xref: /linux/drivers/spi/spi-omap2-mcspi.c (revision a4eb44a6435d6d8f9e642407a4a06f65eb90ca04)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * OMAP2 McSPI controller driver
4  *
5  * Copyright (C) 2005, 2006 Nokia Corporation
6  * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
7  *		Juha Yrjola <juha.yrjola@nokia.com>
8  */
9 
10 #include <linux/kernel.h>
11 #include <linux/interrupt.h>
12 #include <linux/module.h>
13 #include <linux/device.h>
14 #include <linux/delay.h>
15 #include <linux/dma-mapping.h>
16 #include <linux/dmaengine.h>
17 #include <linux/pinctrl/consumer.h>
18 #include <linux/platform_device.h>
19 #include <linux/err.h>
20 #include <linux/clk.h>
21 #include <linux/io.h>
22 #include <linux/slab.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/of.h>
25 #include <linux/of_device.h>
26 #include <linux/gcd.h>
27 
28 #include <linux/spi/spi.h>
29 
30 #include <linux/platform_data/spi-omap2-mcspi.h>
31 
32 #define OMAP2_MCSPI_MAX_FREQ		48000000
33 #define OMAP2_MCSPI_MAX_DIVIDER		4096
34 #define OMAP2_MCSPI_MAX_FIFODEPTH	64
35 #define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
36 #define SPI_AUTOSUSPEND_TIMEOUT		2000
37 
38 #define OMAP2_MCSPI_REVISION		0x00
39 #define OMAP2_MCSPI_SYSSTATUS		0x14
40 #define OMAP2_MCSPI_IRQSTATUS		0x18
41 #define OMAP2_MCSPI_IRQENABLE		0x1c
42 #define OMAP2_MCSPI_WAKEUPENABLE	0x20
43 #define OMAP2_MCSPI_SYST		0x24
44 #define OMAP2_MCSPI_MODULCTRL		0x28
45 #define OMAP2_MCSPI_XFERLEVEL		0x7c
46 
47 /* per-channel banks, 0x14 bytes each, first is: */
48 #define OMAP2_MCSPI_CHCONF0		0x2c
49 #define OMAP2_MCSPI_CHSTAT0		0x30
50 #define OMAP2_MCSPI_CHCTRL0		0x34
51 #define OMAP2_MCSPI_TX0			0x38
52 #define OMAP2_MCSPI_RX0			0x3c
53 
54 /* per-register bitmasks: */
55 #define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
56 
57 #define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
58 #define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
59 #define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
60 
61 #define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
62 #define OMAP2_MCSPI_CHCONF_POL		BIT(1)
63 #define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
64 #define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
65 #define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
66 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
67 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
68 #define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
69 #define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
70 #define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
71 #define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
72 #define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
73 #define OMAP2_MCSPI_CHCONF_IS		BIT(18)
74 #define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
75 #define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
76 #define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
77 #define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
78 #define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
79 
80 #define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
81 #define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
82 #define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
83 #define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
84 
85 #define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
86 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
87 
88 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
89 
90 /* We have 2 DMA channels per CS, one for RX and one for TX */
91 struct omap2_mcspi_dma {
92 	struct dma_chan *dma_tx;
93 	struct dma_chan *dma_rx;
94 
95 	struct completion dma_tx_completion;
96 	struct completion dma_rx_completion;
97 
98 	char dma_rx_ch_name[14];
99 	char dma_tx_ch_name[14];
100 };
101 
102 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
103  * cache operations; better heuristics consider wordsize and bitrate.
104  */
105 #define DMA_MIN_BYTES			160
106 
107 
108 /*
109  * Used for context save and restore, structure members to be updated whenever
110  * corresponding registers are modified.
111  */
112 struct omap2_mcspi_regs {
113 	u32 modulctrl;
114 	u32 wakeupenable;
115 	struct list_head cs;
116 };
117 
118 struct omap2_mcspi {
119 	struct completion	txdone;
120 	struct spi_master	*master;
121 	/* Virtual base address of the controller */
122 	void __iomem		*base;
123 	unsigned long		phys;
124 	/* SPI1 has 4 channels, while SPI2 has 2 */
125 	struct omap2_mcspi_dma	*dma_channels;
126 	struct device		*dev;
127 	struct omap2_mcspi_regs ctx;
128 	int			fifo_depth;
129 	bool			slave_aborted;
130 	unsigned int		pin_dir:1;
131 	size_t			max_xfer_len;
132 };
133 
134 struct omap2_mcspi_cs {
135 	void __iomem		*base;
136 	unsigned long		phys;
137 	int			word_len;
138 	u16			mode;
139 	struct list_head	node;
140 	/* Context save and restore shadow register */
141 	u32			chconf0, chctrl0;
142 };
143 
144 static inline void mcspi_write_reg(struct spi_master *master,
145 		int idx, u32 val)
146 {
147 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
148 
149 	writel_relaxed(val, mcspi->base + idx);
150 }
151 
152 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
153 {
154 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155 
156 	return readl_relaxed(mcspi->base + idx);
157 }
158 
159 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
160 		int idx, u32 val)
161 {
162 	struct omap2_mcspi_cs	*cs = spi->controller_state;
163 
164 	writel_relaxed(val, cs->base +  idx);
165 }
166 
167 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
168 {
169 	struct omap2_mcspi_cs	*cs = spi->controller_state;
170 
171 	return readl_relaxed(cs->base + idx);
172 }
173 
174 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
175 {
176 	struct omap2_mcspi_cs *cs = spi->controller_state;
177 
178 	return cs->chconf0;
179 }
180 
181 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
182 {
183 	struct omap2_mcspi_cs *cs = spi->controller_state;
184 
185 	cs->chconf0 = val;
186 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
187 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
188 }
189 
190 static inline int mcspi_bytes_per_word(int word_len)
191 {
192 	if (word_len <= 8)
193 		return 1;
194 	else if (word_len <= 16)
195 		return 2;
196 	else /* word_len <= 32 */
197 		return 4;
198 }
199 
200 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
201 		int is_read, int enable)
202 {
203 	u32 l, rw;
204 
205 	l = mcspi_cached_chconf0(spi);
206 
207 	if (is_read) /* 1 is read, 0 write */
208 		rw = OMAP2_MCSPI_CHCONF_DMAR;
209 	else
210 		rw = OMAP2_MCSPI_CHCONF_DMAW;
211 
212 	if (enable)
213 		l |= rw;
214 	else
215 		l &= ~rw;
216 
217 	mcspi_write_chconf0(spi, l);
218 }
219 
220 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
221 {
222 	struct omap2_mcspi_cs *cs = spi->controller_state;
223 	u32 l;
224 
225 	l = cs->chctrl0;
226 	if (enable)
227 		l |= OMAP2_MCSPI_CHCTRL_EN;
228 	else
229 		l &= ~OMAP2_MCSPI_CHCTRL_EN;
230 	cs->chctrl0 = l;
231 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
232 	/* Flash post-writes */
233 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
234 }
235 
236 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
237 {
238 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
239 	u32 l;
240 
241 	/* The controller handles the inverted chip selects
242 	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
243 	 * the inversion from the core spi_set_cs function.
