1 /* 2 * OMAP2 McSPI controller driver 3 * 4 * Copyright (C) 2005, 2006 Nokia Corporation 5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 6 * Juha Yrj�l� <juha.yrjola@nokia.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/omap-dma.h> 27 #include <linux/platform_device.h> 28 #include <linux/err.h> 29 #include <linux/clk.h> 30 #include <linux/io.h> 31 #include <linux/slab.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/gcd.h> 36 37 #include <linux/spi/spi.h> 38 39 #include <linux/platform_data/spi-omap2-mcspi.h> 40 41 #define OMAP2_MCSPI_MAX_FREQ 48000000 42 #define OMAP2_MCSPI_MAX_DIVIDER 4096 43 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 44 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 45 #define SPI_AUTOSUSPEND_TIMEOUT 2000 46 47 #define OMAP2_MCSPI_REVISION 0x00 48 #define OMAP2_MCSPI_SYSSTATUS 0x14 49 #define OMAP2_MCSPI_IRQSTATUS 0x18 50 #define OMAP2_MCSPI_IRQENABLE 0x1c 51 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 52 #define OMAP2_MCSPI_SYST 0x24 53 #define OMAP2_MCSPI_MODULCTRL 0x28 54 #define OMAP2_MCSPI_XFERLEVEL 0x7c 55 56 /* per-channel banks, 0x14 bytes each, first is: */ 57 #define OMAP2_MCSPI_CHCONF0 0x2c 58 #define OMAP2_MCSPI_CHSTAT0 0x30 59 #define OMAP2_MCSPI_CHCTRL0 0x34 60 #define OMAP2_MCSPI_TX0 0x38 61 #define OMAP2_MCSPI_RX0 0x3c 62 63 /* per-register bitmasks: */ 64 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 65 66 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 67 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 68 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 69 70 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 71 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 72 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 73 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 74 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 75 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 76 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 77 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 78 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 79 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 80 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 81 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 82 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 83 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 84 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 85 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 86 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 87 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 88 89 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 90 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 91 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 92 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 93 94 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 95 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 96 97 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 98 99 /* We have 2 DMA channels per CS, one for RX and one for TX */ 100 struct omap2_mcspi_dma { 101 struct dma_chan *dma_tx; 102 struct dma_chan *dma_rx; 103 104 int dma_tx_sync_dev; 105 int dma_rx_sync_dev; 106 107 struct completion dma_tx_completion; 108 struct completion dma_rx_completion; 109 110 char dma_rx_ch_name[14]; 111 char dma_tx_ch_name[14]; 112 }; 113 114 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 115 * cache operations; better heuristics consider wordsize and bitrate. 116 */ 117 #define DMA_MIN_BYTES 160 118 119 120 /* 121 * Used for context save and restore, structure members to be updated whenever 122 * corresponding registers are modified. 123 */ 124 struct omap2_mcspi_regs { 125 u32 modulctrl; 126 u32 wakeupenable; 127 struct list_head cs; 128 }; 129 130 struct omap2_mcspi { 131 struct spi_master *master; 132 /* Virtual base address of the controller */ 133 void __iomem *base; 134 unsigned long phys; 135 /* SPI1 has 4 channels, while SPI2 has 2 */ 136 struct omap2_mcspi_dma *dma_channels; 137 struct device *dev; 138 struct omap2_mcspi_regs ctx; 139 int fifo_depth; 140 unsigned int pin_dir:1; 141 }; 142 143 struct omap2_mcspi_cs { 144 void __iomem *base; 145 unsigned long phys; 146 int word_len; 147 u16 mode; 148 struct list_head node; 149 /* Context save and restore shadow register */ 150 u32 chconf0, chctrl0; 151 }; 152 153 static inline void mcspi_write_reg(struct spi_master *master, 154 int idx, u32 val) 155 { 156 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 157 158 writel_relaxed(val, mcspi->base + idx); 159 } 160 161 static inline u32 mcspi_read_reg(struct spi_master *master, int idx) 162 { 163 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 164 165 return readl_relaxed(mcspi->base + idx); 166 } 167 168 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 169 int idx, u32 val) 170 { 171 struct omap2_mcspi_cs *cs = spi->controller_state; 172 173 writel_relaxed(val, cs->base + idx); 174 } 175 176 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 177 { 178 struct omap2_mcspi_cs *cs = spi->controller_state; 179 180 return readl_relaxed(cs->base + idx); 181 } 182 183 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 184 { 185 struct omap2_mcspi_cs *cs = spi->controller_state; 186 187 return cs->chconf0; 188 } 189 190 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 