1 /* 2 * OMAP2 McSPI controller driver 3 * 4 * Copyright (C) 2005, 2006 Nokia Corporation 5 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 6 * Juha Yrj�l� <juha.yrjola@nokia.com> 7 * 8 * This program is free software; you can redistribute it and/or modify 9 * it under the terms of the GNU General Public License as published by 10 * the Free Software Foundation; either version 2 of the License, or 11 * (at your option) any later version. 12 * 13 * This program is distributed in the hope that it will be useful, 14 * but WITHOUT ANY WARRANTY; without even the implied warranty of 15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 16 * GNU General Public License for more details. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/interrupt.h> 21 #include <linux/module.h> 22 #include <linux/device.h> 23 #include <linux/delay.h> 24 #include <linux/dma-mapping.h> 25 #include <linux/dmaengine.h> 26 #include <linux/omap-dma.h> 27 #include <linux/platform_device.h> 28 #include <linux/err.h> 29 #include <linux/clk.h> 30 #include <linux/io.h> 31 #include <linux/slab.h> 32 #include <linux/pm_runtime.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/gcd.h> 36 37 #include <linux/spi/spi.h> 38 #include <linux/gpio.h> 39 40 #include <linux/platform_data/spi-omap2-mcspi.h> 41 42 #define OMAP2_MCSPI_MAX_FREQ 48000000 43 #define OMAP2_MCSPI_MAX_DIVIDER 4096 44 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 45 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 46 #define SPI_AUTOSUSPEND_TIMEOUT 2000 47 48 #define OMAP2_MCSPI_REVISION 0x00 49 #define OMAP2_MCSPI_SYSSTATUS 0x14 50 #define OMAP2_MCSPI_IRQSTATUS 0x18 51 #define OMAP2_MCSPI_IRQENABLE 0x1c 52 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 53 #define OMAP2_MCSPI_SYST 0x24 54 #define OMAP2_MCSPI_MODULCTRL 0x28 55 #define OMAP2_MCSPI_XFERLEVEL 0x7c 56 57 /* per-channel banks, 0x14 bytes each, first is: */ 58 #define OMAP2_MCSPI_CHCONF0 0x2c 59 #define OMAP2_MCSPI_CHSTAT0 0x30 60 #define OMAP2_MCSPI_CHCTRL0 0x34 61 #define OMAP2_MCSPI_TX0 0x38 62 #define OMAP2_MCSPI_RX0 0x3c 63 64 /* per-register bitmasks: */ 65 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 66 67 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 68 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 69 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 70 71 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 72 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 74 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 75 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 78 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 79 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 80 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 81 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 82 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 83 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 84 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 85 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 86 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 87 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 88 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 89 90 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 91 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 92 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 93 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 94 95 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 97 98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 99 100 /* We have 2 DMA channels per CS, one for RX and one for TX */ 101 struct omap2_mcspi_dma { 102 struct dma_chan *dma_tx; 103 struct dma_chan *dma_rx; 104 105 int dma_tx_sync_dev; 106 int dma_rx_sync_dev; 107 108 struct completion dma_tx_completion; 109 struct completion dma_rx_completion; 110 111 char dma_rx_ch_name[14]; 112 char dma_tx_ch_name[14]; 113 }; 114 115 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 116 * cache operations; better heuristics consider wordsize and bitrate. 117 */ 118 #define DMA_MIN_BYTES 160 119 120 121 /* 122 * Used for context save and restore, structure members to be updated whenever 123 * corresponding registers are modified. 124 */ 125 struct omap2_mcspi_regs { 126 u32 modulctrl; 127 u32 wakeupenable; 128 struct list_head cs; 129 }; 130 131 struct omap2_mcspi { 132 struct spi_master *master; 133 /* Virtual base address of the controller */ 134 void __iomem *base; 135 unsigned long phys; 136 /* SPI1 has 4 channels, while SPI2 has 2 */ 137 struct omap2_mcspi_dma *dma_channels; 138 struct device *dev; 139 struct omap2_mcspi_regs ctx; 140 int fifo_depth; 141 unsigned int pin_dir:1; 142 }; 143 144 struct omap2_mcspi_cs { 145 void __iomem *base; 146 unsigned long phys; 147 int word_len; 148 u16 mode; 149 struct list_head node; 150 /* Context save and restore shadow register */ 151 u32 chconf0, chctrl0; 152 }; 153 154 static inline void mcspi_write_reg(struct spi_master *master, 155 int idx, u32 val) 156 { 157 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 158 159 writel_relaxed(val, mcspi->base + idx); 160 } 161 162 static inline u32 mcspi_read_reg(struct spi_master *master, int idx) 163 { 164 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 165 166 return readl_relaxed(mcspi->base + idx); 167 } 168 169 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 170 int idx, u32 val) 171 { 172 struct omap2_mcspi_cs *cs = spi->controller_state; 173 174 