244 	 */
245 	if (spi->mode & SPI_CS_HIGH)
246 		enable = !enable;
247 
248 	if (spi->controller_state) {
249 		int err = pm_runtime_get_sync(mcspi->dev);
250 		if (err < 0) {
251 			pm_runtime_put_noidle(mcspi->dev);
252 			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
253 			return;
254 		}
255 
256 		l = mcspi_cached_chconf0(spi);
257 
258 		if (enable)
259 			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
260 		else
261 			l |= OMAP2_MCSPI_CHCONF_FORCE;
262 
263 		mcspi_write_chconf0(spi, l);
264 
265 		pm_runtime_mark_last_busy(mcspi->dev);
266 		pm_runtime_put_autosuspend(mcspi->dev);
267 	}
268 }
269 
270 static void omap2_mcspi_set_mode(struct spi_master *master)
271 {
272 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
273 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
274 	u32 l;
275 
276 	/*
277 	 * Choose master or slave mode
278 	 */
279 	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
280 	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST);
281 	if (spi_controller_is_slave(master)) {
282 		l |= (OMAP2_MCSPI_MODULCTRL_MS);
283 	} else {
284 		l &= ~(OMAP2_MCSPI_MODULCTRL_MS);
285 		l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
286 	}
287 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
288 
289 	ctx->modulctrl = l;
290 }
291 
292 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
293 				struct spi_transfer *t, int enable)
294 {
295 	struct spi_master *master = spi->master;
296 	struct omap2_mcspi_cs *cs = spi->controller_state;
297 	struct omap2_mcspi *mcspi;
298 	unsigned int wcnt;
299 	int max_fifo_depth, bytes_per_word;
300 	u32 chconf, xferlevel;
301 
302 	mcspi = spi_master_get_devdata(master);
303 
304 	chconf = mcspi_cached_chconf0(spi);
305 	if (enable) {
306 		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
307 		if (t->len % bytes_per_word != 0)
308 			goto disable_fifo;
309 
310 		if (t->rx_buf != NULL && t->tx_buf != NULL)
311 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
312 		else
313 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
314 
315 		wcnt = t->len / bytes_per_word;
316 		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
317 			goto disable_fifo;
318 
319 		xferlevel = wcnt << 16;
320 		if (t->rx_buf != NULL) {
321 			chconf |= OMAP2_MCSPI_CHCONF_FFER;
322 			xferlevel |= (bytes_per_word - 1) << 8;
323 		}
324 
325 		if (t->tx_buf != NULL) {
326 			chconf |= OMAP2_MCSPI_CHCONF_FFET;
327 			xferlevel |= bytes_per_word - 1;
328 		}
329 
330 		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
331 		mcspi_write_chconf0(spi, chconf);
332 		mcspi->fifo_depth = max_fifo_depth;
333 
334 		return;
335 	}
336 
337 disable_fifo:
338 	if (t->rx_buf != NULL)
339 		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
340 
341 	if (t->tx_buf != NULL)
342 		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
343 
344 	mcspi_write_chconf0(spi, chconf);
345 	mcspi->fifo_depth = 0;
346 }
347 
348 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
349 {
350 	unsigned long timeout;
351 
352 	timeout = jiffies + msecs_to_jiffies(1000);
353 	while (!(readl_relaxed(reg) & bit)) {
354 		if (time_after(jiffies, timeout)) {
355 			if (!(readl_relaxed(reg) & bit))
356 				return -ETIMEDOUT;
357 			else
358 				return 0;
359 		}
360 		cpu_relax();
361 	}
362 	return 0;
363 }
364 
365 static int mcspi_wait_for_completion(struct  omap2_mcspi *mcspi,
366 				     struct completion *x)
367 {
368 	if (spi_controller_is_slave(mcspi->master)) {
369 		if (wait_for_completion_interruptible(x) ||
370 		    mcspi->slave_aborted)
371 			return -EINTR;
372 	} else {
373 		wait_for_completion(x);
374 	}
375 
376 	return 0;
377 }
378 
379 static void omap2_mcspi_rx_callback(void *data)
380 {
381 	struct spi_device *spi = data;
382 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
383 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
384 
385 	/* We must disable the DMA RX request */
386 	omap2_mcspi_set_dma_req(spi, 1, 0);
387 
388 	complete(&mcspi_dma->dma_rx_completion);
389 }
390 
391 static void omap2_mcspi_tx_callback(void *data)
392 {
393 	struct spi_device *spi = data;
394 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
395 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
396 
397 	/* We must disable the DMA TX request */
398 	omap2_mcspi_set_dma_req(spi, 0, 0);
399 
400 	complete(&mcspi_dma->dma_tx_completion);
401 }
402 
403 static void omap2_mcspi_tx_dma(struct spi_device *spi,
404 				struct spi_transfer *xfer,
405 				struct dma_slave_config cfg)
406 {
407 	struct omap2_mcspi	*mcspi;
408 	struct omap2_mcspi_dma  *mcspi_dma;
409 	struct dma_async_tx_descriptor *tx;
410 
411 	mcspi = spi_master_get_devdata(spi->master);
412 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
413 
414 	dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
415 
416 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl,
417 				     xfer->tx_sg.nents,
418 				     DMA_MEM_TO_DEV,
419 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
420 	if (tx) {
421 		tx->callback = omap2_mcspi_tx_callback;
422 		tx->callback_param = spi;
423 		dmaengine_submit(tx);
424 	} else {
425 		/* FIXME: fall back to PIO? */
426 	}
427 	dma_async_issue_pending(mcspi_dma->dma_tx);
428 	omap2_mcspi_set_dma_req(spi, 0, 1);
429 }
430 
431 static unsigned
432 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
433 				struct dma_slave_config cfg,
434 				unsigned es)
435 {
436 	struct omap2_mcspi	*mcspi;
437 	struct omap2_mcspi_dma  *mcspi_dma;
438 	unsigned int		count, transfer_reduction = 0;
439 	struct scatterlist	*sg_out[2];
440 	int			nb_sizes = 0, out_mapped_nents[2], ret, x;
441 	size_t			sizes[2];
442 	u32			l;
443 	int			elements = 0;
444 	int			word_len, element_count;
445 	struct omap2_mcspi_cs	*cs = spi->controller_state;
446 	void __iomem		*chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
447 	struct dma_async_tx_descriptor *tx;
448 
449 	mcspi = spi_master_get_devdata(spi->master);
450 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
451 	count = xfer->len;
452 
453 	/*
454 	 *  In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM
455 	 *  it mentions reducing DMA transfer length by one element in master
456 	 *  normal mode.