191 { 192 struct omap2_mcspi_cs *cs = spi->controller_state; 193 194 cs->chconf0 = val; 195 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 196 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 197 } 198 199 static inline int mcspi_bytes_per_word(int word_len) 200 { 201 if (word_len <= 8) 202 return 1; 203 else if (word_len <= 16) 204 return 2; 205 else /* word_len <= 32 */ 206 return 4; 207 } 208 209 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 210 int is_read, int enable) 211 { 212 u32 l, rw; 213 214 l = mcspi_cached_chconf0(spi); 215 216 if (is_read) /* 1 is read, 0 write */ 217 rw = OMAP2_MCSPI_CHCONF_DMAR; 218 else 219 rw = OMAP2_MCSPI_CHCONF_DMAW; 220 221 if (enable) 222 l |= rw; 223 else 224 l &= ~rw; 225 226 mcspi_write_chconf0(spi, l); 227 } 228 229 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 230 { 231 struct omap2_mcspi_cs *cs = spi->controller_state; 232 u32 l; 233 234 l = cs->chctrl0; 235 if (enable) 236 l |= OMAP2_MCSPI_CHCTRL_EN; 237 else 238 l &= ~OMAP2_MCSPI_CHCTRL_EN; 239 cs->chctrl0 = l; 240 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 241 /* Flash post-writes */ 242 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 243 } 244 245 static void omap2_mcspi_force_cs(struct spi_device *spi, int cs_active) 246 { 247 u32 l; 248 249 l = mcspi_cached_chconf0(spi); 250 if (cs_active) 251 l |= OMAP2_MCSPI_CHCONF_FORCE; 252 else 253 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 254 255 mcspi_write_chconf0(spi, l); 256 } 257 258 static void omap2_mcspi_set_master_mode(struct spi_master *master) 259 { 260 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 261 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 262 u32 l; 263 264 /* 265 * Setup when switching from (reset default) slave mode 266 * to single-channel master mode 267 */ 268 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); 269 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS); 270 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 271 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); 272 273 ctx->modulctrl = l; 274 } 275 276 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 277 struct spi_transfer *t, int enable) 278 { 279 struct spi_master *master = spi->master; 280 struct omap2_mcspi_cs *cs = spi->controller_state; 281 struct omap2_mcspi *mcspi; 282 unsigned int wcnt; 283 int max_fifo_depth, fifo_depth, bytes_per_word; 284 u32 chconf, xferlevel; 285 286 mcspi = spi_master_get_devdata(master); 287 288 chconf = mcspi_cached_chconf0(spi); 289 if (enable) { 290 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 291 if (t->len % bytes_per_word != 0) 292 goto disable_fifo; 293 294 if (t->rx_buf != NULL && t->tx_buf != NULL) 295 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 296 else 297 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 298 299 fifo_depth = gcd(t->len, max_fifo_depth); 300 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0) 301 goto disable_fifo; 302 303 wcnt = t->len / bytes_per_word; 304 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 305 goto disable_fifo; 306 307 xferlevel = wcnt << 16; 308 if (t->rx_buf != NULL) { 309 chconf |= OMAP2_MCSPI_CHCONF_FFER; 310 xferlevel |= (fifo_depth - 1) << 8; 311 } 312 if (t->tx_buf != NULL) { 313 chconf |= OMAP2_MCSPI_CHCONF_FFET; 314 xferlevel |= fifo_depth - 1; 315 } 316 317 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel); 318 mcspi_write_chconf0(spi, chconf); 319 mcspi->fifo_depth = fifo_depth; 320 321 return; 322 } 323 324 disable_fifo: 325 if (t->rx_buf != NULL) 326 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 327 328 if (t->tx_buf != NULL) 329 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 330 331 mcspi_write_chconf0(spi, chconf); 332 mcspi->fifo_depth = 0; 333 } 334 335 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi) 336 { 337 struct spi_master *spi_cntrl = mcspi->master; 338 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 339 struct omap2_mcspi_cs *cs; 340 341 /* McSPI: context restore */ 342 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 343 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 344 345 list_for_each_entry(cs, &ctx->cs, node) 346 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 347 } 348 349 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 350 { 351 unsigned long timeout; 352 353 timeout = jiffies + msecs_to_jiffies(1000); 354 while (!(readl_relaxed(reg) & bit)) { 355 if (time_after(jiffies, timeout)) { 356 if (!(readl_relaxed(reg) & bit)) 357 return -ETIMEDOUT; 358 else 359 return 0; 360 } 361 cpu_relax(); 362 } 363 return 0; 364 } 365 366 static void omap2_mcspi_rx_callback(void *data) 367 { 368 struct spi_device *spi = data; 369 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 370 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 371 372 /* We must disable the DMA RX request */ 373 omap2_mcspi_set_dma_req(spi, 1, 0); 374 375 complete(&mcspi_dma->dma_rx_completion); 376 } 377 378 static void omap2_mcspi_tx_callback(void *data) 379 { 380 struct spi_device *spi = data; 381 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 382 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 383 384 /* We must disable the DMA TX request */ 385 omap2_mcspi_set_dma_req(spi, 0, 0); 386 387 complete(&mcspi_dma->dma_tx_completion); 388 } 389 390 static void