writel_relaxed(val, cs->base + idx); 175 } 176 177 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 178 { 179 struct omap2_mcspi_cs *cs = spi->controller_state; 180 181 return readl_relaxed(cs->base + idx); 182 } 183 184 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 185 { 186 struct omap2_mcspi_cs *cs = spi->controller_state; 187 188 return cs->chconf0; 189 } 190 191 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 192 { 193 struct omap2_mcspi_cs *cs = spi->controller_state; 194 195 cs->chconf0 = val; 196 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 197 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 198 } 199 200 static inline int mcspi_bytes_per_word(int word_len) 201 { 202 if (word_len <= 8) 203 return 1; 204 else if (word_len <= 16) 205 return 2; 206 else /* word_len <= 32 */ 207 return 4; 208 } 209 210 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 211 int is_read, int enable) 212 { 213 u32 l, rw; 214 215 l = mcspi_cached_chconf0(spi); 216 217 if (is_read) /* 1 is read, 0 write */ 218 rw = OMAP2_MCSPI_CHCONF_DMAR; 219 else 220 rw = OMAP2_MCSPI_CHCONF_DMAW; 221 222 if (enable) 223 l |= rw; 224 else 225 l &= ~rw; 226 227 mcspi_write_chconf0(spi, l); 228 } 229 230 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 231 { 232 struct omap2_mcspi_cs *cs = spi->controller_state; 233 u32 l; 234 235 l = cs->chctrl0; 236 if (enable) 237 l |= OMAP2_MCSPI_CHCTRL_EN; 238 else 239 l &= ~OMAP2_MCSPI_CHCTRL_EN; 240 cs->chctrl0 = l; 241 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 242 /* Flash post-writes */ 243 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 244 } 245 246 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) 247 { 248 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 249 u32 l; 250 251 /* The controller handles the inverted chip selects 252 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert 253 * the inversion from the core spi_set_cs function. 254 */ 255 if (spi->mode & SPI_CS_HIGH) 256 enable = !enable; 257 258 if (spi->controller_state) { 259 int err = pm_runtime_get_sync(mcspi->dev); 260 if (err < 0) { 261 dev_err(mcspi->dev, "failed to get sync: %d\n", err); 262 return; 263 } 264 265 l = mcspi_cached_chconf0(spi); 266 267 if (enable) 268 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 269 else 270 l |= OMAP2_MCSPI_CHCONF_FORCE; 271 272 mcspi_write_chconf0(spi, l); 273 274 pm_runtime_mark_last_busy(mcspi->dev); 275 pm_runtime_put_autosuspend(mcspi->dev); 276 } 277 } 278 279 static void omap2_mcspi_set_master_mode(struct spi_master *master) 280 { 281 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 282 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 283 u32 l; 284 285 /* 286 * Setup when switching from (reset default) slave mode 287 * to single-channel master mode 288 */ 289 l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL); 290 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS); 291 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 292 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l); 293 294 ctx->modulctrl = l; 295 } 296 297 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 298 struct spi_transfer *t, int enable) 299 { 300 struct spi_master *master = spi->master; 301 struct omap2_mcspi_cs *cs = spi->controller_state; 302 struct omap2_mcspi *mcspi; 303 unsigned int wcnt; 304 int max_fifo_depth, fifo_depth, bytes_per_word; 305 u32 chconf, xferlevel; 306 307 mcspi = spi_master_get_devdata(master); 308 309 chconf = mcspi_cached_chconf0(spi); 310 if (enable) { 311 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 312 if (t->len % bytes_per_word != 0) 313 goto disable_fifo; 314 315 if (t->rx_buf != NULL && t->tx_buf != NULL) 316 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 317 else 318 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 319 320 fifo_depth = gcd(t->len, max_fifo_depth); 321 if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0) 322 goto disable_fifo; 323 324 wcnt = t->len / bytes_per_word; 325 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 326 goto disable_fifo; 327 328 xferlevel = wcnt << 16; 329 if (t->rx_buf != NULL) { 330 chconf |= OMAP2_MCSPI_CHCONF_FFER; 331 xferlevel |= (fifo_depth - 1) << 8; 332 } 333 if (t->tx_buf != NULL) { 334 chconf |= OMAP2_MCSPI_CHCONF_FFET; 335 xferlevel |= fifo_depth - 1; 336 } 337 338 mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel); 339 mcspi_write_chconf0(spi, chconf); 340 mcspi->fifo_depth = fifo_depth; 341 342 return; 343 } 344 345 disable_fifo: 346 if (t->rx_buf != NULL) 347 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 348 349 if (t->tx_buf != NULL) 350 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 351 352 mcspi_write_chconf0(spi, chconf); 353 mcspi->fifo_depth = 0; 354 } 355 356 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi) 357 { 358 struct spi_master *spi_cntrl = mcspi->master; 359 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 360 struct omap2_mcspi_cs *cs; 361 362 /* McSPI: context restore */ 363 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 364 mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 365 366 list_for_each_entry(cs, &ctx->cs, node) 367 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 368 } 369 370 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 371 { 372 unsigned long timeout; 373 374 timeout = jiffies + msecs_to_jiffies(1000); 375 while (!(readl_relaxed(reg) & bit)) { 376 if (time_after(jiffies, timeout)) { 377 if (!