1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * OMAP2 McSPI controller driver 4 * 5 * Copyright (C) 2005, 2006 Nokia Corporation 6 * Author: Samuel Ortiz <samuel.ortiz@nokia.com> and 7 * Juha Yrjola <juha.yrjola@nokia.com> 8 */ 9 10 #include <linux/kernel.h> 11 #include <linux/interrupt.h> 12 #include <linux/module.h> 13 #include <linux/device.h> 14 #include <linux/delay.h> 15 #include <linux/dma-mapping.h> 16 #include <linux/dmaengine.h> 17 #include <linux/pinctrl/consumer.h> 18 #include <linux/platform_device.h> 19 #include <linux/err.h> 20 #include <linux/clk.h> 21 #include <linux/io.h> 22 #include <linux/slab.h> 23 #include <linux/pm_runtime.h> 24 #include <linux/of.h> 25 #include <linux/of_device.h> 26 #include <linux/gcd.h> 27 28 #include <linux/spi/spi.h> 29 30 #include "internals.h" 31 32 #include <linux/platform_data/spi-omap2-mcspi.h> 33 34 #define OMAP2_MCSPI_MAX_FREQ 48000000 35 #define OMAP2_MCSPI_MAX_DIVIDER 4096 36 #define OMAP2_MCSPI_MAX_FIFODEPTH 64 37 #define OMAP2_MCSPI_MAX_FIFOWCNT 0xFFFF 38 #define SPI_AUTOSUSPEND_TIMEOUT 2000 39 40 #define OMAP2_MCSPI_REVISION 0x00 41 #define OMAP2_MCSPI_SYSSTATUS 0x14 42 #define OMAP2_MCSPI_IRQSTATUS 0x18 43 #define OMAP2_MCSPI_IRQENABLE 0x1c 44 #define OMAP2_MCSPI_WAKEUPENABLE 0x20 45 #define OMAP2_MCSPI_SYST 0x24 46 #define OMAP2_MCSPI_MODULCTRL 0x28 47 #define OMAP2_MCSPI_XFERLEVEL 0x7c 48 49 /* per-channel banks, 0x14 bytes each, first is: */ 50 #define OMAP2_MCSPI_CHCONF0 0x2c 51 #define OMAP2_MCSPI_CHSTAT0 0x30 52 #define OMAP2_MCSPI_CHCTRL0 0x34 53 #define OMAP2_MCSPI_TX0 0x38 54 #define OMAP2_MCSPI_RX0 0x3c 55 56 /* per-register bitmasks: */ 57 #define OMAP2_MCSPI_IRQSTATUS_EOW BIT(17) 58 59 #define OMAP2_MCSPI_MODULCTRL_SINGLE BIT(0) 60 #define OMAP2_MCSPI_MODULCTRL_MS BIT(2) 61 #define OMAP2_MCSPI_MODULCTRL_STEST BIT(3) 62 63 #define OMAP2_MCSPI_CHCONF_PHA BIT(0) 64 #define OMAP2_MCSPI_CHCONF_POL BIT(1) 65 #define OMAP2_MCSPI_CHCONF_CLKD_MASK (0x0f << 2) 66 #define OMAP2_MCSPI_CHCONF_EPOL BIT(6) 67 #define OMAP2_MCSPI_CHCONF_WL_MASK (0x1f << 7) 68 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY BIT(12) 69 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY BIT(13) 70 #define OMAP2_MCSPI_CHCONF_TRM_MASK (0x03 << 12) 71 #define OMAP2_MCSPI_CHCONF_DMAW BIT(14) 72 #define OMAP2_MCSPI_CHCONF_DMAR BIT(15) 73 #define OMAP2_MCSPI_CHCONF_DPE0 BIT(16) 74 #define OMAP2_MCSPI_CHCONF_DPE1 BIT(17) 75 #define OMAP2_MCSPI_CHCONF_IS BIT(18) 76 #define OMAP2_MCSPI_CHCONF_TURBO BIT(19) 77 #define OMAP2_MCSPI_CHCONF_FORCE BIT(20) 78 #define OMAP2_MCSPI_CHCONF_FFET BIT(27) 79 #define OMAP2_MCSPI_CHCONF_FFER BIT(28) 80 #define OMAP2_MCSPI_CHCONF_CLKG BIT(29) 81 82 #define OMAP2_MCSPI_CHSTAT_RXS BIT(0) 83 #define OMAP2_MCSPI_CHSTAT_TXS BIT(1) 84 #define OMAP2_MCSPI_CHSTAT_EOT BIT(2) 85 #define OMAP2_MCSPI_CHSTAT_TXFFE BIT(3) 86 87 #define OMAP2_MCSPI_CHCTRL_EN BIT(0) 88 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK (0xff << 8) 89 90 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN BIT(0) 91 92 /* We have 2 DMA channels per CS, one for RX and one for TX */ 93 struct omap2_mcspi_dma { 94 struct dma_chan *dma_tx; 95 struct dma_chan *dma_rx; 96 97 struct completion dma_tx_completion; 98 struct completion dma_rx_completion; 99 100 char dma_rx_ch_name[14]; 101 char dma_tx_ch_name[14]; 102 }; 103 104 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and 105 * cache operations; better heuristics consider wordsize and bitrate. 