omap2_mcspi_tx_dma(struct spi_device *spi, 391 struct spi_transfer *xfer, 392 struct dma_slave_config cfg) 393 { 394 struct omap2_mcspi *mcspi; 395 struct omap2_mcspi_dma *mcspi_dma; 396 unsigned int count; 397 398 mcspi = spi_master_get_devdata(spi->master); 399 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 400 count = xfer->len; 401 402 if (mcspi_dma->dma_tx) { 403 struct dma_async_tx_descriptor *tx; 404 struct scatterlist sg; 405 406 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 407 408 sg_init_table(&sg, 1); 409 sg_dma_address(&sg) = xfer->tx_dma; 410 sg_dma_len(&sg) = xfer->len; 411 412 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1, 413 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 414 if (tx) { 415 tx->callback = omap2_mcspi_tx_callback; 416 tx->callback_param = spi; 417 dmaengine_submit(tx); 418 } else { 419 /* FIXME: fall back to PIO? */ 420 } 421 } 422 dma_async_issue_pending(mcspi_dma->dma_tx); 423 omap2_mcspi_set_dma_req(spi, 0, 1); 424 425 } 426 427 static unsigned 428 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 429 struct dma_slave_config cfg, 430 unsigned es) 431 { 432 struct omap2_mcspi *mcspi; 433 struct omap2_mcspi_dma *mcspi_dma; 434 unsigned int count, dma_count; 435 u32 l; 436 int elements = 0; 437 int word_len, element_count; 438 struct omap2_mcspi_cs *cs = spi->controller_state; 439 mcspi = spi_master_get_devdata(spi->master); 440 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 441 count = xfer->len; 442 dma_count = xfer->len; 443 444 if (mcspi->fifo_depth == 0) 445 dma_count -= es; 446 447 word_len = cs->word_len; 448 l = mcspi_cached_chconf0(spi); 449 450 if (word_len <= 8) 451 element_count = count; 452 else if (word_len <= 16) 453 element_count = count >> 1; 454 else /* word_len <= 32 */ 455 element_count = count >> 2; 456 457 if (mcspi_dma->dma_rx) { 458 struct dma_async_tx_descriptor *tx; 459 struct scatterlist sg; 460 461 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 462 463 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 464 dma_count -= es; 465 466 sg_init_table(&sg, 1); 467 sg_dma_address(&sg) = xfer->rx_dma; 468 sg_dma_len(&sg) = dma_count; 469 470 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1, 471 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | 472 DMA_CTRL_ACK); 473 if (tx) { 474 tx->callback = omap2_mcspi_rx_callback; 475 tx->callback_param = spi; 476 dmaengine_submit(tx); 477 } else { 478 /* FIXME: fall back to PIO? */ 479 } 480 } 481 482 dma_async_issue_pending(mcspi_dma->dma_rx); 483 omap2_mcspi_set_dma_req(spi, 1, 1); 484 485 wait_for_completion(&mcspi_dma->dma_rx_completion); 486 dma_unmap_single(mcspi->dev, xfer->rx_dma, count, 487 DMA_FROM_DEVICE); 488 489 if (mcspi->fifo_depth > 0) 490 return count; 491 492 omap2_mcspi_set_enable(spi, 0); 493 494 elements = element_count - 1; 495 496 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 497 elements--; 498 499 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 500 & OMAP2_MCSPI_CHSTAT_RXS)) { 501 u32 w; 502 503 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 504 if (word_len <= 8) 505 ((u8 *)xfer->rx_buf)[elements++] = w; 506 else if (word_len <= 16) 507 ((u16 *)xfer->rx_buf)[elements++] = w; 508 else /* word_len <= 32 */ 509 ((u32 *)xfer->rx_buf)[elements++] = w; 510 } else { 511 int bytes_per_word = mcspi_bytes_per_word(word_len); 512 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 513 count -= (bytes_per_word << 1); 514 omap2_mcspi_set_enable(spi, 1); 515 return count; 516 } 517 } 518 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 519 & OMAP2_MCSPI_CHSTAT_RXS)) { 520 u32 w; 521 522 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 523 if (word_len <= 8) 524 ((u8 *)xfer->rx_buf)[elements] = w; 525 else if (word_len <= 16) 526 ((u16 *)xfer->rx_buf)[elements] = w; 527 else /* word_len <= 32 */ 528 ((u32 *)xfer->rx_buf)[elements] = w; 529 } else { 530 dev_err(&spi->dev, "DMA RX last word empty\n"); 531 count -= mcspi_bytes_per_word(word_len); 532 } 533 omap2_mcspi_set_enable(spi, 1); 534 return count; 535 } 536 537 static unsigned 538 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 539 { 540 struct omap2_mcspi *mcspi; 541 struct omap2_mcspi_cs *cs = spi->controller_state; 542 struct omap2_mcspi_dma *mcspi_dma; 543 unsigned int count; 544 u32 l; 545 u8 *rx; 546 const u8 *tx; 547 struct dma_slave_config cfg; 548 enum dma_slave_buswidth width; 549 unsigned es; 550 u32 burst; 551 void __iomem *chstat_reg; 552 void __iomem *irqstat_reg; 553 int wait_res; 554 555 mcspi = spi_master_get_devdata(spi->master); 556 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 557 l = mcspi_cached_chconf0(spi); 558 559 560 if (cs->word_len <= 8) { 561 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 562 es = 1; 563 } else if (cs->word_len <= 16) { 564 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 565 es = 2; 566 } else { 567 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 568 es = 4; 569 } 570 571 count = xfer->len; 572 burst = 1; 573 574 if (mcspi->fifo_depth > 0) { 575 if (count > mcspi->fifo_depth) 576 burst = mcspi->fifo_depth / es; 577 else 578 burst = count / es; 579 } 580 581 memset(&cfg, 0, sizeof(cfg)); 582 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 583 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 584 cfg.src_addr_width = width; 585 