bit(chstat_reg, 832 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 833 dev_err(&spi->dev, "RXS timed out\n"); 834 goto out; 835 } 836 837 if (c == 4 && tx == NULL && 838 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 839 omap2_mcspi_set_enable(spi, 0); 840 *rx++ = readl_relaxed(rx_reg); 841 dev_vdbg(&spi->dev, "read-%d %08x\n", 842 word_len, *(rx - 1)); 843 if (mcspi_wait_for_reg_bit(chstat_reg, 844 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 845 dev_err(&spi->dev, 846 "RXS timed out\n"); 847 goto out; 848 } 849 c = 0; 850 } else if (c == 0 && tx == NULL) { 851 omap2_mcspi_set_enable(spi, 0); 852 } 853 854 *rx++ = readl_relaxed(rx_reg); 855 dev_vdbg(&spi->dev, "read-%d %08x\n", 856 word_len, *(rx - 1)); 857 } 858 } while (c >= 4); 859 } 860 861 /* for TX_ONLY mode, be sure all words have shifted out */ 862 if (xfer->rx_buf == NULL) { 863 if (mcspi_wait_for_reg_bit(chstat_reg, 864 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 865 dev_err(&spi->dev, "TXS timed out\n"); 866 } else if (mcspi_wait_for_reg_bit(chstat_reg, 867 OMAP2_MCSPI_CHSTAT_EOT) < 0) 868 dev_err(&spi->dev, "EOT timed out\n"); 869 870 /* disable chan to purge rx datas received in TX_ONLY transfer, 871 * otherwise these rx datas will affect the direct following 872 * RX_ONLY transfer. 873 */ 874 omap2_mcspi_set_enable(spi, 0); 875 } 876 out: 877 omap2_mcspi_set_enable(spi, 1); 878 return count - c; 879 } 880 881 static u32 omap2_mcspi_calc_divisor(u32 speed_hz) 882 { 883 u32 div; 884 885 for (div = 0; div < 15; div++) 886 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) 887 return div; 888 889 return 15; 890 } 891 892 /* called only when no transfer is active to this device */ 893 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 894 struct spi_transfer *t) 895 { 896 struct omap2_mcspi_cs *cs = spi->controller_state; 897 struct omap2_mcspi *mcspi; 898 struct spi_master *spi_cntrl; 899 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0; 900 u8 word_len = spi->bits_per_word; 901 u32 speed_hz = spi->max_speed_hz; 902 903 mcspi = spi_master_get_devdata(spi->master); 904 spi_cntrl = mcspi->master; 905 906 if (t != NULL && t->bits_per_word) 907 word_len = t->bits_per_word; 908 909 cs->word_len = word_len; 910 911 if (t && t->speed_hz) 912 speed_hz = t->speed_hz; 913 914 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); 915 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) { 916 clkd = omap2_mcspi_calc_divisor(speed_hz); 917 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd; 918 clkg = 0; 919 } else { 920 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz; 921 speed_hz = OMAP2_MCSPI_MAX_FREQ / div; 922 clkd = (div - 1) & 0xf; 923 extclk = (div - 1) >> 4; 924 clkg = OMAP2_MCSPI_CHCONF_CLKG; 925 } 926 927 l = mcspi_cached_chconf0(spi); 928 929 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS 930 * REVISIT: this controller could support SPI_3WIRE mode. 931 */ 932 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 933 l &= ~OMAP2_MCSPI_CHCONF_IS; 934 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 935 l |= OMAP2_MCSPI_CHCONF_DPE0; 936 } else { 937 l |= OMAP2_MCSPI_CHCONF_IS; 938 l |= OMAP2_MCSPI_CHCONF_DPE1; 939 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 940 } 941 942 /* wordlength */ 943 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 944 l |= (word_len - 1) << 7; 945 946 /* set chipselect polarity; manage with FORCE */ 947 if (!(spi->mode & SPI_CS_HIGH)) 948 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 949 else 950 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 951 952 /* set clock divisor */ 953 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 954 l |= clkd << 2; 955 956 /* set clock granularity */ 957 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 958 l |= clkg; 959 if (clkg) { 960 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 961 cs->chctrl0 |= extclk << 8; 962 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 963 } 964 965 /* set SPI mode 0..3 */ 966 if (spi->mode & SPI_CPOL) 967 l |= OMAP2_MCSPI_CHCONF_POL; 968 else 969 l &= ~OMAP2_MCSPI_CHCONF_POL; 970 if (spi->mode & SPI_CPHA) 971 l |= OMAP2_MCSPI_CHCONF_PHA; 972 else 973 l &= ~OMAP2_MCSPI_CHCONF_PHA; 974 975 mcspi_write_chconf0(spi, l); 976 977 cs->mode = spi->mode; 978 979 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 980 speed_hz, 981 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 982 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 983 984 return 0; 985 } 986 987 /* 988 * Note that we currently allow DMA only if we get a channel 989 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 990 */ 991 static int omap2_mcspi_request_dma(struct spi_device *spi) 992 { 993 struct spi_master *master = spi->master; 994 struct omap2_mcspi *mcspi; 995 struct omap2_mcspi_dma *mcspi_dma; 996 int ret = 0; 997 998 mcspi = spi_master_get_devdata(master); 999 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1000 1001 init_completion(&mcspi_dma->dma_rx_completion); 1002 init_completion(&mcspi_dma->dma_tx_completion); 1003 1004 mcspi_dma->dma_rx = dma_request_chan(&master->dev, 1005 mcspi_dma->dma_rx_ch_name); 1006 if (IS_ERR(mcspi_dma->dma_rx)) { 1007 ret = PTR_ERR(mcspi_dma->dma_rx); 1008 mcspi_dma->dma_rx = NULL; 1009 goto no_dma; 1010 } 1011 1012 mcspi_dma->dma_tx = dma_request_chan(&master->dev, 1013 mcspi_dma->dma_tx_ch_name); 1014 if (IS_ERR(mcspi_dma->dma_tx)) { 1015 ret = PTR_ERR(mcspi_dma->dma_tx); 1016 mcspi_dma->dma_tx = NULL; 1017 dma_release_channel(mcspi_dma->dma_rx); 1018 mcspi_dma->dma_rx = NULL; 1019 } 1020 1021 no_dma: 1022 return ret; 1023 } 1024 1025 static int omap2_mcspi_setup(struct spi_device *spi) 1026 { 1027 int ret; 1028 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 1029 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1030 struct omap2_mcspi_dma *mcspi_dma; 1031 struct omap2_mcspi_cs *cs = spi->controller_state; 1032 1033 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1034 1035 if (!cs) { 1036 cs = kzalloc(sizeof *cs, GFP_KERNEL); 1037 if (!cs) 1038 return -ENOMEM; 1039 cs->base = mcspi->base + spi->chip_select * 0x14; 1040 cs->phys = mcspi->phys + spi->chip_select * 0x14; 1041 cs->mode = 0; 1042 cs->chconf0 = 0; 1043 cs->chctrl0 = 0; 1044 spi->controller_state = cs; 1045 /* Link this to context save list */ 1046 list_add_tail(&cs->node, &ctx->cs); 1047 1048 if (gpio_is_valid(spi->cs_gpio)) { 1049 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev)); 1050 if (ret) { 1051 dev_err(&spi->dev, "failed to request gpio\n"); 1052 return ret; 1053 } 1054 gpio_direction_output(spi->cs_gpio, 1055 !(spi->mode & SPI_CS_HIGH)); 1056 } 1057 } 1058 1059 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) { 1060 ret = omap2_mcspi_request_dma(spi); 1061 if (ret) 1062 dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n", 1063 ret); 1064 } 1065 1066 ret = pm_runtime_get_sync(mcspi->dev); 1067 if (ret < 0) 1068 return ret; 1069 1070 ret = omap2_mcspi_setup_transfer(spi, NULL); 1071 pm_runtime_mark_last_busy(mcspi->dev); 1072 pm_runtime_put_autosuspend(mcspi->dev); 1073 1074 return ret; 1075 } 1076 1077 static void omap2_mcspi_cleanup(struct spi_device *spi) 1078 { 1079 struct omap2_mcspi *mcspi; 1080 struct omap2_mcspi_dma *mcspi_dma; 1081 struct omap2_mcspi_cs *cs; 1082 1083 mcspi = spi_master_get_devdata(spi->master); 1084 1085 if (spi->controller_state) { 1086 /* Unlink controller state from context save list */ 1087 cs = spi->controller_state; 1088 list_del(&cs->node); 1089 1090 kfree(cs); 1091 } 1092 1093 if (spi->chip_select < spi->master->num_chipselect) { 1094 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1095 1096 if (mcspi_dma->dma_rx) { 1097 dma_release_channel(mcspi_dma->dma_rx); 1098 mcspi_dma->dma_rx = NULL; 1099 } 1100 if (mcspi_dma->dma_tx) { 1101 dma_release_channel(mcspi_dma->dma_tx); 1102 mcspi_dma->dma_tx = NULL; 1103 } 1104 } 1105 1106 if (gpio_is_valid(spi->cs_gpio)) 1107 gpio_free(spi->cs_gpio); 1108 } 1109 1110 static int omap2_mcspi_transfer_one(struct spi_master *master, 1111 struct spi_device *spi, 1112 struct spi_transfer *t) 1113 { 1114 1115 /* We only enable one channel at a time -- the one whose message is 1116 * -- although this controller would gladly 1117 * arbitrate among multiple channels. This corresponds to "single 1118 * channel" master mode. As a side effect, we need to manage the 1119 * chipselect with the FORCE bit ... CS != channel enable. 