106 */ 107 #define DMA_MIN_BYTES 160 108 109 110 /* 111 * Used for context save and restore, structure members to be updated whenever 112 * corresponding registers are modified. 113 */ 114 struct omap2_mcspi_regs { 115 u32 modulctrl; 116 u32 wakeupenable; 117 struct list_head cs; 118 }; 119 120 struct omap2_mcspi { 121 struct completion txdone; 122 struct spi_controller *ctlr; 123 /* Virtual base address of the controller */ 124 void __iomem *base; 125 unsigned long phys; 126 /* SPI1 has 4 channels, while SPI2 has 2 */ 127 struct omap2_mcspi_dma *dma_channels; 128 struct device *dev; 129 struct omap2_mcspi_regs ctx; 130 struct clk *ref_clk; 131 int fifo_depth; 132 bool target_aborted; 133 unsigned int pin_dir:1; 134 size_t max_xfer_len; 135 u32 ref_clk_hz; 136 bool use_multi_mode; 137 }; 138 139 struct omap2_mcspi_cs { 140 void __iomem *base; 141 unsigned long phys; 142 int word_len; 143 u16 mode; 144 struct list_head node; 145 /* Context save and restore shadow register */ 146 u32 chconf0, chctrl0; 147 }; 148 149 static inline void mcspi_write_reg(struct spi_controller *ctlr, 150 int idx, u32 val) 151 { 152 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 153 154 writel_relaxed(val, mcspi->base + idx); 155 } 156 157 static inline u32 mcspi_read_reg(struct spi_controller *ctlr, int idx) 158 { 159 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 160 161 return readl_relaxed(mcspi->base + idx); 162 } 163 164 static inline void mcspi_write_cs_reg(const struct spi_device *spi, 165 int idx, u32 val) 166 { 167 struct omap2_mcspi_cs *cs = spi->controller_state; 168 169 writel_relaxed(val, cs->base + idx); 170 } 171 172 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx) 173 { 174 struct omap2_mcspi_cs *cs = spi->controller_state; 175 176 return readl_relaxed(cs->base + idx); 177 } 178 179 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi) 180 { 181 struct omap2_mcspi_cs *cs = spi->controller_state; 182 183 return cs->chconf0; 184 } 185 186 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val) 187 { 188 struct omap2_mcspi_cs *cs = spi->controller_state; 189 190 cs->chconf0 = val; 191 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val); 192 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0); 193 } 194 195 static inline int mcspi_bytes_per_word(int word_len) 196 { 197 if (word_len <= 8) 198 return 1; 199 else if (word_len <= 16) 200 return 2; 201 else /* word_len <= 32 */ 202 return 4; 203 } 204 205 static void omap2_mcspi_set_dma_req(const struct spi_device *spi, 206 int is_read, int enable) 207 { 208 u32 l, rw; 209 210 l = mcspi_cached_chconf0(spi); 