cfg.dst_addr_width = width; 586 cfg.src_maxburst = burst; 587 cfg.dst_maxburst = burst; 588 589 rx = xfer->rx_buf; 590 tx = xfer->tx_buf; 591 592 if (tx != NULL) 593 omap2_mcspi_tx_dma(spi, xfer, cfg); 594 595 if (rx != NULL) 596 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 597 598 if (tx != NULL) { 599 wait_for_completion(&mcspi_dma->dma_tx_completion); 600 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len, 601 DMA_TO_DEVICE); 602 603 if (mcspi->fifo_depth > 0) { 604 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 605 606 if (mcspi_wait_for_reg_bit(irqstat_reg, 607 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 608 dev_err(&spi->dev, "EOW timed out\n"); 609 610 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS, 611 OMAP2_MCSPI_IRQSTATUS_EOW); 612 } 613 614 /* for TX_ONLY mode, be sure all words have shifted out */ 615 if (rx == NULL) { 616 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 617 if (mcspi->fifo_depth > 0) { 618 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 619 OMAP2_MCSPI_CHSTAT_TXFFE); 620 if (wait_res < 0) 621 dev_err(&spi->dev, "TXFFE timed out\n"); 622 } else { 623 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 624 OMAP2_MCSPI_CHSTAT_TXS); 625 if (wait_res < 0) 626 dev_err(&spi->dev, "TXS timed out\n"); 627 } 628 if (wait_res >= 0 && 629 (mcspi_wait_for_reg_bit(chstat_reg, 630 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 631 dev_err(&spi->dev, "EOT timed out\n"); 632 } 633 } 634 return count; 635 } 636 637 static unsigned 638 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 639 { 640 struct omap2_mcspi *mcspi; 641 struct omap2_mcspi_cs *cs = spi->controller_state; 642 unsigned int count, c; 643 u32 l; 644 void __iomem *base = cs->base; 645 void __iomem *tx_reg; 646 void __iomem *rx_reg; 647 void __iomem *chstat_reg; 648 int word_len; 649 650 mcspi = spi_master_get_devdata(spi->master); 651 count = xfer->len; 652 c = count; 653 word_len = cs->word_len; 654 655 l = mcspi_cached_chconf0(spi); 656 657 /* We store the pre-calculated register addresses on stack to speed 658 * up the transfer loop. */ 659 tx_reg = base + OMAP2_MCSPI_TX0; 660 rx_reg = base + OMAP2_MCSPI_RX0; 661 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 662 663 if (c < (word_len>>3)) 664 return 0; 665 666 if (word_len <= 8) { 667 u8 *rx; 668 const u8 *tx; 669 670 rx = xfer->rx_buf; 671 tx = xfer->tx_buf; 672 673 do { 674 c -= 1; 675 if (tx != NULL) { 676 if (mcspi_wait_for_reg_bit(chstat_reg, 677 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 678 dev_err(&spi->dev, "TXS timed out\n"); 679 goto out; 680 } 681 dev_vdbg(&spi->dev, "write-%d %02x\n", 682 word_len, *tx); 683 writel_relaxed(*tx++, tx_reg); 684 } 685 if (rx != NULL) { 686 if (mcspi_wait_for_reg_bit(chstat_reg, 687 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 688 dev_err(&spi->dev, "RXS timed out\n"); 689 goto out; 690 } 691 692 if (c == 1 && tx == NULL && 693 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 694 omap2_mcspi_set_enable(spi, 0); 695 *rx++ = readl_relaxed(rx_reg); 696 dev_vdbg(&spi->dev, "read-%d %02x\n", 697 word_len, *(rx - 1)); 698 if (mcspi_wait_for_reg_bit(chstat_reg, 699 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 700 dev_err(&spi->dev, 701 "RXS timed out\n"); 702 goto out; 703 } 704 c = 0; 705 } else if (c == 0 && tx == NULL) { 706 omap2_mcspi_set_enable(spi, 0); 707 } 708 709 *rx++ = readl_relaxed(rx_reg); 710 dev_vdbg(&spi->dev, "read-%d %02x\n", 711 word_len, *(rx - 1)); 712 } 713 } while (c); 714 } else if (word_len <= 16) { 715 u16 *rx; 716 const u16 *tx; 717 718 rx = xfer->rx_buf; 719 tx = xfer->tx_buf; 720 do { 721 c -= 2; 722 if (tx != NULL) { 723 if (mcspi_wait_for_reg_bit(chstat_reg, 724 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 725 dev_err(&spi->dev, "TXS timed out\n"); 726 goto out; 727 } 728 dev_vdbg(&spi->dev, "write-%d %04x\n", 729 word_len, *tx); 730 writel_relaxed(*tx++, tx_reg); 731 } 732 if (rx != NULL) { 733 if (mcspi_wait_for_reg_bit(chstat_reg, 734 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 735 dev_err(&spi->dev, "RXS timed out\n"); 736 goto out; 737 } 738 739 if (c == 2 && tx == NULL && 740 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 741 omap2_mcspi_set_enable(spi, 0); 742 *rx++ = readl_relaxed(rx_reg); 743 dev_vdbg(&spi->dev, "read-%d %04x\n", 744 word_len, *(rx - 1)); 745 if (mcspi_wait_for_reg_bit(chstat_reg, 746 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 747 dev_err(&spi->dev, 748 "RXS timed out\n"); 749 goto out; 750 } 751 c = 0; 752 } else if (c == 0 && tx == NULL) { 753 omap2_mcspi_set_enable(spi, 0); 754 } 755 756 *rx++ = readl_relaxed(rx_reg); 757 dev_vdbg(&spi->dev, "read-%d %04x\n", 758 word_len, *(rx - 1)); 759 } 760 } while (c >= 2); 761 } else if (word_len <= 32) { 762 u32 *rx; 763 const u32 *tx; 764 765 rx = xfer->rx_buf; 766 tx = xfer->tx_buf; 767 do { 768 c -= 4; 769 if (tx != NULL) { 770 if (mcspi_wait_for_reg_bit(chstat_reg, 771 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 772 dev_err(&spi->dev, "TXS timed out\n"); 773 goto out; 774 } 775 dev_vdbg(&spi->dev, "write-%d %08x\n", 776 word_len, *tx); 777 writel_relaxed(*tx++, tx_reg); 778 } 779 if (rx != NULL) { 780 if (mcspi_wait_for_reg_bit(chstat_reg, 781 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 782 dev_err(&spi->dev, "RXS timed out\n"); 783 goto out; 784 } 785 786 if (c == 4 && tx == NULL && 787 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 788 omap2_mcspi_set_enable(spi, 0); 789 *rx++ = readl_relaxed(rx_reg); 790 dev_vdbg(&spi->dev, "read-%d %08x\n", 791 word_len, *(rx - 1)); 792 if (mcspi_wait_for_reg_bit(chstat_reg, 793 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 794 dev_err(&spi->dev, 795 "RXS timed out\n"); 796 goto out; 797 } 798 c = 0; 799 } else if (c == 0 && tx == NULL) { 800 omap2_mcspi_set_enable(spi, 0); 801 } 802 803 *rx++ = readl_relaxed(rx_reg); 804 dev_vdbg(&spi->dev, "read-%d %08x\n", 805 word_len, *(rx - 1)); 806 } 807 } while (c >= 4); 808 } 809 810 /* for TX_ONLY mode, be sure all words have shifted out */ 811 if (xfer->rx_buf == NULL) { 812 if (mcspi_wait_for_reg_bit(chstat_reg, 813 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 814 dev_err(&spi->dev, "TXS timed out\n"); 815 } else if (mcspi_wait_for_reg_bit(chstat_reg, 816 OMAP2_MCSPI_CHSTAT_EOT) < 0) 817 dev_err(&spi->dev, "EOT timed out\n"); 818 819 /* disable chan to purge rx datas received in TX_ONLY transfer, 820 * otherwise these rx datas will affect the direct following 821 * RX_ONLY transfer. 822 */ 823 omap2_mcspi_set_enable(spi, 0); 824 } 825 out: 826 omap2_mcspi_set_enable(spi, 1); 827 return count - c; 828 } 829 830 static u32 omap2_mcspi_calc_divisor(u32 speed_hz) 831 { 832 u32 div; 833 834 for (div = 0; div < 15; div++) 835 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) 836 return div; 837 838 return 15; 839 } 840 841 /* called only when no transfer is active to this device */ 842 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 843 struct spi_transfer *t) 844 { 845 struct omap2_mcspi_cs *cs = spi->controller_state; 846 struct omap2_mcspi *mcspi; 847 struct spi_master *spi_cntrl; 848 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0; 849 u8 word_len = spi->bits_per_word; 850 u32 speed_hz = spi->max_speed_hz; 851 852 mcspi = spi_master_get_devdata(spi->master); 853 spi_cntrl = mcspi->master; 854 855 if (t != NULL && t->bits_per_word) 856 word_len = t->bits_per_word; 857 858 cs->word_len = word_len; 859 860 if (t && t->speed_hz) 861 speed_hz = t->speed_hz; 862 863 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); 864 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) { 865 clkd = omap2_mcspi_calc_divisor(speed_hz); 866 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd; 867 clkg = 0; 868 } else { 869 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz; 870 speed_hz = OMAP2_MCSPI_MAX_FREQ / div; 871 clkd = (div - 1) & 0xf; 872 extclk = (div - 1) >> 4; 873 clkg = OMAP2_MCSPI_CHCONF_CLKG; 874 } 875 876 l = mcspi_cached_chconf0(spi); 877 878 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS 879 * REVISIT: this controller could support SPI_3WIRE mode. 880 */ 881 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 882 l &= ~OMAP2_MCSPI_CHCONF_IS; 883 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 884 l |= OMAP2_MCSPI_CHCONF_DPE0; 885 } else { 886 l |= OMAP2_MCSPI_CHCONF_IS; 887 l |= OMAP2_MCSPI_CHCONF_DPE1; 888 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 889 } 890 891 /* wordlength */ 892 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 893 l |= (word_len - 1) << 7; 894 895 /* set chipselect polarity; manage with FORCE */ 896 if (!(spi->mode & SPI_CS_HIGH)) 897 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 898 else 899 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 900 901 /* set clock divisor */ 902 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 903 l |= clkd << 2; 904 905 /* set clock granularity */ 906 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 907 l |= clkg; 908 if (clkg) { 909 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 910 cs->chctrl0 |= extclk << 8; 911 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 912 } 913 914 /* set SPI mode 0..3 */ 915 if (spi->mode & SPI_CPOL) 916 l |= OMAP2_MCSPI_CHCONF_POL; 917 else 918 l &= ~OMAP2_MCSPI_CHCONF_POL; 919 if (spi->mode & SPI_CPHA) 920 l |= OMAP2_MCSPI_CHCONF_PHA; 921 else 922 l &= ~OMAP2_MCSPI_CHCONF_PHA; 923 924 mcspi_write_chconf0(spi, l); 925 926 cs->mode = spi->mode; 927 928 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 929 speed_hz, 930 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 931 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 932 933 return 0; 934 } 935 936 /* 937 * Note that we currently allow DMA only if we get a channel 938 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 939 */ 940 static int omap2_mcspi_request_dma(struct spi_device *spi) 941 { 942 struct spi_master *master = spi->master; 943 struct omap2_mcspi *mcspi; 944 struct omap2_mcspi_dma *mcspi_dma; 945 dma_cap_mask_t mask; 946 unsigned sig; 947 948 mcspi = spi_master_get_devdata(master); 949 mcspi_dma = mcspi->dma_channels + spi->chip_select; 950 951 init_completion(&mcspi_dma->dma_rx_completion); 952 init_completion(&mcspi_dma->dma_tx_completion); 953 954 dma_cap_zero(mask); 955 dma_cap_set(DMA_SLAVE, mask); 956 sig = mcspi_dma->dma_rx_sync_dev; 957 958 mcspi_dma->dma_rx = 959 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 960 &sig, &master->dev, 961 mcspi_dma->dma_rx_ch_name); 962 if (!mcspi_dma->dma_rx) 963 goto no_dma; 964 965 sig = mcspi_dma->dma_tx_sync_dev; 966 mcspi_dma->dma_tx = 967 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 968 &sig, &master->dev, 969 mcspi_dma->dma_tx_ch_name); 970 971 if (!mcspi_dma->dma_tx) { 972 dma_release_channel(mcspi_dma->dma_rx); 973 mcspi_dma->dma_rx = NULL; 974 goto no_dma; 975 } 976 977 return 0; 978 979 no_dma: 980 dev_warn(&spi->dev, "not using DMA for McSPI\n"); 981 return -EAGAIN; 982 } 983 984 static int omap2_mcspi_setup(struct spi_device *spi) 985 { 986 int ret; 987 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 988 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 989 struct omap2_mcspi_dma *mcspi_dma; 990 struct omap2_mcspi_cs *cs = spi->controller_state; 991 992 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 993 994 if (!cs) { 995 cs = kzalloc(sizeof *cs, GFP_KERNEL); 996 if (!cs) 997 return -ENOMEM; 998 cs->base = mcspi->base + spi->chip_select * 0x14; 999 cs->phys = mcspi->phys + spi->chip_select * 0x14; 1000 cs->mode = 0; 1001 cs->chconf0 = 0; 1002 cs->chctrl0 = 0; 1003 spi->controller_state = cs; 1004 /* Link this to context save list */ 1005 list_add_tail(&cs->node, &ctx->cs); 1006 } 1007 1008 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) { 1009 ret = omap2_mcspi_request_dma(spi); 1010 if (ret < 0 && ret != -EAGAIN) 1011 return ret; 1012 } 1013 1014 ret = pm_runtime_get_sync(mcspi->dev); 1015 if (ret < 0) 1016 return ret; 1017 1018 ret = omap2_mcspi_setup_transfer(spi, NULL); 1019 pm_runtime_mark_last_busy(mcspi->dev); 1020 pm_runtime_put_autosuspend(mcspi->dev); 1021 1022 return ret; 1023 } 1024 1025 static void omap2_mcspi_cleanup(struct spi_device *spi) 1026 { 1027 struct omap2_mcspi *mcspi; 1028 struct omap2_mcspi_dma *mcspi_dma; 1029 struct omap2_mcspi_cs *cs; 1030 1031 mcspi = spi_master_get_devdata(spi->master); 1032 1033 if (spi->controller_state) { 1034 /* Unlink controller state from context save list */ 1035 cs = spi->controller_state; 1036 list_del(&cs->node); 1037 1038 kfree(cs); 1039 } 1040 1041 if (spi->chip_select < spi->master->num_chipselect) { 1042 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1043 1044 if (mcspi_dma->dma_rx) { 1045 dma_release_channel(mcspi_dma->dma_rx); 1046 mcspi_dma->dma_rx = NULL; 1047 } 1048 if (mcspi_dma->dma_tx) { 1049 dma_release_channel(mcspi_dma->dma_tx); 1050 mcspi_dma->dma_tx = NULL; 1051 } 1052 } 1053 } 1054 1055 static void omap2_mcspi_work(struct omap2_mcspi *mcspi, struct spi_message *m) 1056 { 1057 1058 /* We only enable one channel at a time -- the one whose message is 1059 * -- although this controller would gladly 1060 * arbitrate among multiple channels. This corresponds to "single 1061 * channel" master mode. As a side effect, we need to manage the 1062 * chipselect with the FORCE bit ... CS != channel enable. 1063 */ 1064 1065 struct spi_device *spi; 1066 struct spi_transfer *t = NULL; 1067 struct spi_master *master; 1068 struct omap2_mcspi_dma *mcspi_dma; 1069 int cs_active = 0; 1070 struct omap2_mcspi_cs *cs; 1071 struct omap2_mcspi_device_config *cd; 1072 int par_override = 0; 1073 int status = 0; 1074 u32 chconf; 1075 1076 spi = m->spi; 1077 master = spi->master; 1078 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1079 cs = spi->controller_state; 1080 cd = spi->controller_data; 1081 1082 /* 1083 * The slave driver could have changed spi->mode in which case 1084 * it will be different from cs->mode (the current hardware setup). 1085 * If so, set par_override (even though its not a parity issue) so 1086 * omap2_mcspi_setup_transfer will be called to configure the hardware 1087 * with the correct mode on the first iteration of the loop below. 1088 */ 1089 if (spi->mode != cs->mode) 1090 par_override = 1; 1091 1092 omap2_mcspi_set_enable(spi, 0); 1093 list_for_each_entry(t, &m->transfers, transfer_list) { 1094 if (t->tx_buf == NULL && t->rx_buf == NULL && t->len) { 1095 status = -EINVAL; 1096 break; 1097 } 1098 if (par_override || 1099 (t->speed_hz != spi->max_speed_hz) || 1100 (t->bits_per_word != spi->bits_per_word)) { 1101 par_override = 1; 1102 status = omap2_mcspi_setup_transfer(spi, t); 1103 if (status < 0) 1104 break; 1105 if (t->speed_hz == spi->max_speed_hz && 1106 t->bits_per_word == spi->bits_per_word) 1107 par_override = 0; 1108 } 1109 if (cd && cd->cs_per_word) { 1110 chconf = mcspi->ctx.modulctrl; 1111 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 1112 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1113 mcspi->ctx.modulctrl = 1114 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1115 } 1116 1117 1118 if (!cs_active) { 1119 omap2_mcspi_force_cs(spi, 1); 1120 cs_active = 1; 1121 } 1122 1123 chconf = mcspi_cached_chconf0(spi); 1124 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1125 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1126 1127 if (t->tx_buf == NULL) 1128 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1129 else if (t->rx_buf == NULL) 1130 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1131 1132 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1133 /* Turbo mode is for more than one word */ 1134 if (t->len > ((cs->word_len + 7) >> 3)) 1135 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1136 } 1137 1138 mcspi_write_chconf0(spi, chconf); 1139 1140 if (t->len) { 1141 unsigned count; 1142 1143 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1144 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)) 1145 omap2_mcspi_set_fifo(spi, t, 1); 1146 1147 omap2_mcspi_set_enable(spi, 1); 1148 