(readl_relaxed(reg) & bit)) 378 return -ETIMEDOUT; 379 else 380 return 0; 381 } 382 cpu_relax(); 383 } 384 return 0; 385 } 386 387 static void omap2_mcspi_rx_callback(void *data) 388 { 389 struct spi_device *spi = data; 390 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 391 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 392 393 /* We must disable the DMA RX request */ 394 omap2_mcspi_set_dma_req(spi, 1, 0); 395 396 complete(&mcspi_dma->dma_rx_completion); 397 } 398 399 static void omap2_mcspi_tx_callback(void *data) 400 { 401 struct spi_device *spi = data; 402 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 403 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 404 405 /* We must disable the DMA TX request */ 406 omap2_mcspi_set_dma_req(spi, 0, 0); 407 408 complete(&mcspi_dma->dma_tx_completion); 409 } 410 411 static void omap2_mcspi_tx_dma(struct spi_device *spi, 412 struct spi_transfer *xfer, 413 struct dma_slave_config cfg) 414 { 415 struct omap2_mcspi *mcspi; 416 struct omap2_mcspi_dma *mcspi_dma; 417 unsigned int count; 418 419 mcspi = spi_master_get_devdata(spi->master); 420 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 421 count = xfer->len; 422 423 if (mcspi_dma->dma_tx) { 424 struct dma_async_tx_descriptor *tx; 425 struct scatterlist sg; 426 427 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 428 429 sg_init_table(&sg, 1); 430 sg_dma_address(&sg) = xfer->tx_dma; 431 sg_dma_len(&sg) = xfer->len; 432 433 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1, 434 DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 435 if (tx) { 436 tx->callback = omap2_mcspi_tx_callback; 437 tx->callback_param = spi; 438 dmaengine_submit(tx); 439 } else { 440 /* FIXME: fall back to PIO? */ 441 } 442 } 443 dma_async_issue_pending(mcspi_dma->dma_tx); 444 omap2_mcspi_set_dma_req(spi, 0, 1); 445 446 } 447 448 static unsigned 449 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 450 struct dma_slave_config cfg, 451 unsigned es) 452 { 453 struct omap2_mcspi *mcspi; 454 struct omap2_mcspi_dma *mcspi_dma; 455 unsigned int count, dma_count; 456 u32 l; 457 int elements = 0; 458 int word_len, element_count; 459 struct omap2_mcspi_cs *cs = spi->controller_state; 460 mcspi = spi_master_get_devdata(spi->master); 461 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 462 count = xfer->len; 463 dma_count = xfer->len; 464 465 if (mcspi->fifo_depth == 0) 466 dma_count -= es; 467 468 word_len = cs->word_len; 469 l = mcspi_cached_chconf0(spi); 470 471 if (word_len <= 8) 472 element_count = count; 473 else if (word_len <= 16) 474 element_count = count >> 1; 475 else /* word_len <= 32 */ 476 element_count = count >> 2; 477 478 if (mcspi_dma->dma_rx) { 479 struct dma_async_tx_descriptor *tx; 480 struct scatterlist sg; 481 482 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 483 484 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 485 dma_count -= es; 486 487 sg_init_table(&sg, 1); 488 sg_dma_address(&sg) = xfer->rx_dma; 489 sg_dma_len(&sg) = dma_count; 490 491 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1, 492 DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT | 493 DMA_CTRL_ACK); 494 if (tx) { 495 tx->callback = omap2_mcspi_rx_callback; 496 tx->callback_param = spi; 497 dmaengine_submit(tx); 498 } else { 499 /* FIXME: fall back to PIO? */ 500 } 501 } 502 503 dma_async_issue_pending(mcspi_dma->dma_rx); 504 omap2_mcspi_set_dma_req(spi, 1, 1); 505 506 wait_for_completion(&mcspi_dma->dma_rx_completion); 507 dma_unmap_single(mcspi->dev, xfer->rx_dma, count, 508 DMA_FROM_DEVICE); 509 510 if (mcspi->fifo_depth > 0) 511 return count; 512 513 omap2_mcspi_set_enable(spi, 0); 514 515 elements = element_count - 1; 516 517 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 518 elements--; 519 520 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 521 & OMAP2_MCSPI_CHSTAT_RXS)) { 522 u32 w; 523 524 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 525 if (word_len <= 8) 526 ((u8 *)xfer->rx_buf)[elements++] = w; 527 else if (word_len <= 16) 528 ((u16 *)xfer->rx_buf)[elements++] = w; 529 else /* word_len <= 32 */ 530 ((u32 *)xfer->rx_buf)[elements++] = w; 531 } else { 532 int bytes_per_word = mcspi_bytes_per_word(word_len); 533 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 534 count -= (bytes_per_word << 1); 535 omap2_mcspi_set_enable(spi, 1); 536 return count; 537 } 538 } 539 if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0) 540 & OMAP2_MCSPI_CHSTAT_RXS)) { 541 u32 w; 542 543 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 544 if (word_len <= 8) 545 ((u8 *)xfer->rx_buf)[elements] = w; 546 else if (word_len <= 16) 547 ((u16 *)xfer->rx_buf)[elements] = w; 548 else /* word_len <= 32 */ 549 ((u32 *)xfer->rx_buf)[elements] = w; 550 } else { 551 dev_err(&spi->dev, "DMA RX last word empty\n"); 552 count -= mcspi_bytes_per_word(word_len); 553 } 554 omap2_mcspi_set_enable(spi, 1); 555 return count; 556 } 557 558 static unsigned 559 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 560 { 561 struct omap2_mcspi *mcspi; 562 struct omap2_mcspi_cs *cs = spi->controller_state; 563 struct omap2_mcspi_dma *mcspi_dma; 564 unsigned int count; 565 u32 l; 566 u8 *rx; 567 const u8 *tx; 568 struct dma_slave_config cfg; 569 enum dma_slave_buswidth width; 570 unsigned es; 571 u32 burst; 572 void __iomem *chstat_reg; 573 void __iomem *irqstat_reg; 574 int wait_res; 575 576 mcspi = spi_master_get_devdata(spi->master); 577 