457 	 */
458 	if (mcspi->fifo_depth == 0)
459 		transfer_reduction = es;
460 
461 	word_len = cs->word_len;
462 	l = mcspi_cached_chconf0(spi);
463 
464 	if (word_len <= 8)
465 		element_count = count;
466 	else if (word_len <= 16)
467 		element_count = count >> 1;
468 	else /* word_len <= 32 */
469 		element_count = count >> 2;
470 
471 
472 	dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
473 
474 	/*
475 	 *  Reduce DMA transfer length by one more if McSPI is
476 	 *  configured in turbo mode.
477 	 */
478 	if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
479 		transfer_reduction += es;
480 
481 	if (transfer_reduction) {
482 		/* Split sgl into two. The second sgl won't be used. */
483 		sizes[0] = count - transfer_reduction;
484 		sizes[1] = transfer_reduction;
485 		nb_sizes = 2;
486 	} else {
487 		/*
488 		 * Don't bother splitting the sgl. This essentially
489 		 * clones the original sgl.
490 		 */
491 		sizes[0] = count;
492 		nb_sizes = 1;
493 	}
494 
495 	ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes,
496 		       sizes, sg_out, out_mapped_nents, GFP_KERNEL);
497 
498 	if (ret < 0) {
499 		dev_err(&spi->dev, "sg_split failed\n");
500 		return 0;
501 	}
502 
503 	tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0],
504 				     out_mapped_nents[0], DMA_DEV_TO_MEM,
505 				     DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
506 	if (tx) {
507 		tx->callback = omap2_mcspi_rx_callback;
508 		tx->callback_param = spi;
509 		dmaengine_submit(tx);
510 	} else {
511 		/* FIXME: fall back to PIO? */
512 	}
513 
514 	dma_async_issue_pending(mcspi_dma->dma_rx);
515 	omap2_mcspi_set_dma_req(spi, 1, 1);
516 
517 	ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion);
518 	if (ret || mcspi->slave_aborted) {
519 		dmaengine_terminate_sync(mcspi_dma->dma_rx);
520 		omap2_mcspi_set_dma_req(spi, 1, 0);
521 		return 0;
522 	}
523 
524 	for (x = 0; x < nb_sizes; x++)
525 		kfree(sg_out[x]);
526 
527 	if (mcspi->fifo_depth > 0)
528 		return count;
529 
530 	/*
531 	 *  Due to the DMA transfer length reduction the missing bytes must
532 	 *  be read manually to receive all of the expected data.
533 	 */
534 	omap2_mcspi_set_enable(spi, 0);
535 
536 	elements = element_count - 1;
537 
538 	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
539 		elements--;
540 
541 		if (!mcspi_wait_for_reg_bit(chstat_reg,
542 					    OMAP2_MCSPI_CHSTAT_RXS)) {
543 			u32 w;
544 
545 			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
546 			if (word_len <= 8)
547 				((u8 *)xfer->rx_buf)[elements++] = w;
548 			else if (word_len <= 16)
549 				((u16 *)xfer->rx_buf)[elements++] = w;
550 			else /* word_len <= 32 */
551 				((u32 *)xfer->rx_buf)[elements++] = w;
552 		} else {
553 			int bytes_per_word = mcspi_bytes_per_word(word_len);
554 			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
555 			count -= (bytes_per_word << 1);
556 			omap2_mcspi_set_enable(spi, 1);
557 			return count;
558 		}
559 	}
560 	if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) {
561 		u32 w;
562 
563 		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
564 		if (word_len <= 8)
565 			((u8 *)xfer->rx_buf)[elements] = w;
566 		else if (word_len <= 16)
567 			((u16 *)xfer->rx_buf)[elements] = w;
568 		else /* word_len <= 32 */
569 			((u32 *)xfer->rx_buf)[elements] = w;
570 	} else {
571 		dev_err(&spi->dev, "DMA RX last word empty\n");
572 		count -= mcspi_bytes_per_word(word_len);
573 	}
574 	omap2_mcspi_set_enable(spi, 1);
575 	return count;
576 }
577 
578 static unsigned
579 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
580 {
581 	struct omap2_mcspi	*mcspi;
582 	struct omap2_mcspi_cs	*cs = spi->controller_state;
583 	struct omap2_mcspi_dma  *mcspi_dma;
584 	unsigned int		count;
585 	u8			*rx;
586 	const u8		*tx;
587 	struct dma_slave_config	cfg;
588 	enum dma_slave_buswidth width;
589 	unsigned es;
590 	void __iomem		*chstat_reg;
591 	void __iomem            *irqstat_reg;
592 	int			wait_res;
593 
594 	mcspi = spi_master_get_devdata(spi->master);
595 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
596 
597 	if (cs->word_len <= 8) {
598 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
599 		es = 1;
600 	} else if (cs->word_len <= 16) {
601 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
602 		es = 2;
603 	} else {
604 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
605 		es = 4;
606 	}
607 
608 	count = xfer->len;
609 
610 	memset(&cfg, 0, sizeof(cfg));
611 	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
612 	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
613 	cfg.src_addr_width = width;
614 	cfg.dst_addr_width = width;
615 	cfg.src_maxburst = 1;
616 	cfg.dst_maxburst = 1;
617 
618 	rx = xfer->rx_buf;
619 	tx = xfer->tx_buf;
620 
621 	mcspi->slave_aborted = false;
622 	reinit_completion(&mcspi_dma->dma_tx_completion);
623 	reinit_completion(&mcspi_dma->dma_rx_completion);
624 	reinit_completion(&mcspi->txdone);
625 	if (tx) {
626 		/* Enable EOW IRQ to know end of tx in slave mode */
627 		if (spi_controller_is_slave(spi->master))
628 			mcspi_write_reg(spi->master,
629 					OMAP2_MCSPI_IRQENABLE,
630 					OMAP2_MCSPI_IRQSTATUS_EOW);
631 		omap2_mcspi_tx_dma(spi, xfer, cfg);
632 	}
633 
634 	if (rx != NULL)
635 		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
636 
637 	if (tx != NULL) {
638 		int ret;
639 
640 		ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion);
641 		if (ret || mcspi->slave_aborted) {
642 			dmaengine_terminate_sync(mcspi_dma->dma_tx);
643 			omap2_mcspi_set_dma_req(spi, 0, 0);
644 			return 0;
645 		}
646 
647 		if (spi_controller_is_slave(mcspi->master)) {
648 			ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone);
649 			if (ret || mcspi->slave_aborted)
650 				return 0;
651 		}
652 
653 		if (mcspi->fifo_depth > 0) {
654 			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
655 
656 			if (mcspi_wait_for_reg_bit(irqstat_reg,
657 						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
658 				dev_err(&spi->dev, "EOW timed out\n");
659 
660 			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
661 					OMAP2_MCSPI_IRQSTATUS_EOW);
662 		}
663 
664 		/* for TX_ONLY mode, be sure all words have shifted out */