1149 /* RX_ONLY mode needs dummy data in TX reg */ 1150 if (t->tx_buf == NULL) 1151 writel_relaxed(0, cs->base 1152 + OMAP2_MCSPI_TX0); 1153 1154 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1155 (m->is_dma_mapped || t->len >= DMA_MIN_BYTES)) 1156 count = omap2_mcspi_txrx_dma(spi, t); 1157 else 1158 count = omap2_mcspi_txrx_pio(spi, t); 1159 m->actual_length += count; 1160 1161 if (count != t->len) { 1162 status = -EIO; 1163 break; 1164 } 1165 } 1166 1167 if (t->delay_usecs) 1168 udelay(t->delay_usecs); 1169 1170 /* ignore the "leave it on after last xfer" hint */ 1171 if (t->cs_change) { 1172 omap2_mcspi_force_cs(spi, 0); 1173 cs_active = 0; 1174 } 1175 1176 omap2_mcspi_set_enable(spi, 0); 1177 1178 if (mcspi->fifo_depth > 0) 1179 omap2_mcspi_set_fifo(spi, t, 0); 1180 } 1181 /* Restore defaults if they were overriden */ 1182 if (par_override) { 1183 par_override = 0; 1184 status = omap2_mcspi_setup_transfer(spi, NULL); 1185 } 1186 1187 if (cs_active) 1188 omap2_mcspi_force_cs(spi, 0); 1189 1190 if (cd && cd->cs_per_word) { 1191 chconf = mcspi->ctx.modulctrl; 1192 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE; 1193 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1194 mcspi->ctx.modulctrl = 1195 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1196 } 1197 1198 omap2_mcspi_set_enable(spi, 0); 1199 1200 if (mcspi->fifo_depth > 0 && t) 1201 omap2_mcspi_set_fifo(spi, t, 0); 1202 1203 m->status = status; 1204 } 1205 1206 static int omap2_mcspi_transfer_one_message(struct spi_master *master, 1207 struct spi_message *m) 1208 { 1209 struct spi_device *spi; 1210 struct omap2_mcspi *mcspi; 1211 struct omap2_mcspi_dma *mcspi_dma; 1212 struct spi_transfer *t; 1213 1214 spi = m->spi; 1215 mcspi = spi_master_get_devdata(master); 1216 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1217 m->actual_length = 0; 1218 m->status = 0; 1219 1220 list_for_each_entry(t, &m->transfers, transfer_list) { 1221 const void *tx_buf = t->tx_buf; 1222 void *rx_buf = t->rx_buf; 1223 unsigned len = t->len; 1224 1225 if ((len && !(rx_buf || tx_buf))) { 1226 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n", 1227 t->speed_hz, 1228 len, 1229 tx_buf ? "tx" : "", 1230 rx_buf ? "rx" : "", 1231 t->bits_per_word); 1232 return -EINVAL; 1233 } 1234 1235 if (m->is_dma_mapped || len < DMA_MIN_BYTES) 1236 continue; 1237 1238 if (mcspi_dma->dma_tx && tx_buf != NULL) { 1239 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf, 1240 len, DMA_TO_DEVICE); 1241 if (dma_mapping_error(mcspi->dev, t->tx_dma)) { 1242 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n", 1243 'T', len); 1244 return -EINVAL; 1245 } 1246 } 1247 if (mcspi_dma->dma_rx && rx_buf != NULL) { 1248 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len, 1249 DMA_FROM_DEVICE); 1250 if (dma_mapping_error(mcspi->dev, t->rx_dma)) { 1251 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n", 1252 'R', len); 1253 if (tx_buf != NULL) 1254 dma_unmap_single(mcspi->dev, t->tx_dma, 1255 len, DMA_TO_DEVICE); 1256 return -EINVAL; 1257 } 1258 } 1259 } 1260 1261 omap2_mcspi_work(mcspi, m); 1262 spi_finalize_current_message(master); 1263 return 0; 1264 } 1265 1266 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi) 1267 { 1268 struct spi_master *master = mcspi->master; 1269 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1270 int ret = 0; 1271 1272 ret = pm_runtime_get_sync(mcspi->dev); 1273 if (ret < 0) 1274 return ret; 1275 1276 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, 1277 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1278 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1279 1280 omap2_mcspi_set_master_mode(master); 1281 pm_runtime_mark_last_busy(mcspi->dev); 1282 pm_runtime_put_autosuspend(mcspi->dev); 1283 return 0; 1284 } 1285 1286 static int omap_mcspi_runtime_resume(struct device *dev) 1287 { 1288 struct omap2_mcspi *mcspi; 1289 struct spi_master *master; 1290 1291 master = dev_get_drvdata(dev); 1292 mcspi = spi_master_get_devdata(master); 1293 omap2_mcspi_restore_ctx(mcspi); 1294 1295 return 0; 1296 } 1297 1298 static struct omap2_mcspi_platform_config omap2_pdata = { 1299 .regs_offset = 0, 1300 }; 1301 1302 static struct omap2_mcspi_platform_config omap4_pdata = { 1303 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1304 }; 1305 1306 static const struct of_device_id omap_mcspi_of_match[] = { 1307 { 1308 .compatible = "ti,omap2-mcspi", 1309 .data = &omap2_pdata, 1310 }, 1311 { 1312 .compatible = "ti,omap4-mcspi", 1313 .data = &omap4_pdata, 1314 }, 1315 { }, 1316 }; 1317 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1318 1319 static int omap2_mcspi_probe(struct platform_device *pdev) 1320 { 1321 struct spi_master *master; 1322 const struct omap2_mcspi_platform_config *pdata; 1323 struct omap2_mcspi *mcspi; 1324 struct resource *r; 1325 int status = 0, i; 1326 u32 regs_offset = 0; 1327 static int bus_num = 1; 1328 struct device_node *node = pdev->dev.of_node; 1329 const struct of_device_id *match; 1330 1331 master = spi_alloc_master(&pdev->dev, sizeof *mcspi); 1332 if (master == NULL) { 1333 dev_dbg(&pdev->dev, "master allocation failed\n"); 1334 return -ENOMEM; 1335 } 1336 1337 /* the spi->mode bits understood by this driver: */ 1338 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1339 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1340 master->setup = omap2_mcspi_setup; 1341 master->auto_runtime_pm = true; 1342 master->transfer_one_message = omap2_mcspi_transfer_one_message; 1343 master->cleanup = omap2_mcspi_cleanup; 1344 master->dev.of_node = node; 1345 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ; 1346 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15; 1347 1348 platform_set_drvdata(pdev, master); 1349 1350 mcspi = spi_master_get_devdata(master); 1351 mcspi->master = master; 1352 1353 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1354 if (match) { 1355 u32 num_cs = 1; /* default number of chipselect */ 1356 pdata = match->data; 1357 1358 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1359 master->num_chipselect = num_cs; 1360 master->bus_num = bus_num++; 1361 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL)) 1362 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1363 } else { 1364 pdata = dev_get_platdata(&pdev->dev); 1365 master->num_chipselect = pdata->num_cs; 1366 if (pdev->id != -1) 1367 master->bus_num = pdev->id; 1368 mcspi->pin_dir = pdata->pin_dir; 1369 } 1370 regs_offset = pdata->regs_offset; 1371 1372 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1373 if (r == NULL) { 1374 status = -ENODEV; 1375 goto free_master; 1376 } 1377 1378 r->start += regs_offset; 1379 r->end += regs_offset; 1380 mcspi->phys = r->start; 1381 1382 mcspi->base = devm_ioremap_resource(&pdev->dev, r); 1383 if (IS_ERR(mcspi->base)) { 1384 status = PTR_ERR(mcspi->base); 1385 goto free_master; 1386 } 1387 1388 mcspi->dev = &pdev->dev; 1389 1390 INIT_LIST_HEAD(&mcspi->ctx.cs); 1391 1392 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect, 1393 sizeof(struct omap2_mcspi_dma), 1394 GFP_KERNEL); 1395 if (mcspi->dma_channels == NULL) { 1396 status = -ENOMEM; 1397 goto free_master; 1398 } 1399 1400 for (i = 0; i < master->num_chipselect; i++) { 1401 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name; 1402 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name; 1403 struct resource *dma_res; 1404 1405 sprintf(dma_rx_ch_name, "rx%d", i); 1406 if (!pdev->dev.of_node) { 1407 dma_res = 1408 platform_get_resource_byname(pdev, 1409 IORESOURCE_DMA, 1410 dma_rx_ch_name); 1411 if (!dma_res) { 1412 dev_dbg(&pdev->dev, 1413 "cannot get DMA RX channel\n"); 1414 status = -ENODEV; 1415 break; 1416 } 1417 1418 mcspi->dma_channels[i].dma_rx_sync_dev = 1419 dma_res->start; 1420 } 1421 sprintf(dma_tx_ch_name, "tx%d", i); 1422 if (!pdev->dev.of_node) { 1423 dma_res = 1424 platform_get_resource_byname(pdev, 1425 IORESOURCE_DMA, 1426 dma_tx_ch_name); 1427 if (!dma_res) { 1428 dev_dbg(&pdev->dev, 1429 "cannot get DMA TX channel\n"); 1430 status = -ENODEV; 1431 break; 1432 } 1433 1434 mcspi->dma_channels[i].dma_tx_sync_dev = 1435 dma_res->start; 1436 } 1437 } 1438 1439 if (status < 0) 1440 goto free_master; 1441 1442 pm_runtime_use_autosuspend(&pdev->dev); 1443 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1444 pm_runtime_enable(&pdev->dev); 1445 1446 status = omap2_mcspi_master_setup(mcspi); 1447 if (status < 0) 1448 goto disable_pm; 1449 1450 status = devm_spi_register_master(&pdev->dev, master); 1451 if (status < 0) 1452 goto disable_pm; 1453 1454 return status; 1455 1456 disable_pm: 1457 pm_runtime_disable(&pdev->dev); 1458 free_master: 1459 spi_master_put(master); 1460 return status; 1461 } 1462 1463 static int omap2_mcspi_remove(struct platform_device *pdev) 1464 { 1465 struct spi_master *master = platform_get_drvdata(pdev); 1466 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1467 1468 pm_runtime_put_sync(mcspi->dev); 1469 pm_runtime_disable(&pdev->dev); 1470 1471 return 0; 1472 } 1473 1474 /* work with hotplug and coldplug */ 1475 MODULE_ALIAS("platform:omap2_mcspi"); 1476 1477 #ifdef CONFIG_SUSPEND 1478 /* 1479 * When SPI wake up from off-mode, CS is in activate state. If it was in 1480 * unactive state when driver was suspend, then force it to unactive state at 1481 * wake up. 1482 */ 1483 static int omap2_mcspi_resume(struct device *dev) 1484 { 1485 struct spi_master *master = dev_get_drvdata(dev); 1486 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1487 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1488 struct omap2_mcspi_cs *cs; 1489 1490 pm_runtime_get_sync(mcspi->dev); 1491 list_for_each_entry(cs, &ctx->cs, node) { 1492 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1493 /* 1494 * We need to toggle CS state for OMAP take this 1495 * change in account. 1496 */ 1497 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1498 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1499 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1500 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1501 } 1502 } 1503 pm_runtime_mark_last_busy(mcspi->dev); 1504 pm_runtime_put_autosuspend(mcspi->dev); 1505 return 0; 1506 } 1507 #else 1508 #define omap2_mcspi_resume NULL 1509 #endif 1510 1511 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1512 .resume = omap2_mcspi_resume, 1513 .runtime_resume = omap_mcspi_runtime_resume, 1514 }; 1515 1516 static struct platform_driver omap2_mcspi_driver = { 1517 .driver = { 1518 .name = "omap2_mcspi", 1519 .pm = &omap2_mcspi_pm_ops, 1520 .of_match_table = omap_mcspi_of_match, 1521 }, 1522 .probe = omap2_mcspi_probe, 1523 .remove = omap2_mcspi_remove, 1524 }; 1525 1526 module_platform_driver(omap2_mcspi_driver); 1527 MODULE_LICENSE("GPL"); 1528