211 212 if (is_read) /* 1 is read, 0 write */ 213 rw = OMAP2_MCSPI_CHCONF_DMAR; 214 else 215 rw = OMAP2_MCSPI_CHCONF_DMAW; 216 217 if (enable) 218 l |= rw; 219 else 220 l &= ~rw; 221 222 mcspi_write_chconf0(spi, l); 223 } 224 225 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable) 226 { 227 struct omap2_mcspi_cs *cs = spi->controller_state; 228 u32 l; 229 230 l = cs->chctrl0; 231 if (enable) 232 l |= OMAP2_MCSPI_CHCTRL_EN; 233 else 234 l &= ~OMAP2_MCSPI_CHCTRL_EN; 235 cs->chctrl0 = l; 236 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 237 /* Flash post-writes */ 238 mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0); 239 } 240 241 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable) 242 { 243 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 244 u32 l; 245 246 /* The controller handles the inverted chip selects 247 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert 248 * the inversion from the core spi_set_cs function. 249 */ 250 if (spi->mode & SPI_CS_HIGH) 251 enable = !enable; 252 253 if (spi->controller_state) { 254 int err = pm_runtime_resume_and_get(mcspi->dev); 255 if (err < 0) { 256 dev_err(mcspi->dev, "failed to get sync: %d\n", err); 257 return; 258 } 259 260 l = mcspi_cached_chconf0(spi); 261 262 /* Only enable chip select manually if single mode is used */ 263 if (mcspi->use_multi_mode) { 264 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 265 } else { 266 if (enable) 267 l &= ~OMAP2_MCSPI_CHCONF_FORCE; 268 else 269 l |= OMAP2_MCSPI_CHCONF_FORCE; 270 } 271 272 mcspi_write_chconf0(spi, l); 273 274 pm_runtime_mark_last_busy(mcspi->dev); 275 pm_runtime_put_autosuspend(mcspi->dev); 276 } 277 } 278 279 static void omap2_mcspi_set_mode(struct spi_controller *ctlr) 280 { 281 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 282 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 283 u32 l; 284 285 /* 286 * Choose host or target mode 287 */ 288 l = mcspi_read_reg(ctlr, OMAP2_MCSPI_MODULCTRL); 289 l &= ~(OMAP2_MCSPI_MODULCTRL_STEST); 290 if (spi_controller_is_target(ctlr)) { 291 l |= (OMAP2_MCSPI_MODULCTRL_MS); 292 } else { 293 l &= ~(OMAP2_MCSPI_MODULCTRL_MS); 294 295 /* Enable single mode if needed */ 296 if (mcspi->use_multi_mode) 297 l &= ~OMAP2_MCSPI_MODULCTRL_SINGLE; 298 else 299 l |= OMAP2_MCSPI_MODULCTRL_SINGLE; 300 } 301 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, l); 302 303 ctx->modulctrl = l; 304 } 305 306 static void omap2_mcspi_set_fifo(const struct spi_device *spi, 307 struct spi_transfer *t, int enable) 308 { 309 struct spi_controller *ctlr = spi->controller; 310 struct omap2_mcspi_cs *cs = spi->controller_state; 311 struct omap2_mcspi *mcspi; 312 unsigned int wcnt; 313 int max_fifo_depth, bytes_per_word; 314 u32 chconf, xferlevel; 315 316 mcspi = spi_controller_get_devdata(ctlr); 317 318 chconf = mcspi_cached_chconf0(spi); 319 if (enable) { 320 bytes_per_word = mcspi_bytes_per_word(cs->word_len); 321 if (t->len % bytes_per_word != 0) 322 goto disable_fifo; 323 324 if (t->rx_buf != NULL && t->tx_buf != NULL) 325 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2; 326 else 327 max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH; 328 329 wcnt = t->len / bytes_per_word; 330 if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT) 331 goto disable_fifo; 332 333 xferlevel = wcnt << 16; 334 if (t->rx_buf != NULL) { 335 chconf |= OMAP2_MCSPI_CHCONF_FFER; 336 xferlevel |= (bytes_per_word - 1) << 8; 337 } 338 339 if (t->tx_buf != NULL) { 340 chconf |= OMAP2_MCSPI_CHCONF_FFET; 341 xferlevel |= bytes_per_word - 1; 342 } 343 344 mcspi_write_reg(ctlr, OMAP2_MCSPI_XFERLEVEL, xferlevel); 345 mcspi_write_chconf0(spi, chconf); 346 mcspi->fifo_depth = max_fifo_depth; 347 348 return; 349 } 350 351 disable_fifo: 352 if (t->rx_buf != NULL) 353 chconf &= ~OMAP2_MCSPI_CHCONF_FFER; 354 355 if (t->tx_buf != NULL) 356 chconf &= ~OMAP2_MCSPI_CHCONF_FFET; 357 358 mcspi_write_chconf0(spi, chconf); 359 mcspi->fifo_depth = 0; 360 } 361 362 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit) 363 { 364 unsigned long timeout; 365 366 timeout = jiffies + msecs_to_jiffies(1000); 367 while (!(readl_relaxed(reg) & bit)) { 368 if (time_after(jiffies, timeout)) { 369 if (!(readl_relaxed(reg) & bit)) 370 return -ETIMEDOUT; 371 else 372 return 0; 373 } 374 cpu_relax(); 375 } 376 return 0; 377 } 378 379 static int mcspi_wait_for_completion(struct omap2_mcspi *mcspi, 380 struct completion *x) 381 { 382 if (spi_controller_is_target(mcspi->ctlr)) { 383 if (wait_for_completion_interruptible(x) || 384 mcspi->target_aborted) 385 return -EINTR; 386 } else { 387 wait_for_completion(x); 388 } 389 390 return 0; 391 } 392 393 static void omap2_mcspi_rx_callback(void *data) 394 { 395 struct spi_device *spi = data; 396 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 397 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 398 399 /* We must disable the DMA RX request */ 400 omap2_mcspi_set_dma_req(spi, 1, 0); 401 402 complete(&mcspi_dma->dma_rx_completion); 403 } 404 405 static void omap2_mcspi_tx_callback(void *data) 406 { 407 struct spi_device *spi = data; 408 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 409 struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 410 411 /* We must disable the DMA TX request */ 412 omap2_mcspi_set_dma_req(spi, 0, 0); 413 414 complete(&mcspi_dma->dma_tx_completion); 415 } 416 417 static void omap2_mcspi_tx_dma(struct spi_device *spi, 418 struct spi_transfer *xfer, 419 struct dma_slave_config cfg) 420 { 421 struct omap2_mcspi *mcspi; 422 struct omap2_mcspi_dma *mcspi_dma; 423 struct dma_async_tx_descriptor *tx; 424 425 mcspi = spi_controller_get_devdata(spi->controller); 426 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 427 428 dmaengine_slave_config(mcspi_dma->dma_tx, &cfg); 429 430 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, xfer->tx_sg.sgl, 431 xfer->tx_sg.nents, 432 DMA_MEM_TO_DEV, 433 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 434 if (tx) { 435 tx->callback = omap2_mcspi_tx_callback; 436 tx->callback_param = spi; 437 