665 		if (rx == NULL) {
666 			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
667 			if (mcspi->fifo_depth > 0) {
668 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
669 						OMAP2_MCSPI_CHSTAT_TXFFE);
670 				if (wait_res < 0)
671 					dev_err(&spi->dev, "TXFFE timed out\n");
672 			} else {
673 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
674 						OMAP2_MCSPI_CHSTAT_TXS);
675 				if (wait_res < 0)
676 					dev_err(&spi->dev, "TXS timed out\n");
677 			}
678 			if (wait_res >= 0 &&
679 				(mcspi_wait_for_reg_bit(chstat_reg,
680 					OMAP2_MCSPI_CHSTAT_EOT) < 0))
681 				dev_err(&spi->dev, "EOT timed out\n");
682 		}
683 	}
684 	return count;
685 }
686 
687 static unsigned
688 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
689 {
690 	struct omap2_mcspi_cs	*cs = spi->controller_state;
691 	unsigned int		count, c;
692 	u32			l;
693 	void __iomem		*base = cs->base;
694 	void __iomem		*tx_reg;
695 	void __iomem		*rx_reg;
696 	void __iomem		*chstat_reg;
697 	int			word_len;
698 
699 	count = xfer->len;
700 	c = count;
701 	word_len = cs->word_len;
702 
703 	l = mcspi_cached_chconf0(spi);
704 
705 	/* We store the pre-calculated register addresses on stack to speed
706 	 * up the transfer loop. */
707 	tx_reg		= base + OMAP2_MCSPI_TX0;
708 	rx_reg		= base + OMAP2_MCSPI_RX0;
709 	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
710 
711 	if (c < (word_len>>3))
712 		return 0;
713 
714 	if (word_len <= 8) {
715 		u8		*rx;
716 		const u8	*tx;
717 
718 		rx = xfer->rx_buf;
719 		tx = xfer->tx_buf;
720 
721 		do {
722 			c -= 1;
723 			if (tx != NULL) {
724 				if (mcspi_wait_for_reg_bit(chstat_reg,
725 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
726 					dev_err(&spi->dev, "TXS timed out\n");
727 					goto out;
728 				}
729 				dev_vdbg(&spi->dev, "write-%d %02x\n",
730 						word_len, *tx);
731 				writel_relaxed(*tx++, tx_reg);
732 			}
733 			if (rx != NULL) {
734 				if (mcspi_wait_for_reg_bit(chstat_reg,
735 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
736 					dev_err(&spi->dev, "RXS timed out\n");
737 					goto out;
738 				}
739 
740 				if (c == 1 && tx == NULL &&
741 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
742 					omap2_mcspi_set_enable(spi, 0);
743 					*rx++ = readl_relaxed(rx_reg);
744 					dev_vdbg(&spi->dev, "read-%d %02x\n",
745 						    word_len, *(rx - 1));
746 					if (mcspi_wait_for_reg_bit(chstat_reg,
747 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
748 						dev_err(&spi->dev,
749 							"RXS timed out\n");
750 						goto out;
751 					}
752 					c = 0;
753 				} else if (c == 0 && tx == NULL) {
754 					omap2_mcspi_set_enable(spi, 0);
755 				}
756 
757 				*rx++ = readl_relaxed(rx_reg);
758 				dev_vdbg(&spi->dev, "read-%d %02x\n",
759 						word_len, *(rx - 1));
760 			}
761 		} while (c);
762 	} else if (word_len <= 16) {
763 		u16		*rx;
764 		const u16	*tx;
765 
766 		rx = xfer->rx_buf;
767 		tx = xfer->tx_buf;
768 		do {
769 			c -= 2;
770 			if (tx != NULL) {
771 				if (mcspi_wait_for_reg_bit(chstat_reg,
772 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
773 					dev_err(&spi->dev, "TXS timed out\n");
774 					goto out;
775 				}
776 				dev_vdbg(&spi->dev, "write-%d %04x\n",
777 						word_len, *tx);
778 				writel_relaxed(*tx++, tx_reg);
779 			}
780 			if (rx != NULL) {
781 				if (mcspi_wait_for_reg_bit(chstat_reg,
782 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
783 					dev_err(&spi->dev, "RXS timed out\n");
784 					goto out;
785 				}
786 
787 				if (c == 2 && tx == NULL &&
788 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
789 					omap2_mcspi_set_enable(spi, 0);
790 					*rx++ = readl_relaxed(rx_reg);
791 					dev_vdbg(&spi->dev, "read-%d %04x\n",
792 						    word_len, *(rx - 1));
793 					if (mcspi_wait_for_reg_bit(chstat_reg,
794 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
795 						dev_err(&spi->dev,
796 							"RXS timed out\n");
797 						goto out;
798 					}
799 					c = 0;
800 				} else if (c == 0 && tx == NULL) {
801 					omap2_mcspi_set_enable(spi, 0);
802 				}
803 
804 				*rx++ = readl_relaxed(rx_reg);
805 				dev_vdbg(&spi->dev, "read-%d %04x\n",
806 						word_len, *(rx - 1));
807 			}
808 		} while (c >= 2);
809 	} else if (word_len <= 32) {
810 		u32		*rx;
811 		const u32	*tx;
812 
813 		rx = xfer->rx_buf;
814 		tx = xfer->tx_buf;
815 		do {
816 			c -= 4;
817 			if (tx != NULL) {
818 				if (mcspi_wait_for_reg_bit(chstat_reg,
819 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
820 					dev_err(&spi->dev, "TXS timed out\n");
821 					goto out;
822 				}
823 				dev_vdbg(&spi->dev, "write-%d %08x\n",
824 						word_len, *tx);
825 				writel_relaxed(*tx++, tx_reg);
826 			}
827 			if (rx != NULL) {
828 				if (mcspi_wait_for_reg_bit(chstat_reg,
829 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
830 					dev_err(&spi->dev, "RXS timed out\n");
831 					goto out;
832 				}
833 
834 				if (c == 4 && tx == NULL &&
835 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
836 					omap2_mcspi_set_enable(spi, 0);
837 					*rx++ = readl_relaxed(rx_reg);
838 					dev_vdbg(&spi->dev, "read-%d %08x\n",
839 						    word_len, *(rx - 1));
840 					if (mcspi_wait_for_reg_bit(chstat_reg,
841 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
842 						dev_err(&spi->dev,
843 							"RXS timed out\n");
844 						goto out;
845 					}
846 					c = 0;
847 				} else if (c == 0 && tx == NULL) {
848 					omap2_mcspi_set_enable(spi, 0);
849 				}
850 
851 				*rx++ = readl_relaxed(rx_reg);
852 				dev_vdbg(&spi->dev, "read-%d %08x\n",
853 						word_len, *(rx - 1));
854 			}
855 		} while (c >= 4);
856 	}
857 
858 	/* for TX_ONLY mode, be sure all words have shifted out */
859 	if (xfer->rx_buf == NULL) {
860 		if (mcspi_wait_for_reg_bit(chstat_reg,
861 				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
862 			dev_err(&spi->dev, "TXS timed out\n");
863 		} else if (mcspi_wait_for_reg_bit(chstat_reg,
864 				OMAP2_MCSPI_CHSTAT_EOT) < 0)
865 			dev_err(&spi->dev, "EOT timed out\n");
866 
867 		/* disable chan to purge rx datas received in TX_ONLY transfer,
868 		 * otherwise these rx datas will affect the direct following
869 		 * RX_ONLY transfer.