1120 */ 1121 1122 struct omap2_mcspi *mcspi; 1123 struct omap2_mcspi_dma *mcspi_dma; 1124 struct omap2_mcspi_cs *cs; 1125 struct omap2_mcspi_device_config *cd; 1126 int par_override = 0; 1127 int status = 0; 1128 u32 chconf; 1129 1130 mcspi = spi_master_get_devdata(master); 1131 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1132 cs = spi->controller_state; 1133 cd = spi->controller_data; 1134 1135 /* 1136 * The slave driver could have changed spi->mode in which case 1137 * it will be different from cs->mode (the current hardware setup). 1138 * If so, set par_override (even though its not a parity issue) so 1139 * omap2_mcspi_setup_transfer will be called to configure the hardware 1140 * with the correct mode on the first iteration of the loop below. 1141 */ 1142 if (spi->mode != cs->mode) 1143 par_override = 1; 1144 1145 omap2_mcspi_set_enable(spi, 0); 1146 1147 if (gpio_is_valid(spi->cs_gpio)) 1148 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); 1149 1150 if (par_override || 1151 (t->speed_hz != spi->max_speed_hz) || 1152 (t->bits_per_word != spi->bits_per_word)) { 1153 par_override = 1; 1154 status = omap2_mcspi_setup_transfer(spi, t); 1155 if (status < 0) 1156 goto out; 1157 if (t->speed_hz == spi->max_speed_hz && 1158 t->bits_per_word == spi->bits_per_word) 1159 par_override = 0; 1160 } 1161 if (cd && cd->cs_per_word) { 1162 chconf = mcspi->ctx.modulctrl; 1163 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 1164 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1165 mcspi->ctx.modulctrl = 1166 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1167 } 1168 1169 chconf = mcspi_cached_chconf0(spi); 1170 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1171 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1172 1173 if (t->tx_buf == NULL) 1174 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1175 else if (t->rx_buf == NULL) 1176 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1177 1178 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1179 /* Turbo mode is for more than one word */ 1180 if (t->len > ((cs->word_len + 7) >> 3)) 1181 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1182 } 1183 1184 mcspi_write_chconf0(spi, chconf); 1185 1186 if (t->len) { 1187 unsigned count; 1188 1189 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1190 master->cur_msg_mapped && 1191 master->can_dma(master, spi, t)) 1192 omap2_mcspi_set_fifo(spi, t, 1); 1193 1194 omap2_mcspi_set_enable(spi, 1); 1195 1196 /* RX_ONLY mode needs dummy data in TX reg */ 1197 if (t->tx_buf == NULL) 1198 writel_relaxed(0, cs->base 1199 + OMAP2_MCSPI_TX0); 1200 1201 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1202 master->cur_msg_mapped && 1203 master->can_dma(master, spi, t)) 1204 count = omap2_mcspi_txrx_dma(spi, t); 1205 else 1206 count = omap2_mcspi_txrx_pio(spi, t); 1207 1208 if (count != t->len) { 1209 status = -EIO; 1210 goto out; 1211 } 1212 } 1213 1214 omap2_mcspi_set_enable(spi, 0); 1215 1216 if (mcspi->fifo_depth > 0) 1217 omap2_mcspi_set_fifo(spi, t, 0); 1218 1219 out: 1220 /* Restore defaults if they were overriden */ 1221 if (par_override) { 1222 par_override = 0; 1223 status = omap2_mcspi_setup_transfer(spi, NULL); 1224 } 1225 1226 if (cd && cd->cs_per_word) { 1227 chconf = mcspi->ctx.modulctrl; 1228 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE; 1229 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1230 mcspi->ctx.modulctrl = 1231 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1232 } 1233 1234 omap2_mcspi_set_enable(spi, 0); 1235 1236 if (gpio_is_valid(spi->cs_gpio)) 1237 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); 1238 1239 if (mcspi->fifo_depth > 0 && t) 1240 omap2_mcspi_set_fifo(spi, t, 0); 1241 1242 return status; 1243 } 1244 1245 static int omap2_mcspi_prepare_message(struct spi_master *master, 1246 struct spi_message *msg) 1247 { 1248 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1249 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1250 struct omap2_mcspi_cs *cs; 1251 1252 /* Only a single channel can have the FORCE bit enabled 1253 * in its chconf0 register. 