dmaengine_submit(tx); 438 } else { 439 /* FIXME: fall back to PIO? */ 440 } 441 dma_async_issue_pending(mcspi_dma->dma_tx); 442 omap2_mcspi_set_dma_req(spi, 0, 1); 443 } 444 445 static unsigned 446 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer, 447 struct dma_slave_config cfg, 448 unsigned es) 449 { 450 struct omap2_mcspi *mcspi; 451 struct omap2_mcspi_dma *mcspi_dma; 452 unsigned int count, transfer_reduction = 0; 453 struct scatterlist *sg_out[2]; 454 int nb_sizes = 0, out_mapped_nents[2], ret, x; 455 size_t sizes[2]; 456 u32 l; 457 int elements = 0; 458 int word_len, element_count; 459 struct omap2_mcspi_cs *cs = spi->controller_state; 460 void __iomem *chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 461 struct dma_async_tx_descriptor *tx; 462 463 mcspi = spi_controller_get_devdata(spi->controller); 464 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 465 count = xfer->len; 466 467 /* 468 * In the "End-of-Transfer Procedure" section for DMA RX in OMAP35x TRM 469 * it mentions reducing DMA transfer length by one element in host 470 * normal mode. 471 */ 472 if (mcspi->fifo_depth == 0) 473 transfer_reduction = es; 474 475 word_len = cs->word_len; 476 l = mcspi_cached_chconf0(spi); 477 478 if (word_len <= 8) 479 element_count = count; 480 else if (word_len <= 16) 481 element_count = count >> 1; 482 else /* word_len <= 32 */ 483 element_count = count >> 2; 484 485 486 dmaengine_slave_config(mcspi_dma->dma_rx, &cfg); 487 488 /* 489 * Reduce DMA transfer length by one more if McSPI is 490 * configured in turbo mode. 491 */ 492 if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0) 493 transfer_reduction += es; 494 495 if (transfer_reduction) { 496 /* Split sgl into two. The second sgl won't be used. */ 497 sizes[0] = count - transfer_reduction; 498 sizes[1] = transfer_reduction; 499 nb_sizes = 2; 500 } else { 501 /* 502 * Don't bother splitting the sgl. This essentially 503 * clones the original sgl. 504 */ 505 sizes[0] = count; 506 nb_sizes = 1; 507 } 508 509 ret = sg_split(xfer->rx_sg.sgl, xfer->rx_sg.nents, 0, nb_sizes, 510 sizes, sg_out, out_mapped_nents, GFP_KERNEL); 511 512 if (ret < 0) { 513 dev_err(&spi->dev, "sg_split failed\n"); 514 return 0; 515 } 516 517 tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, sg_out[0], 518 out_mapped_nents[0], DMA_DEV_TO_MEM, 519 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 520 if (tx) { 521 tx->callback = omap2_mcspi_rx_callback; 522 tx->callback_param = spi; 523 dmaengine_submit(tx); 524 } else { 525 /* FIXME: fall back to PIO? */ 526 } 527 528 dma_async_issue_pending(mcspi_dma->dma_rx); 529 omap2_mcspi_set_dma_req(spi, 1, 1); 530 531 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_rx_completion); 532 if (ret || mcspi->target_aborted) { 533 dmaengine_terminate_sync(mcspi_dma->dma_rx); 534 omap2_mcspi_set_dma_req(spi, 1, 0); 535 return 0; 536 } 537 538 for (x = 0; x < nb_sizes; x++) 539 kfree(sg_out[x]); 540 541 if (mcspi->fifo_depth > 0) 542 return count; 543 544 /* 545 * Due to the DMA transfer length