870 		 */
871 		omap2_mcspi_set_enable(spi, 0);
872 	}
873 out:
874 	omap2_mcspi_set_enable(spi, 1);
875 	return count - c;
876 }
877 
878 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
879 {
880 	u32 div;
881 
882 	for (div = 0; div < 15; div++)
883 		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
884 			return div;
885 
886 	return 15;
887 }
888 
889 /* called only when no transfer is active to this device */
890 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
891 		struct spi_transfer *t)
892 {
893 	struct omap2_mcspi_cs *cs = spi->controller_state;
894 	struct omap2_mcspi *mcspi;
895 	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
896 	u8 word_len = spi->bits_per_word;
897 	u32 speed_hz = spi->max_speed_hz;
898 
899 	mcspi = spi_master_get_devdata(spi->master);
900 
901 	if (t != NULL && t->bits_per_word)
902 		word_len = t->bits_per_word;
903 
904 	cs->word_len = word_len;
905 
906 	if (t && t->speed_hz)
907 		speed_hz = t->speed_hz;
908 
909 	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
910 	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
911 		clkd = omap2_mcspi_calc_divisor(speed_hz);
912 		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
913 		clkg = 0;
914 	} else {
915 		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
916 		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
917 		clkd = (div - 1) & 0xf;
918 		extclk = (div - 1) >> 4;
919 		clkg = OMAP2_MCSPI_CHCONF_CLKG;
920 	}
921 
922 	l = mcspi_cached_chconf0(spi);
923 
924 	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
925 	 * REVISIT: this controller could support SPI_3WIRE mode.
926 	 */
927 	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
928 		l &= ~OMAP2_MCSPI_CHCONF_IS;
929 		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
930 		l |= OMAP2_MCSPI_CHCONF_DPE0;
931 	} else {
932 		l |= OMAP2_MCSPI_CHCONF_IS;
933 		l |= OMAP2_MCSPI_CHCONF_DPE1;
934 		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
935 	}
936 
937 	/* wordlength */
938 	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
939 	l |= (word_len - 1) << 7;
940 
941 	/* set chipselect polarity; manage with FORCE */
942 	if (!(spi->mode & SPI_CS_HIGH))
943 		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
944 	else
945 		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
946 
947 	/* set clock divisor */
948 	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
949 	l |= clkd << 2;
950 
951 	/* set clock granularity */
952 	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
953 	l |= clkg;
954 	if (clkg) {
955 		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
956 		cs->chctrl0 |= extclk << 8;
957 		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
958 	}
959 
960 	/* set SPI mode 0..3 */
961 	if (spi->mode & SPI_CPOL)
962 		l |= OMAP2_MCSPI_CHCONF_POL;
963 	else
964 		l &= ~OMAP2_MCSPI_CHCONF_POL;
965 	if (spi->mode & SPI_CPHA)
966 		l |= OMAP2_MCSPI_CHCONF_PHA;
967 	else
968 		l &= ~OMAP2_MCSPI_CHCONF_PHA;
969 
970 	mcspi_write_chconf0(spi, l);
971 
972 	cs->mode = spi->mode;
973 
974 	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
975 			speed_hz,
976 			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
977 			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
978 
979 	return 0;
980 }
981 
982 /*
983  * Note that we currently allow DMA only if we get a channel
984  * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
985  */
986 static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi,
987 				   struct omap2_mcspi_dma *mcspi_dma)
988 {
989 	int ret = 0;
990 
991 	mcspi_dma->dma_rx = dma_request_chan(mcspi->dev,
992 					     mcspi_dma->dma_rx_ch_name);
993 	if (IS_ERR(mcspi_dma->dma_rx)) {
994 		ret = PTR_ERR(mcspi_dma->dma_rx);
995 		mcspi_dma->dma_rx = NULL;
996 		goto no_dma;
997 	}
998 
999 	mcspi_dma->dma_tx = dma_request_chan(mcspi->dev,
1000 					     mcspi_dma->dma_tx_ch_name);
1001 	if (IS_ERR(mcspi_dma->dma_tx)) {
1002 		ret = PTR_ERR(mcspi_dma->dma_tx);
1003 		mcspi_dma->dma_tx = NULL;
1004 		dma_release_channel(mcspi_dma->dma_rx);
1005 		mcspi_dma->dma_rx = NULL;
1006 	}
1007 
1008 	init_completion(&mcspi_dma->dma_rx_completion);
1009 	init_completion(&mcspi_dma->dma_tx_completion);
1010 
1011 no_dma:
1012 	return ret;
1013 }
1014 
1015 static void omap2_mcspi_release_dma(struct spi_master *master)
1016 {
1017 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1018 	struct omap2_mcspi_dma	*mcspi_dma;
1019 	int i;
1020 
1021 	for (i = 0; i < master->num_chipselect; i++) {
1022 		mcspi_dma = &mcspi->dma_channels[i];
1023 
1024 		if (mcspi_dma->dma_rx) {
1025 			dma_release_channel(mcspi_dma->dma_rx);
1026 			mcspi_dma->dma_rx = NULL;
1027 		}
1028 		if (mcspi_dma->dma_tx) {
1029 			dma_release_channel(mcspi_dma->dma_tx);
1030 			mcspi_dma->dma_tx = NULL;
1031 		}
1032 	}
1033 }
1034 
1035 static void omap2_mcspi_cleanup(struct spi_device *spi)
1036 {
1037 	struct omap2_mcspi_cs	*cs;
1038 
1039 	if (spi->controller_state) {
1040 		/* Unlink controller state from context save list */
1041 		cs = spi->controller_state;
1042 		list_del(&cs->node);
1043 
1044 		kfree(cs);
1045 	}
1046 }
1047 
1048 static int omap2_mcspi_setup(struct spi_device *spi)
1049 {
1050 	bool			initial_setup = false;
1051 	int			ret;
1052 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
1053 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1054 	struct omap2_mcspi_cs	*cs = spi->controller_state;
1055 
1056 	if (!cs) {
1057 		cs = kzalloc(sizeof(*cs), GFP_KERNEL);
1058 		if (!cs)
1059 			return -ENOMEM;
1060 		cs->base = mcspi->base + spi->chip_select * 0x14;
1061 		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1062 		cs->mode = 0;
1063 		cs->chconf0 = 0;
1064 		cs->chctrl0 = 0;
1065 		spi->controller_state = cs;
1066 		/* Link this to context save list */
1067 		list_add_tail(&cs->node, &ctx->cs);
1068 		initial_setup = true;
1069 	}
1070 
1071 	ret = pm_runtime_get_sync(mcspi->dev);
1072 	if (ret < 0) {
1073 		pm_runtime_put_noidle(mcspi->dev);
1074 		if (initial_setup)