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 578 l = mcspi_cached_chconf0(spi); 579 580 581 if (cs->word_len <= 8) { 582 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 583 es = 1; 584 } else if (cs->word_len <= 16) { 585 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 586 es = 2; 587 } else { 588 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 589 es = 4; 590 } 591 592 count = xfer->len; 593 burst = 1; 594 595 if (mcspi->fifo_depth > 0) { 596 if (count > mcspi->fifo_depth) 597 burst = mcspi->fifo_depth / es; 598 else 599 burst = count / es; 600 } 601 602 memset(&cfg, 0, sizeof(cfg)); 603 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 604 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 605 cfg.src_addr_width = width; 606 cfg.dst_addr_width = width; 607 cfg.src_maxburst = burst; 608 cfg.dst_maxburst = burst; 609 610 rx = xfer->rx_buf; 611 tx = xfer->tx_buf; 612 613 if (tx != NULL) 614 omap2_mcspi_tx_dma(spi, xfer, cfg); 615 616 if (rx != NULL) 617 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 618 619 if (tx != NULL) { 620 wait_for_completion(&mcspi_dma->dma_tx_completion); 621 dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len, 622 DMA_TO_DEVICE); 623 624 if (mcspi->fifo_depth > 0) { 625 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 626 627 if (mcspi_wait_for_reg_bit(irqstat_reg, 628 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 629 dev_err(&spi->dev, "EOW timed out\n"); 630 631 mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS, 632 OMAP2_MCSPI_IRQSTATUS_EOW); 633 } 634 635 /* for TX_ONLY mode, be sure all words have shifted out */ 636 if (rx == NULL) { 637 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 638 if (mcspi->fifo_depth > 0) { 639 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 640 OMAP2_MCSPI_CHSTAT_TXFFE); 641 if (wait_res < 0) 642 dev_err(&spi->dev, "TXFFE timed out\n"); 643 } else { 644 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 645 OMAP2_MCSPI_CHSTAT_TXS); 646 if (wait_res < 0) 647 dev_err(&spi->dev, "TXS timed out\n"); 648 } 649 if (wait_res >= 0 && 650 (mcspi_wait_for_reg_bit(chstat_reg, 651 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 652 dev_err(&spi->dev, "EOT timed out\n"); 653 } 654 } 655 return count; 656 } 657 658 static unsigned 659 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 660 { 661 struct omap2_mcspi *mcspi; 662 struct omap2_mcspi_cs *cs = spi->controller_state; 663 unsigned int count, c; 664 u32 l; 665 void __iomem *base = cs->base; 666 void __iomem *tx_reg; 667 void __iomem *rx_reg; 668 void __iomem *chstat_reg; 669 int word_len; 670 671 mcspi = spi_master_get_devdata(spi->master); 672 count = xfer->len; 673 c = count; 674 word_len = cs->word_len; 675 676 l = mcspi_cached_chconf0(spi); 677 678 /* We store the pre-calculated register addresses on stack to speed 679 * up the transfer loop. */ 680 tx_reg = base + OMAP2_MCSPI_TX0; 681 rx_reg = base + OMAP2_MCSPI_RX0; 682 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 683 684 if (c < (word_len>>3)) 685 return 0; 686 687 if (word_len <= 8) { 688 u8 *rx; 689 const u8 *tx; 690 691 rx = xfer->rx_buf; 692 tx = xfer->tx_buf; 693 694 do { 695 c -= 1; 696 if (tx != NULL) { 697 if (mcspi_wait_for_reg_bit(chstat_reg, 698 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 699 dev_err(&spi->dev, "TXS timed out\n"); 700 goto out; 701 } 702 dev_vdbg(&spi->dev, "write-%d %02x\n", 703 word_len, *tx); 704 writel_relaxed(*tx++, tx_reg); 705 } 706 if (rx != NULL) { 707 if (mcspi_wait_for_reg_bit(chstat_reg, 708 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 709 dev_err(&spi->dev, "RXS timed out\n"); 710 goto out; 711 } 712 713 if (c == 1 && tx == NULL && 714 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 715 omap2_mcspi_set_enable(spi, 0); 716 *rx++ = readl_relaxed(rx_reg); 717 dev_vdbg(&spi->dev, "read-%d %02x\n", 718 word_len, *(rx - 1)); 719 if (mcspi_wait_for_reg_bit(chstat_reg, 720 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 721 dev_err(&spi->dev, 722 "RXS timed out\n"); 723 goto out; 724 } 725 c = 0; 726 } else if (c == 0 && tx == NULL) { 727 omap2_mcspi_set_enable(spi, 0); 728 } 729 730 *rx++ = readl_relaxed(rx_reg); 731 dev_vdbg(&spi->dev, "read-%d %02x\n", 732 word_len, *(rx - 1)); 733 } 734 } while (c); 735 } else if (word_len <= 16) { 736 u16 *rx; 737 const u16 *tx; 738 739 rx = xfer->rx_buf; 740 tx = xfer->tx_buf; 741 do { 742 c -= 2; 743 if (tx != NULL) { 744 if (mcspi_wait_for_reg_bit(chstat_reg, 745 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 746 dev_err(&spi->dev, "TXS timed out\n"); 747 goto out; 748 } 749 dev_vdbg(&spi->dev, "write-%d %04x\n", 750 word_len, *tx); 751 writel_relaxed(*tx++, tx_reg); 752 } 753 if (rx != NULL) { 754 if (mcspi_wait_for_reg_bit(chstat_reg, 755 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 756 dev_err(&spi->dev, "RXS timed out\n"); 757 goto out; 758 } 759 760 if (c == 2 && tx == NULL && 761 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 762 omap2_mcspi_set_enable(spi, 0); 763 *rx++ = readl_relaxed(rx_reg); 764 dev_vdbg(&spi->dev, "read-%d %04x\n", 765 word_len, *(rx - 1)); 766 if (mcspi_wait_for_reg_bit(chstat_reg, 767 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 768 dev_err(&spi->dev, 769 "RXS timed out\n"); 770 goto out; 771 } 772 c = 0; 773 } else if (c == 0 && tx == NULL) { 774 omap2_mcspi_set_enable(spi, 0); 775 } 776 777 *rx++ = readl_relaxed(rx_reg); 778 dev_vdbg(&spi->dev, "read-%d %04x\n", 779 word_len, *(rx - 1)); 780 } 781 } while (c >= 2); 782 } else if (word_len <= 32) { 783 u32 *rx; 784 const u32 *tx; 785 786 rx = xfer->rx_buf; 787 tx = xfer->tx_buf; 788 do { 789 c -= 4; 790 if (tx != NULL) { 791 if (mcspi_wait_for_reg_bit(chstat_reg, 792 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 793 dev_err(&spi->dev, "TXS timed out\n"); 794 goto out; 795 } 796 dev_vdbg(&spi->dev, "write-%d %08x\n", 797 word_len, *tx); 798 writel_relaxed(*tx++, tx_reg); 799 } 800 if (rx != NULL) { 801 if (mcspi_wait_for_reg_bit(chstat_reg, 802 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 803 dev_err(&spi->dev, "RXS timed out\n"); 804 goto out; 805 } 806 807 if (c == 4 && tx == NULL && 808 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 809 omap2_mcspi_set_enable(spi, 0); 810 *rx++ = readl_relaxed(rx_reg); 811 dev_vdbg(&spi->dev, "read-%d %08x\n", 812 word_len, *(rx - 1)); 813 if (mcspi_wait_for_reg_bit(chstat_reg, 814 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 815 dev_err(&spi->dev, 816 "RXS timed out\n"); 817 goto out; 818 } 819 c = 0; 820 } else if (c == 0 && tx == NULL) { 821 omap2_mcspi_set_enable(spi, 0); 822 } 823 824 *rx++ = readl_relaxed(rx_reg); 825 dev_vdbg(&spi->dev, "read-%d %08x\n", 826 word_len, *(rx - 1)); 827 } 828 } while (c >= 4); 829 } 830 831 /* for TX_ONLY mode, be sure all words have shifted out */ 832 if (xfer->rx_buf == NULL) { 833 if (mcspi_wait_for_reg_bit(chstat_reg, 834 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 835 dev_err(&spi->dev, "TXS timed out\n"); 836 } else if (mcspi_wait_for_reg_bit(chstat_reg, 837 OMAP2_MCSPI_CHSTAT_EOT) < 0) 838 dev_err(&spi->dev, "EOT timed out\n"); 839 840 /* disable chan to purge rx datas received in TX_ONLY transfer, 841 * otherwise these rx datas will affect the direct following 842 * RX_ONLY transfer. 843 */ 844 omap2_mcspi_set_enable(spi, 0); 845 } 846 out: 847 omap2_mcspi_set_enable(spi, 1); 848 return count - c; 849 } 850 851 static u32 omap2_mcspi_calc_divisor(u32 speed_hz) 852 { 853 u32 div; 854 855 for (div = 0; div < 15; div++) 856 if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div)) 857 return div; 858 859 return 15; 860 } 861 862 /* called only when no transfer is active to this device */ 863 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 864 struct spi_transfer *t) 865 { 866 struct omap2_mcspi_cs *cs = spi->controller_state; 867 struct omap2_mcspi *mcspi; 868 struct spi_master *spi_cntrl; 869 u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0; 870 u8 word_len = spi->bits_per_word; 871 u32 speed_hz = spi->max_speed_hz; 872 873 mcspi = spi_master_get_devdata(spi->master); 874 spi_cntrl = mcspi->master; 875 876 if (t != NULL && t->bits_per_word) 877 word_len = t->bits_per_word; 878 879 cs->word_len = word_len; 880 881 if (t && t->speed_hz) 882 speed_hz = t->speed_hz; 883 884 speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ); 885 if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) { 886 clkd = omap2_mcspi_calc_divisor(speed_hz); 887 speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd; 888 clkg = 0; 889 } else { 890 div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz; 891 speed_hz = OMAP2_MCSPI_MAX_FREQ / div; 892 clkd = (div - 1) & 0xf; 893 extclk = (div - 1) >> 4; 894 clkg = OMAP2_MCSPI_CHCONF_CLKG; 895 } 896 897 l = mcspi_cached_chconf0(spi); 898 899 /* standard 4-wire master mode: SCK, MOSI/out, MISO/in, nCS 900 * REVISIT: this controller could support SPI_3WIRE mode. 901 */ 902 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 903 l &= ~OMAP2_MCSPI_CHCONF_IS; 904 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 905 l |= OMAP2_MCSPI_CHCONF_DPE0; 906 } else { 907 l |= OMAP2_MCSPI_CHCONF_IS; 908 l |= OMAP2_MCSPI_CHCONF_DPE1; 909 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 910 } 911 912 /* wordlength */ 913 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 914 l |= (word_len - 1) << 7; 915 916 /* set chipselect polarity; manage with FORCE */ 917 if (!(spi->mode & SPI_CS_HIGH)) 918 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 919 else 920 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 921 922 /* set clock divisor */ 923 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 924 l |= clkd << 2; 925 926 /* set clock granularity */ 927 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 928 l |= clkg; 929 if (clkg) { 930 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 931 cs->chctrl0 |= extclk << 8; 932 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 933 } 934 935 /* set SPI mode 0..3 */ 936 if (spi->mode & SPI_CPOL) 937 l |= OMAP2_MCSPI_CHCONF_POL; 938 else 939 l &= ~OMAP2_MCSPI_CHCONF_POL; 940 if (spi->mode & SPI_CPHA) 941 l |= OMAP2_MCSPI_CHCONF_PHA; 942 else 943 l &= ~OMAP2_MCSPI_CHCONF_PHA; 944 945 mcspi_write_chconf0(spi, l); 946 947 cs->mode = spi->mode; 948 949 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 950 speed_hz, 951 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 952 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 953 954 return 0; 955 } 956 957 /* 958 * Note that we currently allow DMA only if we get a channel 959 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 960 */ 961 static int omap2_mcspi_request_dma(struct spi_device *spi) 962 { 963 struct spi_master *master = spi->master; 964 struct omap2_mcspi *mcspi; 965 struct omap2_mcspi_dma *mcspi_dma; 966 dma_cap_mask_t mask; 967 unsigned sig; 968 969 mcspi = spi_master_get_devdata(master); 970 mcspi_dma = mcspi->dma_channels + spi->chip_select; 971 972 init_completion(&mcspi_dma->dma_rx_completion); 973 init_completion(&mcspi_dma->dma_tx_completion); 974 975 dma_cap_zero(mask); 976 dma_cap_set(DMA_SLAVE, mask); 977 sig = mcspi_dma->dma_rx_sync_dev; 978 979 mcspi_dma->dma_rx = 980 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 981 &sig, &master->dev, 982 mcspi_dma->dma_rx_ch_name); 983 if (!mcspi_dma->dma_rx) 984 goto no_dma; 985 986 sig = mcspi_dma->dma_tx_sync_dev; 987 mcspi_dma->dma_tx = 988 dma_request_slave_channel_compat(mask, omap_dma_filter_fn, 989 &sig, &master->dev, 990 mcspi_dma->dma_tx_ch_name); 991 992 if (!mcspi_dma->dma_tx) { 993 dma_release_channel(mcspi_dma->dma_rx); 994 mcspi_dma->dma_rx = NULL; 995 goto no_dma; 996 } 997 998 return 0; 999 1000 no_dma: 1001 dev_warn(&spi->dev, "not using DMA for McSPI\n"); 1002 return -EAGAIN; 1003 } 1004 1005 static int omap2_mcspi_setup(struct spi_device *spi) 1006 { 1007 int ret; 1008 struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master); 1009 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1010 struct omap2_mcspi_dma *mcspi_dma; 1011 struct omap2_mcspi_cs *cs = spi->controller_state; 1012 1013 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1014 1015 if (!cs) { 1016 cs = kzalloc(sizeof *cs, GFP_KERNEL); 1017 if (!cs) 1018 return -ENOMEM; 1019 cs->base = mcspi->base + spi->chip_select * 0x14; 1020 cs->phys = mcspi->phys + spi->chip_select * 0x14; 1021 cs->mode = 0; 1022 cs->chconf0 = 0; 1023 cs->chctrl0 = 0; 1024 spi->controller_state = cs; 1025 /* Link this to context save list */ 1026 list_add_tail(&cs->node, &ctx->cs); 1027 } 1028 1029 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) { 1030 ret = omap2_mcspi_request_dma(spi); 1031 if (ret < 0 && ret != -EAGAIN) 1032 return ret; 1033 } 1034 1035 if (gpio_is_valid(spi->cs_gpio)) { 1036 ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev)); 1037 if (ret) { 1038 dev_err(&spi->dev, "failed to request gpio\n"); 1039 return ret; 1040 } 1041 gpio_direction_output(spi->cs_gpio, !(spi->mode & SPI_CS_HIGH)); 1042 } 1043 1044 ret = pm_runtime_get_sync(mcspi->dev); 1045 if (ret < 0) 1046 return ret; 1047 1048 ret = omap2_mcspi_setup_transfer(spi, NULL); 1049 pm_runtime_mark_last_busy(mcspi->dev); 1050 pm_runtime_put_autosuspend(mcspi->dev); 1051 1052 return ret; 1053 } 1054 1055 static void omap2_mcspi_cleanup(struct spi_device *spi) 1056 { 1057 struct omap2_mcspi *mcspi; 1058 struct omap2_mcspi_dma *mcspi_dma; 1059 struct omap2_mcspi_cs *cs; 1060 1061 mcspi = spi_master_get_devdata(spi->master); 1062 1063 if (spi->controller_state) { 1064 /* Unlink controller state from context save list */ 1065 cs = spi->controller_state; 1066 list_del(&cs->node); 1067 1068 kfree(cs); 1069 } 1070 1071 if (spi->chip_select < spi->master->num_chipselect) { 1072 mcspi_dma = &mcspi->dma_channels[spi->chip_select]; 1073 1074 if (mcspi_dma->dma_rx) { 1075 dma_release_channel(mcspi_dma->dma_rx); 1076 mcspi_dma->dma_rx = NULL; 1077 } 1078 if (mcspi_dma->dma_tx) { 1079 dma_release_channel(mcspi_dma->dma_tx); 1080 mcspi_dma->dma_tx = NULL; 1081 } 1082 } 1083 1084 if (gpio_is_valid(spi->cs_gpio)) 1085 gpio_free(spi->cs_gpio); 1086 } 1087 1088 static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi, 1089 struct spi_device *spi, struct spi_transfer *t) 1090 { 1091 1092 /* We only enable one channel at a time -- the one whose message is 1093 * -- although this controller would gladly 1094 * arbitrate among multiple channels. This corresponds to "single 1095 * channel" master mode. As a side effect, we need to manage the 1096 * chipselect with the FORCE bit ... CS != channel enable. 1097 */ 1098 1099 struct spi_master *master; 1100 struct omap2_mcspi_dma *mcspi_dma; 1101 struct omap2_mcspi_cs *cs; 1102 struct omap2_mcspi_device_config *cd; 1103 int par_override = 0; 1104 int status = 0; 1105 u32 chconf; 1106 1107 master = spi->master; 1108 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1109 cs = spi->controller_state; 1110 cd = spi->controller_data; 1111 1112 /* 1113 * The slave driver could have changed spi->mode in which case 1114 * it will be different from cs->mode (the current hardware setup). 1115 * If so, set par_override (even though its not a parity issue) so 1116 * omap2_mcspi_setup_transfer will be called to configure the hardware 1117 * with the correct mode on the first iteration of the loop below. 1118 */ 1119 if (spi->mode != cs->mode) 1120 par_override = 1; 1121 1122 omap2_mcspi_set_enable(spi, 0); 1123 1124 if (gpio_is_valid(spi->cs_gpio)) 1125 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); 1126 1127 if (par_override || 1128 (t->speed_hz != spi->max_speed_hz) || 1129 (t->bits_per_word != spi->bits_per_word)) { 1130 par_override = 1; 1131 status = omap2_mcspi_setup_transfer(spi, t); 1132 if (status < 0) 1133 goto out; 1134 if (t->speed_hz == spi->max_speed_hz && 1135 t->bits_per_word == spi->bits_per_word) 1136 par_override = 0; 1137 } 1138 if (cd && cd->cs_per_word) { 1139 chconf = mcspi->ctx.modulctrl; 1140 chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 1141 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1142 mcspi->ctx.modulctrl = 1143 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1144 } 1145 1146 chconf = mcspi_cached_chconf0(spi); 1147 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1148 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1149 1150 if (t->tx_buf == NULL) 1151 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1152 