reduction the missing bytes must 546 * be read manually to receive all of the expected data. 547 */ 548 omap2_mcspi_set_enable(spi, 0); 549 550 elements = element_count - 1; 551 552 if (l & OMAP2_MCSPI_CHCONF_TURBO) { 553 elements--; 554 555 if (!mcspi_wait_for_reg_bit(chstat_reg, 556 OMAP2_MCSPI_CHSTAT_RXS)) { 557 u32 w; 558 559 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 560 if (word_len <= 8) 561 ((u8 *)xfer->rx_buf)[elements++] = w; 562 else if (word_len <= 16) 563 ((u16 *)xfer->rx_buf)[elements++] = w; 564 else /* word_len <= 32 */ 565 ((u32 *)xfer->rx_buf)[elements++] = w; 566 } else { 567 int bytes_per_word = mcspi_bytes_per_word(word_len); 568 dev_err(&spi->dev, "DMA RX penultimate word empty\n"); 569 count -= (bytes_per_word << 1); 570 omap2_mcspi_set_enable(spi, 1); 571 return count; 572 } 573 } 574 if (!mcspi_wait_for_reg_bit(chstat_reg, OMAP2_MCSPI_CHSTAT_RXS)) { 575 u32 w; 576 577 w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0); 578 if (word_len <= 8) 579 ((u8 *)xfer->rx_buf)[elements] = w; 580 else if (word_len <= 16) 581 ((u16 *)xfer->rx_buf)[elements] = w; 582 else /* word_len <= 32 */ 583 ((u32 *)xfer->rx_buf)[elements] = w; 584 } else { 585 dev_err(&spi->dev, "DMA RX last word empty\n"); 586 count -= mcspi_bytes_per_word(word_len); 587 } 588 omap2_mcspi_set_enable(spi, 1); 589 return count; 590 } 591 592 static unsigned 593 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer) 594 { 595 struct omap2_mcspi *mcspi; 596 struct omap2_mcspi_cs *cs = spi->controller_state; 597 struct omap2_mcspi_dma *mcspi_dma; 598 unsigned int count; 599 u8 *rx; 600 const u8 *tx; 601 struct dma_slave_config cfg; 602 enum dma_slave_buswidth width; 603 unsigned es; 604 void __iomem *chstat_reg; 605 void __iomem *irqstat_reg; 606 int wait_res; 607 608 mcspi = spi_controller_get_devdata(spi->controller); 609 mcspi_dma = &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 610 611 if (cs->word_len <= 8) { 612 width = DMA_SLAVE_BUSWIDTH_1_BYTE; 613 es = 1; 614 } else if (cs->word_len <= 16) { 615 width = DMA_SLAVE_BUSWIDTH_2_BYTES; 616 es = 2; 617 } else { 618 width = DMA_SLAVE_BUSWIDTH_4_BYTES; 619 es = 4; 620 } 621 622 count = xfer->len; 623 624 memset(&cfg, 0, sizeof(cfg)); 625 cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0; 626 cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0; 627 cfg.src_addr_width = width; 628 cfg.dst_addr_width = width; 629 cfg.src_maxburst = 1; 630 cfg.dst_maxburst = 1; 631 632 rx = xfer->rx_buf; 633 tx = xfer->tx_buf; 634 635 mcspi->target_aborted = false; 636 reinit_completion(&mcspi_dma->dma_tx_completion); 637 reinit_completion(&mcspi_dma->dma_rx_completion); 638 reinit_completion(&mcspi->txdone); 639 if (tx) { 640 /* Enable EOW IRQ to know end of tx in target mode */ 641 if (spi_controller_is_target(spi->controller)) 642 mcspi_write_reg(spi->controller, 643 OMAP2_MCSPI_IRQENABLE, 644 OMAP2_MCSPI_IRQSTATUS_EOW); 645 omap2_mcspi_tx_dma(spi, xfer, cfg); 646 } 647 648 if (rx != NULL) 649 count = omap2_mcspi_rx_dma(spi, xfer, cfg, es); 