1075 			omap2_mcspi_cleanup(spi);
1076 
1077 		return ret;
1078 	}
1079 
1080 	ret = omap2_mcspi_setup_transfer(spi, NULL);
1081 	if (ret && initial_setup)
1082 		omap2_mcspi_cleanup(spi);
1083 
1084 	pm_runtime_mark_last_busy(mcspi->dev);
1085 	pm_runtime_put_autosuspend(mcspi->dev);
1086 
1087 	return ret;
1088 }
1089 
1090 static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data)
1091 {
1092 	struct omap2_mcspi *mcspi = data;
1093 	u32 irqstat;
1094 
1095 	irqstat	= mcspi_read_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS);
1096 	if (!irqstat)
1097 		return IRQ_NONE;
1098 
1099 	/* Disable IRQ and wakeup slave xfer task */
1100 	mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQENABLE, 0);
1101 	if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW)
1102 		complete(&mcspi->txdone);
1103 
1104 	return IRQ_HANDLED;
1105 }
1106 
1107 static int omap2_mcspi_slave_abort(struct spi_master *master)
1108 {
1109 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1110 	struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels;
1111 
1112 	mcspi->slave_aborted = true;
1113 	complete(&mcspi_dma->dma_rx_completion);
1114 	complete(&mcspi_dma->dma_tx_completion);
1115 	complete(&mcspi->txdone);
1116 
1117 	return 0;
1118 }
1119 
1120 static int omap2_mcspi_transfer_one(struct spi_master *master,
1121 				    struct spi_device *spi,
1122 				    struct spi_transfer *t)
1123 {
1124 
1125 	/* We only enable one channel at a time -- the one whose message is
1126 	 * -- although this controller would gladly
1127 	 * arbitrate among multiple channels.  This corresponds to "single
1128 	 * channel" master mode.  As a side effect, we need to manage the
1129 	 * chipselect with the FORCE bit ... CS != channel enable.
1130 	 */
1131 
1132 	struct omap2_mcspi		*mcspi;
1133 	struct omap2_mcspi_dma		*mcspi_dma;
1134 	struct omap2_mcspi_cs		*cs;
1135 	struct omap2_mcspi_device_config *cd;
1136 	int				par_override = 0;
1137 	int				status = 0;
1138 	u32				chconf;
1139 
1140 	mcspi = spi_master_get_devdata(master);
1141 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1142 	cs = spi->controller_state;
1143 	cd = spi->controller_data;
1144 
1145 	/*
1146 	 * The slave driver could have changed spi->mode in which case
1147 	 * it will be different from cs->mode (the current hardware setup).
1148 	 * If so, set par_override (even though its not a parity issue) so
1149 	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1150 	 * with the correct mode on the first iteration of the loop below.
1151 	 */
1152 	if (spi->mode != cs->mode)
1153 		par_override = 1;
1154 
1155 	omap2_mcspi_set_enable(spi, 0);
1156 
1157 	if (spi->cs_gpiod)
1158 		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1159 
1160 	if (par_override ||
1161 	    (t->speed_hz != spi->max_speed_hz) ||
1162 	    (t->bits_per_word != spi->bits_per_word)) {
1163 		par_override = 1;
1164 		status = omap2_mcspi_setup_transfer(spi, t);
1165 		if (status < 0)
1166 			goto out;
1167 		if (t->speed_hz == spi->max_speed_hz &&
1168 		    t->bits_per_word == spi->bits_per_word)
1169 			par_override = 0;
1170 	}
1171 	if (cd && cd->cs_per_word) {
1172 		chconf = mcspi->ctx.modulctrl;
1173 		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1174 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1175 		mcspi->ctx.modulctrl =
1176 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1177 	}
1178 
1179 	chconf = mcspi_cached_chconf0(spi);
1180 	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1181 	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1182 
1183 	if (t->tx_buf == NULL)
1184 		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1185 	else if (t->rx_buf == NULL)
1186 		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1187 
1188 	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1189 		/* Turbo mode is for more than one word */
1190 		if (t->len > ((cs->word_len + 7) >> 3))
1191 			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1192 	}
1193 
1194 	mcspi_write_chconf0(spi, chconf);
1195 
1196 	if (t->len) {
1197 		unsigned	count;
1198 
1199 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1200 		    master->cur_msg_mapped &&
1201 		    master->can_dma(master, spi, t))
1202 			omap2_mcspi_set_fifo(spi, t, 1);
1203 
1204 		omap2_mcspi_set_enable(spi, 1);
1205 
1206 		/* RX_ONLY mode needs dummy data in TX reg */
1207 		if (t->tx_buf == NULL)
1208 			writel_relaxed(0, cs->base
1209 					+ OMAP2_MCSPI_TX0);
1210 
1211 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1212 		    master->cur_msg_mapped &&
1213 		    master->can_dma(master, spi, t))
1214 			count = omap2_mcspi_txrx_dma(spi, t);
1215 		else
1216 			count = omap2_mcspi_txrx_pio(spi, t);
1217 
1218 		if (count != t->len) {
1219 			status = -EIO;
1220 			goto out;
1221 		}
1222 	}
1223 
1224 	omap2_mcspi_set_enable(spi, 0);
1225 
1226 	if (mcspi->fifo_depth > 0)
1227 		omap2_mcspi_set_fifo(spi, t, 0);
1228 
1229 out:
1230 	/* Restore defaults if they were overriden */
1231 	if (par_override) {
1232 		par_override = 0;
1233 		status = omap2_mcspi_setup_transfer(spi, NULL);
1234 	}
1235 
1236 	if (cd && cd->cs_per_word) {
1237 		chconf = mcspi->ctx.modulctrl;
1238 		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1239 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1240 		mcspi->ctx.modulctrl =
1241 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1242 	}
1243 
1244 	omap2_mcspi_set_enable(spi, 0);
1245 
1246 	if (spi->cs_gpiod)
1247 		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1248 
1249 	if (mcspi->fifo_depth > 0 && t)
1250 		omap2_mcspi_set_fifo(spi, t, 0);
1251 
1252 	return status;
1253 }
1254 
1255 static int omap2_mcspi_prepare_message(struct spi_master *master,
1256 				       struct spi_message *msg)
1257 {
1258 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1259 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1260 	struct omap2_mcspi_cs	*cs;
1261 
1262 	/* Only a single channel can have the FORCE bit enabled
1263 	 * in its chconf0 register.