1254 * Scan all channels and disable them except the current one. 1255 * A FORCE can remain from a last transfer having cs_change enabled 1256 */ 1257 list_for_each_entry(cs, &ctx->cs, node) { 1258 if (msg->spi->controller_state == cs) 1259 continue; 1260 1261 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) { 1262 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1263 writel_relaxed(cs->chconf0, 1264 cs->base + OMAP2_MCSPI_CHCONF0); 1265 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0); 1266 } 1267 } 1268 1269 return 0; 1270 } 1271 1272 static bool omap2_mcspi_can_dma(struct spi_master *master, 1273 struct spi_device *spi, 1274 struct spi_transfer *xfer) 1275 { 1276 return (xfer->len >= DMA_MIN_BYTES); 1277 } 1278 1279 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi) 1280 { 1281 struct spi_master *master = mcspi->master; 1282 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1283 int ret = 0; 1284 1285 ret = pm_runtime_get_sync(mcspi->dev); 1286 if (ret < 0) 1287 return ret; 1288 1289 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, 1290 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1291 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1292 1293 omap2_mcspi_set_master_mode(master); 1294 pm_runtime_mark_last_busy(mcspi->dev); 1295 pm_runtime_put_autosuspend(mcspi->dev); 1296 return 0; 1297 } 1298 1299 static int omap_mcspi_runtime_resume(struct device *dev) 1300 { 1301 struct omap2_mcspi *mcspi; 1302 struct spi_master *master; 1303 1304 master = dev_get_drvdata(dev); 1305 mcspi = spi_master_get_devdata(master); 1306 omap2_mcspi_restore_ctx(mcspi); 1307 1308 return 0; 1309 } 1310 1311 static struct omap2_mcspi_platform_config omap2_pdata = { 1312 .regs_offset = 0, 1313 }; 1314 1315 static struct omap2_mcspi_platform_config omap4_pdata = { 1316 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1317 }; 1318 1319 static const struct of_device_id omap_mcspi_of_match[] = { 1320 { 1321 .compatible = "ti,omap2-mcspi", 1322 .data = &omap2_pdata, 1323 }, 1324 { 1325 .compatible = "ti,omap4-mcspi", 1326 .data = &omap4_pdata, 1327 }, 1328 { }, 1329 }; 1330 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1331 1332 static int omap2_mcspi_probe(struct platform_device *pdev) 1333 { 1334 struct spi_master *master; 1335 const struct omap2_mcspi_platform_config *pdata; 1336 struct omap2_mcspi *mcspi; 1337 struct resource *r; 1338 int status = 0, i; 1339 u32 regs_offset = 0; 1340 static int bus_num = 1; 1341 struct device_node *node = pdev->dev.of_node; 1342 const struct of_device_id *match; 1343 1344 master = spi_alloc_master(&pdev->dev, sizeof *mcspi); 1345 if (master == NULL) { 1346 dev_dbg(&pdev->dev, "master allocation failed\n"); 1347 return -ENOMEM; 1348 } 1349 1350 /* the spi->mode bits understood by this driver: */ 1351 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1352 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1353 master->setup = omap2_mcspi_setup; 1354 master->auto_runtime_pm = true; 1355 master->prepare_message = omap2_mcspi_prepare_message; 1356 master->can_dma = omap2_mcspi_can_dma; 1357 master->transfer_one = omap2_mcspi_transfer_one; 1358 master->set_cs = omap2_mcspi_set_cs; 1359 master->cleanup = omap2_mcspi_cleanup; 1360 master->dev.of_node = node; 1361 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ; 1362 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15; 1363 1364 platform_set_drvdata(pdev, master); 1365 1366 mcspi = spi_master_get_devdata(master); 1367 mcspi->master = master; 1368 1369 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1370 if (match) { 1371 u32 num_cs = 1; /* default number of chipselect */ 1372 pdata = match->data; 1373 1374 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1375 master->num_chipselect = num_cs; 1376 master->bus_num = bus_num++; 1377 