else if (t->rx_buf == NULL) 1153 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1154 1155 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1156 /* Turbo mode is for more than one word */ 1157 if (t->len > ((cs->word_len + 7) >> 3)) 1158 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1159 } 1160 1161 mcspi_write_chconf0(spi, chconf); 1162 1163 if (t->len) { 1164 unsigned count; 1165 1166 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1167 (t->len >= DMA_MIN_BYTES)) 1168 omap2_mcspi_set_fifo(spi, t, 1); 1169 1170 omap2_mcspi_set_enable(spi, 1); 1171 1172 /* RX_ONLY mode needs dummy data in TX reg */ 1173 if (t->tx_buf == NULL) 1174 writel_relaxed(0, cs->base 1175 + OMAP2_MCSPI_TX0); 1176 1177 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1178 (t->len >= DMA_MIN_BYTES)) 1179 count = omap2_mcspi_txrx_dma(spi, t); 1180 else 1181 count = omap2_mcspi_txrx_pio(spi, t); 1182 1183 if (count != t->len) { 1184 status = -EIO; 1185 goto out; 1186 } 1187 } 1188 1189 omap2_mcspi_set_enable(spi, 0); 1190 1191 if (mcspi->fifo_depth > 0) 1192 omap2_mcspi_set_fifo(spi, t, 0); 1193 1194 out: 1195 /* Restore defaults if they were overriden */ 1196 if (par_override) { 1197 par_override = 0; 1198 status = omap2_mcspi_setup_transfer(spi, NULL); 1199 } 1200 1201 if (cd && cd->cs_per_word) { 1202 chconf = mcspi->ctx.modulctrl; 1203 chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE; 1204 mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf); 1205 mcspi->ctx.modulctrl = 1206 mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL); 1207 } 1208 1209 omap2_mcspi_set_enable(spi, 0); 1210 1211 if (gpio_is_valid(spi->cs_gpio)) 1212 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); 1213 1214 if (mcspi->fifo_depth > 0 && t) 1215 omap2_mcspi_set_fifo(spi, t, 0); 1216 1217 return status; 1218 } 1219 1220 static int omap2_mcspi_transfer_one(struct spi_master *master, 1221 struct spi_device *spi, struct spi_transfer *t) 1222 { 1223 struct omap2_mcspi *mcspi; 1224 struct omap2_mcspi_dma *mcspi_dma; 1225 const void *tx_buf = t->tx_buf; 1226 void *rx_buf = t->rx_buf; 1227 unsigned len = t->len; 1228 1229 mcspi = spi_master_get_devdata(master); 1230 mcspi_dma = mcspi->dma_channels + spi->chip_select; 1231 1232 if ((len && !(rx_buf || tx_buf))) { 1233 dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n", 1234 t->speed_hz, 1235 len, 1236 tx_buf ? "tx" : "", 1237 rx_buf ? "rx" : "", 1238 t->bits_per_word); 1239 return -EINVAL; 1240 } 1241 1242 if (len < DMA_MIN_BYTES) 1243 goto skip_dma_map; 1244 1245 if (mcspi_dma->dma_tx && tx_buf != NULL) { 1246 t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf, 1247 len, DMA_TO_DEVICE); 1248 if (dma_mapping_error(mcspi->dev, t->tx_dma)) { 1249 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n", 1250 'T', len); 1251 return -EINVAL; 1252 } 1253 } 1254 if (mcspi_dma->dma_rx && rx_buf != NULL) { 1255 t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len, 1256 DMA_FROM_DEVICE); 1257 if (dma_mapping_error(mcspi->dev, t->rx_dma)) { 1258 dev_dbg(mcspi->dev, "dma %cX %d bytes error\n", 1259 'R', len); 1260 if (tx_buf != NULL) 1261 dma_unmap_single(mcspi->dev, t->tx_dma, 1262 len, DMA_TO_DEVICE); 1263 return -EINVAL; 1264 } 1265 } 1266 1267 skip_dma_map: 1268 return omap2_mcspi_work_one(mcspi, spi, t); 1269 } 1270 1271 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi) 1272 { 1273 struct spi_master *master = mcspi->master; 1274 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1275 int ret = 0; 1276 1277 ret = pm_runtime_get_sync(mcspi->dev); 1278 if (ret < 0) 1279 return ret; 1280 1281 mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, 1282 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1283 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1284 1285 omap2_mcspi_set_master_mode(master); 1286 pm_runtime_mark_last_busy(mcspi->dev); 1287 pm_runtime_put_autosuspend(mcspi->dev); 1288 return 0; 1289 } 1290 1291 static int omap_mcspi_runtime_resume(struct device *dev) 1292 { 1293 struct omap2_mcspi *mcspi; 1294 struct spi_master *master; 1295 1296 master = dev_get_drvdata(dev); 1297 mcspi = spi_master_get_devdata(master); 1298 omap2_mcspi_restore_ctx(mcspi); 1299 1300 return 0; 1301 } 1302 1303 static struct omap2_mcspi_platform_config omap2_pdata = { 1304 .regs_offset = 0, 1305 }; 1306 1307 static struct omap2_mcspi_platform_config omap4_pdata = { 1308 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1309 }; 1310 1311 static const struct of_device_id omap_mcspi_of_match[] = { 1312 { 1313 .compatible = "ti,omap2-mcspi", 1314 .data = &omap2_pdata, 1315 }, 1316 { 1317 .compatible = "ti,omap4-mcspi", 1318 .data = &omap4_pdata, 1319 }, 1320 { }, 1321 }; 1322 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1323 1324 static int omap2_mcspi_probe(struct platform_device *pdev) 1325 { 1326 struct spi_master *master; 1327 const struct omap2_mcspi_platform_config *pdata; 1328 struct omap2_mcspi *mcspi; 1329 struct resource *r; 1330 int status = 0, i; 1331 u32 regs_offset = 0; 1332 static int bus_num = 1; 1333 struct device_node *node = pdev->dev.of_node; 1334 const struct of_device_id *match; 1335 1336 master = spi_alloc_master(&pdev->dev, sizeof *mcspi); 1337 if (master == NULL) { 1338 dev_dbg(&pdev->dev, "master allocation failed\n"); 1339 return -ENOMEM; 1340 } 1341 1342 /* the spi->mode bits understood by this driver: */ 1343 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1344 