650 651 if (tx != NULL) { 652 int ret; 653 654 ret = mcspi_wait_for_completion(mcspi, &mcspi_dma->dma_tx_completion); 655 if (ret || mcspi->target_aborted) { 656 dmaengine_terminate_sync(mcspi_dma->dma_tx); 657 omap2_mcspi_set_dma_req(spi, 0, 0); 658 return 0; 659 } 660 661 if (spi_controller_is_target(mcspi->ctlr)) { 662 ret = mcspi_wait_for_completion(mcspi, &mcspi->txdone); 663 if (ret || mcspi->target_aborted) 664 return 0; 665 } 666 667 if (mcspi->fifo_depth > 0) { 668 irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS; 669 670 if (mcspi_wait_for_reg_bit(irqstat_reg, 671 OMAP2_MCSPI_IRQSTATUS_EOW) < 0) 672 dev_err(&spi->dev, "EOW timed out\n"); 673 674 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS, 675 OMAP2_MCSPI_IRQSTATUS_EOW); 676 } 677 678 /* for TX_ONLY mode, be sure all words have shifted out */ 679 if (rx == NULL) { 680 chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0; 681 if (mcspi->fifo_depth > 0) { 682 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 683 OMAP2_MCSPI_CHSTAT_TXFFE); 684 if (wait_res < 0) 685 dev_err(&spi->dev, "TXFFE timed out\n"); 686 } else { 687 wait_res = mcspi_wait_for_reg_bit(chstat_reg, 688 OMAP2_MCSPI_CHSTAT_TXS); 689 if (wait_res < 0) 690 dev_err(&spi->dev, "TXS timed out\n"); 691 } 692 if (wait_res >= 0 && 693 (mcspi_wait_for_reg_bit(chstat_reg, 694 OMAP2_MCSPI_CHSTAT_EOT) < 0)) 695 dev_err(&spi->dev, "EOT timed out\n"); 696 } 697 } 698 return count; 699 } 700 701 static unsigned 702 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer) 703 { 704 struct omap2_mcspi_cs *cs = spi->controller_state; 705 unsigned int count, c; 706 u32 l; 707 void __iomem *base = cs->base; 708 void __iomem *tx_reg; 709 void __iomem *rx_reg; 710 void __iomem *chstat_reg; 711 int word_len; 712 713 count = xfer->len; 714 c = count; 715 word_len = cs->word_len; 716 717 l = mcspi_cached_chconf0(spi); 718 719 /* We store the pre-calculated register addresses on stack to speed 720 * up the transfer loop. */ 721 tx_reg = base + OMAP2_MCSPI_TX0; 722 rx_reg = base + OMAP2_MCSPI_RX0; 723 chstat_reg = base + OMAP2_MCSPI_CHSTAT0; 724 725 if (c < (word_len>>3)) 726 return 0; 727 728 if (word_len <= 8) { 729 u8 *rx; 730 const u8 *tx; 731 732 rx = xfer->rx_buf; 733 tx = xfer->tx_buf; 734 735 do { 736 c -= 1; 737 if (tx != NULL) { 738 if (mcspi_wait_for_reg_bit(chstat_reg, 739 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 740 dev_err(&spi->dev, "TXS timed out\n"); 741 goto out; 742 } 743 dev_vdbg(&spi->dev, "write-%d %02x\n", 744 word_len, *tx); 745 writel_relaxed(*tx++, tx_reg); 746 } 747 if (rx != NULL) { 748 if (mcspi_wait_for_reg_bit(chstat_reg, 749 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 750 dev_err(&spi->dev, "RXS timed out\n"); 751 goto out; 752 } 753 754 if (c == 1 && tx == NULL && 755 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 756 omap2_mcspi_set_enable(spi, 0); 757 *rx++ = readl_relaxed(rx_reg); 758 dev_vdbg(&spi->dev, "read-%d %02x\n", 759 word_len, *(rx - 1)); 760 if (mcspi_wait_for_reg_bit(chstat_reg, 