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL)) 1378 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1379 } else { 1380 pdata = dev_get_platdata(&pdev->dev); 1381 master->num_chipselect = pdata->num_cs; 1382 if (pdev->id != -1) 1383 master->bus_num = pdev->id; 1384 mcspi->pin_dir = pdata->pin_dir; 1385 } 1386 regs_offset = pdata->regs_offset; 1387 1388 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1389 mcspi->base = devm_ioremap_resource(&pdev->dev, r); 1390 if (IS_ERR(mcspi->base)) { 1391 status = PTR_ERR(mcspi->base); 1392 goto free_master; 1393 } 1394 mcspi->phys = r->start + regs_offset; 1395 mcspi->base += regs_offset; 1396 1397 mcspi->dev = &pdev->dev; 1398 1399 INIT_LIST_HEAD(&mcspi->ctx.cs); 1400 1401 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect, 1402 sizeof(struct omap2_mcspi_dma), 1403 GFP_KERNEL); 1404 if (mcspi->dma_channels == NULL) { 1405 status = -ENOMEM; 1406 goto free_master; 1407 } 1408 1409 for (i = 0; i < master->num_chipselect; i++) { 1410 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i); 1411 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i); 1412 } 1413 1414 if (status < 0) 1415 goto free_master; 1416 1417 pm_runtime_use_autosuspend(&pdev->dev); 1418 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1419 pm_runtime_enable(&pdev->dev); 1420 1421 status = omap2_mcspi_master_setup(mcspi); 1422 if (status < 0) 1423 goto disable_pm; 1424 1425 status = devm_spi_register_master(&pdev->dev, master); 1426 if (status < 0) 1427 goto disable_pm; 1428 1429 return status; 1430 1431 disable_pm: 1432 pm_runtime_dont_use_autosuspend(&pdev->dev); 1433 pm_runtime_put_sync(&pdev->dev); 1434 pm_runtime_disable(&pdev->dev); 1435 free_master: 1436 spi_master_put(master); 1437 return status; 1438 } 1439 1440 static int omap2_mcspi_remove(struct platform_device *pdev) 1441 { 1442 struct spi_master *master = platform_get_drvdata(pdev); 1443 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1444 1445 pm_runtime_dont_use_autosuspend(mcspi->dev); 1446 pm_runtime_put_sync(mcspi->dev); 1447 pm_runtime_disable(&pdev->dev); 1448 1449 return 0; 1450 } 1451 1452 /* work with hotplug and coldplug */ 1453 MODULE_ALIAS("platform:omap2_mcspi"); 1454 1455 #ifdef CONFIG_SUSPEND 1456 /* 1457 * When SPI wake up from off-mode, CS is in activate state. If it was in 1458 * unactive state when driver was suspend, then force it to unactive state at 1459 * wake up. 1460 */ 1461 static int omap2_mcspi_resume(struct device *dev) 1462 { 1463 struct spi_master *master = dev_get_drvdata(dev); 1464 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1465 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1466 struct omap2_mcspi_cs *cs; 1467 1468 pm_runtime_get_sync(mcspi->dev); 1469 list_for_each_entry(cs, &ctx->cs, node) { 1470 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1471 /* 1472 * We need to toggle CS state for OMAP take this 1473 * change in account. 1474 */ 1475 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1476 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1477 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1478 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1479 } 1480 } 1481 pm_runtime_mark_last_busy(mcspi->dev); 1482 pm_runtime_put_autosuspend(mcspi->dev); 1483 1484 return pinctrl_pm_select_default_state(dev); 1485 } 1486 1487 static int omap2_mcspi_suspend(struct device *dev) 1488 { 1489 return pinctrl_pm_select_sleep_state(dev); 1490 } 1491 1492 #else 1493 #define omap2_mcspi_suspend NULL 1494 #define omap2_mcspi_resume NULL 1495 #endif 1496 1497 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1498 .resume = omap2_mcspi_resume, 1499 .suspend = omap2_mcspi_suspend, 1500 .runtime_resume = omap_mcspi_runtime_resume, 1501 }; 1502 1503 static struct platform_driver omap2_mcspi_driver = { 1504 .driver = { 1505 .name = "omap2_mcspi", 1506 .pm = &omap2_mcspi_pm_ops, 1507 .of_match_table = omap_mcspi_of_match, 1508 }, 1509 .probe = omap2_mcspi_probe, 1510 .remove = omap2_mcspi_remove, 1511 }; 1512 1513 module_platform_driver(omap2_mcspi_driver); 1514 MODULE_LICENSE("GPL"); 1515