1264 	 * Scan all channels and disable them except the current one.
1265 	 * A FORCE can remain from a last transfer having cs_change enabled
1266 	 */
1267 	list_for_each_entry(cs, &ctx->cs, node) {
1268 		if (msg->spi->controller_state == cs)
1269 			continue;
1270 
1271 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1272 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1273 			writel_relaxed(cs->chconf0,
1274 					cs->base + OMAP2_MCSPI_CHCONF0);
1275 			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1276 		}
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 static bool omap2_mcspi_can_dma(struct spi_master *master,
1283 				struct spi_device *spi,
1284 				struct spi_transfer *xfer)
1285 {
1286 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1287 	struct omap2_mcspi_dma *mcspi_dma =
1288 		&mcspi->dma_channels[spi->chip_select];
1289 
1290 	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx)
1291 		return false;
1292 
1293 	if (spi_controller_is_slave(master))
1294 		return true;
1295 
1296 	master->dma_rx = mcspi_dma->dma_rx;
1297 	master->dma_tx = mcspi_dma->dma_tx;
1298 
1299 	return (xfer->len >= DMA_MIN_BYTES);
1300 }
1301 
1302 static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi)
1303 {
1304 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
1305 	struct omap2_mcspi_dma *mcspi_dma =
1306 		&mcspi->dma_channels[spi->chip_select];
1307 
1308 	if (mcspi->max_xfer_len && mcspi_dma->dma_rx)
1309 		return mcspi->max_xfer_len;
1310 
1311 	return SIZE_MAX;
1312 }
1313 
1314 static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi)
1315 {
1316 	struct spi_master	*master = mcspi->master;
1317 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1318 	int			ret = 0;
1319 
1320 	ret = pm_runtime_get_sync(mcspi->dev);
1321 	if (ret < 0) {
1322 		pm_runtime_put_noidle(mcspi->dev);
1323 
1324 		return ret;
1325 	}
1326 
1327 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1328 			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1329 	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1330 
1331 	omap2_mcspi_set_mode(master);
1332 	pm_runtime_mark_last_busy(mcspi->dev);
1333 	pm_runtime_put_autosuspend(mcspi->dev);
1334 	return 0;
1335 }
1336 
1337 static int omap_mcspi_runtime_suspend(struct device *dev)
1338 {
1339 	int error;
1340 
1341 	error = pinctrl_pm_select_idle_state(dev);
1342 	if (error)
1343 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1344 
1345 	return 0;
1346 }
1347 
1348 /*
1349  * When SPI wake up from off-mode, CS is in activate state. If it was in
1350  * inactive state when driver was suspend, then force it to inactive state at
1351  * wake up.
1352  */
1353 static int omap_mcspi_runtime_resume(struct device *dev)
1354 {
1355 	struct spi_master *master = dev_get_drvdata(dev);
1356 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1357 	struct omap2_mcspi_regs *ctx = &mcspi->ctx;
1358 	struct omap2_mcspi_cs *cs;
1359 	int error;
1360 
1361 	error = pinctrl_pm_select_default_state(dev);
1362 	if (error)
1363 		dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error);
1364 
1365 	/* McSPI: context restore */
1366 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
1367 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
1368 
1369 	list_for_each_entry(cs, &ctx->cs, node) {
1370 		/*
1371 		 * We need to toggle CS state for OMAP take this
1372 		 * change in account.
1373 		 */
1374 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1375 			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1376 			writel_relaxed(cs->chconf0,
1377 				       cs->base + OMAP2_MCSPI_CHCONF0);
1378 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1379 			writel_relaxed(cs->chconf0,
1380 				       cs->base + OMAP2_MCSPI_CHCONF0);
1381 		} else {
1382 			writel_relaxed(cs->chconf0,
1383 				       cs->base + OMAP2_MCSPI_CHCONF0);
1384 		}
1385 	}
1386 
1387 	return 0;
1388 }
1389 
1390 static struct omap2_mcspi_platform_config omap2_pdata = {
1391 	.regs_offset = 0,
1392 };
1393 
1394 static struct omap2_mcspi_platform_config omap4_pdata = {
1395 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1396 };
1397 
1398 static struct omap2_mcspi_platform_config am654_pdata = {
1399 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1400 	.max_xfer_len = SZ_4K - 1,
1401 };
1402 
1403 static const struct of_device_id omap_mcspi_of_match[] = {
1404 	{
1405 		.compatible = "ti,omap2-mcspi",
1406 		.data = &omap2_pdata,
1407 	},
1408 	{
1409 		.compatible = "ti,omap4-mcspi",
1410 		.data = &omap4_pdata,
1411 	},
1412 	{
1413 		.compatible = "ti,am654-mcspi",
1414 		.data = &am654_pdata,
1415 	},
1416 	{ },
1417 };
1418 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1419 
1420 static int omap2_mcspi_probe(struct platform_device *pdev)
1421 {
1422 	struct spi_master	*master;
1423 	const struct omap2_mcspi_platform_config *pdata;
1424 	struct omap2_mcspi	*mcspi;
1425 	struct resource		*r;
1426 	int			status = 0, i;
1427 	u32			regs_offset = 0;
1428 	struct device_node	*node = pdev->dev.of_node;
1429 	const struct of_device_id *match;
1430 
1431 	if (of_property_read_bool(node, "spi-slave"))
1432 		master = spi_alloc_slave(&pdev->dev, sizeof(*mcspi));
1433 	else
1434 		master = spi_alloc_master(&pdev->dev, sizeof(*mcspi));
1435 	if (!master)
1436 		return -ENOMEM;
1437 
1438 	/* the spi->mode bits understood by this driver: */
1439 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1440 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1441 	master->setup = omap2_mcspi_setup;
1442 	master->auto_runtime_pm = true;