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1345 master->setup = omap2_mcspi_setup; 1346 master->auto_runtime_pm = true; 1347 master->transfer_one = omap2_mcspi_transfer_one; 1348 master->set_cs = omap2_mcspi_set_cs; 1349 master->cleanup = omap2_mcspi_cleanup; 1350 master->dev.of_node = node; 1351 master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ; 1352 master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15; 1353 1354 platform_set_drvdata(pdev, master); 1355 1356 mcspi = spi_master_get_devdata(master); 1357 mcspi->master = master; 1358 1359 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1360 if (match) { 1361 u32 num_cs = 1; /* default number of chipselect */ 1362 pdata = match->data; 1363 1364 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1365 master->num_chipselect = num_cs; 1366 master->bus_num = bus_num++; 1367 if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL)) 1368 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1369 } else { 1370 pdata = dev_get_platdata(&pdev->dev); 1371 master->num_chipselect = pdata->num_cs; 1372 if (pdev->id != -1) 1373 master->bus_num = pdev->id; 1374 mcspi->pin_dir = pdata->pin_dir; 1375 } 1376 regs_offset = pdata->regs_offset; 1377 1378 r = platform_get_resource(pdev, IORESOURCE_MEM, 0); 1379 if (r == NULL) { 1380 status = -ENODEV; 1381 goto free_master; 1382 } 1383 1384 r->start += regs_offset; 1385 r->end += regs_offset; 1386 mcspi->phys = r->start; 1387 1388 mcspi->base = devm_ioremap_resource(&pdev->dev, r); 1389 if (IS_ERR(mcspi->base)) { 1390 status = PTR_ERR(mcspi->base); 1391 goto free_master; 1392 } 1393 1394 mcspi->dev = &pdev->dev; 1395 1396 INIT_LIST_HEAD(&mcspi->ctx.cs); 1397 1398 mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect, 1399 sizeof(struct omap2_mcspi_dma), 1400 GFP_KERNEL); 1401 if (mcspi->dma_channels == NULL) { 1402 status = -ENOMEM; 1403 goto free_master; 1404 } 1405 1406 for (i = 0; i < master->num_chipselect; i++) { 1407 char *dma_rx_ch_name = mcspi->dma_channels[i].dma_rx_ch_name; 1408 char *dma_tx_ch_name = mcspi->dma_channels[i].dma_tx_ch_name; 1409 struct resource *dma_res; 1410 1411 sprintf(dma_rx_ch_name, "rx%d", i); 1412 if (!pdev->dev.of_node) { 1413 dma_res = 1414 platform_get_resource_byname(pdev, 1415 IORESOURCE_DMA, 1416 dma_rx_ch_name); 1417 if (!dma_res) { 1418 dev_dbg(&pdev->dev, 1419 "cannot get DMA RX channel\n"); 1420 status = -ENODEV; 1421 break; 1422 } 1423 1424 mcspi->dma_channels[i].dma_rx_sync_dev = 1425 dma_res->start; 1426 } 1427 sprintf(dma_tx_ch_name, "tx%d", i); 1428 if (!pdev->dev.of_node) { 1429 dma_res = 1430 platform_get_resource_byname(pdev, 1431 IORESOURCE_DMA, 1432 dma_tx_ch_name); 1433 if (!dma_res) { 1434 dev_dbg(&pdev->dev, 1435 "cannot get DMA TX channel\n"); 1436 status = -ENODEV; 1437 break; 1438 } 1439 1440 mcspi->dma_channels[i].dma_tx_sync_dev = 1441 dma_res->start; 1442 } 1443 } 1444 1445 if (status < 0) 1446 goto free_master; 1447 1448 pm_runtime_use_autosuspend(&pdev->dev); 1449 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1450 pm_runtime_enable(&pdev->dev); 1451 1452 status = omap2_mcspi_master_setup(mcspi); 1453 if (status < 0) 1454 goto disable_pm; 1455 1456 status = devm_spi_register_master(&pdev->dev, master); 1457 if (status < 0) 1458 goto disable_pm; 1459 1460 return status; 1461 1462 disable_pm: 1463 pm_runtime_disable(&pdev->dev); 1464 free_master: 1465 spi_master_put(master); 1466 return status; 1467 } 1468 1469 static int omap2_mcspi_remove(struct platform_device *pdev) 1470 { 1471 struct spi_master *master = platform_get_drvdata(pdev); 1472 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1473 1474 pm_runtime_put_sync(mcspi->dev); 1475 pm_runtime_disable(&pdev->dev); 1476 1477 return 0; 1478 } 1479 1480 /* work with hotplug and coldplug */ 1481 MODULE_ALIAS("platform:omap2_mcspi"); 1482 1483 #ifdef CONFIG_SUSPEND 1484 /* 1485 * When SPI wake up from off-mode, CS is in activate state. If it was in 1486 * unactive state when driver was suspend, then force it to unactive state at 1487 * wake up. 1488 */ 1489 static int omap2_mcspi_resume(struct device *dev) 1490 { 1491 struct spi_master *master = dev_get_drvdata(dev); 1492 struct omap2_mcspi *mcspi = spi_master_get_devdata(master); 1493 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1494 struct omap2_mcspi_cs *cs; 1495 1496 pm_runtime_get_sync(mcspi->dev); 1497 list_for_each_entry(cs, &ctx->cs, node) { 1498 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1499 /* 1500 * We need to toggle CS state for OMAP take this 1501 * change in account. 1502 */ 1503 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1504 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1505 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1506 writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0); 1507 } 1508 } 1509 pm_runtime_mark_last_busy(mcspi->dev); 1510 pm_runtime_put_autosuspend(mcspi->dev); 1511 return 0; 1512 } 1513 #else 1514 #define omap2_mcspi_resume NULL 1515 #endif 1516 1517 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1518 .resume = omap2_mcspi_resume, 1519 .runtime_resume = omap_mcspi_runtime_resume, 1520 }; 1521 1522 static struct platform_driver omap2_mcspi_driver = { 1523 .driver = { 1524 .name = "omap2_mcspi", 1525 .pm = &omap2_mcspi_pm_ops, 1526 .of_match_table = omap_mcspi_of_match, 1527 }, 1528 .probe = omap2_mcspi_probe, 1529 .remove = omap2_mcspi_remove, 1530 }; 1531 1532 module_platform_driver(omap2_mcspi_driver); 1533 MODULE_LICENSE("GPL"); 1534