1443 	master->prepare_message = omap2_mcspi_prepare_message;
1444 	master->can_dma = omap2_mcspi_can_dma;
1445 	master->transfer_one = omap2_mcspi_transfer_one;
1446 	master->set_cs = omap2_mcspi_set_cs;
1447 	master->cleanup = omap2_mcspi_cleanup;
1448 	master->slave_abort = omap2_mcspi_slave_abort;
1449 	master->dev.of_node = node;
1450 	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1451 	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1452 	master->use_gpio_descriptors = true;
1453 
1454 	platform_set_drvdata(pdev, master);
1455 
1456 	mcspi = spi_master_get_devdata(master);
1457 	mcspi->master = master;
1458 
1459 	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1460 	if (match) {
1461 		u32 num_cs = 1; /* default number of chipselect */
1462 		pdata = match->data;
1463 
1464 		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1465 		master->num_chipselect = num_cs;
1466 		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1467 			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1468 	} else {
1469 		pdata = dev_get_platdata(&pdev->dev);
1470 		master->num_chipselect = pdata->num_cs;
1471 		mcspi->pin_dir = pdata->pin_dir;
1472 	}
1473 	regs_offset = pdata->regs_offset;
1474 	if (pdata->max_xfer_len) {
1475 		mcspi->max_xfer_len = pdata->max_xfer_len;
1476 		master->max_transfer_size = omap2_mcspi_max_xfer_size;
1477 	}
1478 
1479 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1480 	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1481 	if (IS_ERR(mcspi->base)) {
1482 		status = PTR_ERR(mcspi->base);
1483 		goto free_master;
1484 	}
1485 	mcspi->phys = r->start + regs_offset;
1486 	mcspi->base += regs_offset;
1487 
1488 	mcspi->dev = &pdev->dev;
1489 
1490 	INIT_LIST_HEAD(&mcspi->ctx.cs);
1491 
1492 	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1493 					   sizeof(struct omap2_mcspi_dma),
1494 					   GFP_KERNEL);
1495 	if (mcspi->dma_channels == NULL) {
1496 		status = -ENOMEM;
1497 		goto free_master;
1498 	}
1499 
1500 	for (i = 0; i < master->num_chipselect; i++) {
1501 		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1502 		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1503 
1504 		status = omap2_mcspi_request_dma(mcspi,
1505 						 &mcspi->dma_channels[i]);
1506 		if (status == -EPROBE_DEFER)
1507 			goto free_master;
1508 	}
1509 
1510 	status = platform_get_irq(pdev, 0);
1511 	if (status == -EPROBE_DEFER)
1512 		goto free_master;
1513 	if (status < 0) {
1514 		dev_err(&pdev->dev, "no irq resource found\n");
1515 		goto free_master;
1516 	}
1517 	init_completion(&mcspi->txdone);
1518 	status = devm_request_irq(&pdev->dev, status,
1519 				  omap2_mcspi_irq_handler, 0, pdev->name,
1520 				  mcspi);
1521 	if (status) {
1522 		dev_err(&pdev->dev, "Cannot request IRQ");
1523 		goto free_master;
1524 	}
1525 
1526 	pm_runtime_use_autosuspend(&pdev->dev);
1527 	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1528 	pm_runtime_enable(&pdev->dev);
1529 
1530 	status = omap2_mcspi_controller_setup(mcspi);
1531 	if (status < 0)
1532 		goto disable_pm;
1533 
1534 	status = devm_spi_register_controller(&pdev->dev, master);
1535 	if (status < 0)
1536 		goto disable_pm;
1537 
1538 	return status;
1539 
1540 disable_pm:
1541 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1542 	pm_runtime_put_sync(&pdev->dev);
1543 	pm_runtime_disable(&pdev->dev);
1544 free_master:
1545 	omap2_mcspi_release_dma(master);
1546 	spi_master_put(master);
1547 	return status;
1548 }
1549 
1550 static int omap2_mcspi_remove(struct platform_device *pdev)
1551 {
1552 	struct spi_master *master = platform_get_drvdata(pdev);
1553 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1554 
1555 	omap2_mcspi_release_dma(master);
1556 
1557 	pm_runtime_dont_use_autosuspend(mcspi->dev);
1558 	pm_runtime_put_sync(mcspi->dev);
1559 	pm_runtime_disable(&pdev->dev);
1560 
1561 	return 0;
1562 }
1563 
1564 /* work with hotplug and coldplug */
1565 MODULE_ALIAS("platform:omap2_mcspi");
1566 
1567 static int __maybe_unused omap2_mcspi_suspend(struct device *dev)
1568 {
1569 	struct spi_master *master = dev_get_drvdata(dev);
1570 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1571 	int error;
1572 
1573 	error = pinctrl_pm_select_sleep_state(dev);
1574 	if (error)
1575 		dev_warn(mcspi->dev, "%s: failed to set pins: %i\n",
1576 			 __func__, error);
1577 
1578 	error = spi_master_suspend(master);
1579 	if (error)
1580 		dev_warn(mcspi->dev, "%s: master suspend failed: %i\n",
1581 			 __func__, error);
1582 
1583 	return pm_runtime_force_suspend(dev);
1584 }
1585 
1586 static int __maybe_unused omap2_mcspi_resume(struct device *dev)
1587 {
1588 	struct spi_master *master = dev_get_drvdata(dev);
1589 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1590 	int error;
1591 
1592 	error = spi_master_resume(master);
1593 	if (error)
1594 		dev_warn(mcspi->dev, "%s: master resume failed: %i\n",
1595 			 __func__, error);
1596 
1597 	return pm_runtime_force_resume(dev);
1598 }
1599 
1600 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1601 	SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend,
1602 				omap2_mcspi_resume)
1603 	.runtime_suspend	= omap_mcspi_runtime_suspend,
1604 	.runtime_resume		= omap_mcspi_runtime_resume,
1605 };
1606 
1607 static struct platform_driver omap2_mcspi_driver = {
1608 	.driver = {
1609 		.name =		"omap2_mcspi",
1610 		.pm =		&omap2_mcspi_pm_ops,
1611 		.of_match_table = omap_mcspi_of_match,
1612 	},
1613 	.probe =	omap2_mcspi_probe,
1614 	.remove =	omap2_mcspi_remove,
1615 };
1616 
1617 module_platform_driver(omap2_mcspi_driver);
1618 MODULE_LICENSE("GPL");
1619