761 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 762 dev_err(&spi->dev, 763 "RXS timed out\n"); 764 goto out; 765 } 766 c = 0; 767 } else if (c == 0 && tx == NULL) { 768 omap2_mcspi_set_enable(spi, 0); 769 } 770 771 *rx++ = readl_relaxed(rx_reg); 772 dev_vdbg(&spi->dev, "read-%d %02x\n", 773 word_len, *(rx - 1)); 774 } 775 /* Add word delay between each word */ 776 spi_delay_exec(&xfer->word_delay, xfer); 777 } while (c); 778 } else if (word_len <= 16) { 779 u16 *rx; 780 const u16 *tx; 781 782 rx = xfer->rx_buf; 783 tx = xfer->tx_buf; 784 do { 785 c -= 2; 786 if (tx != NULL) { 787 if (mcspi_wait_for_reg_bit(chstat_reg, 788 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 789 dev_err(&spi->dev, "TXS timed out\n"); 790 goto out; 791 } 792 dev_vdbg(&spi->dev, "write-%d %04x\n", 793 word_len, *tx); 794 writel_relaxed(*tx++, tx_reg); 795 } 796 if (rx != NULL) { 797 if (mcspi_wait_for_reg_bit(chstat_reg, 798 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 799 dev_err(&spi->dev, "RXS timed out\n"); 800 goto out; 801 } 802 803 if (c == 2 && tx == NULL && 804 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 805 omap2_mcspi_set_enable(spi, 0); 806 *rx++ = readl_relaxed(rx_reg); 807 dev_vdbg(&spi->dev, "read-%d %04x\n", 808 word_len, *(rx - 1)); 809 if (mcspi_wait_for_reg_bit(chstat_reg, 810 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 811 dev_err(&spi->dev, 812 "RXS timed out\n"); 813 goto out; 814 } 815 c = 0; 816 } else if (c == 0 && tx == NULL) { 817 omap2_mcspi_set_enable(spi, 0); 818 } 819 820 *rx++ = readl_relaxed(rx_reg); 821 dev_vdbg(&spi->dev, "read-%d %04x\n", 822 word_len, *(rx - 1)); 823 } 824 /* Add word delay between each word */ 825 spi_delay_exec(&xfer->word_delay, xfer); 826 } while (c >= 2); 827 } else if (word_len <= 32) { 828 u32 *rx; 829 const u32 *tx; 830 831 rx = xfer->rx_buf; 832 tx = xfer->tx_buf; 833 do { 834 c -= 4; 835 if (tx != NULL) { 836 if (mcspi_wait_for_reg_bit(chstat_reg, 837 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 838 dev_err(&spi->dev, "TXS timed out\n"); 839 goto out; 840 } 841 dev_vdbg(&spi->dev, "write-%d %08x\n", 842 word_len, *tx); 843 writel_relaxed(*tx++, tx_reg); 844 } 845 if (rx != NULL) { 846 if (mcspi_wait_for_reg_bit(chstat_reg, 847 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 848 dev_err(&spi->dev, "RXS timed out\n"); 849 goto out; 850 } 851 852 if (c == 4 && tx == NULL && 853 (l & OMAP2_MCSPI_CHCONF_TURBO)) { 854 omap2_mcspi_set_enable(spi, 0); 855 *rx++ = readl_relaxed(rx_reg); 856 dev_vdbg(&spi->dev, "read-%d %08x\n", 857 word_len, *(rx - 1)); 858 if (mcspi_wait_for_reg_bit(chstat_reg, 859 OMAP2_MCSPI_CHSTAT_RXS) < 0) { 860 dev_err(&spi->dev, 861 "RXS timed out\n"); 862 goto out; 863 } 864 c = 0; 865 } else if (c == 0 && tx == NULL) { 866 omap2_mcspi_set_enable(spi, 0); 867 } 868 869 *rx++ = readl_relaxed(rx_reg); 870 dev_vdbg(&spi->dev, "read-%d %08x\n", 871 word_len, *(rx - 1)); 872 } 873 /* Add word delay between each word */ 874 spi_delay_exec(&xfer->word_delay, xfer); 875 } while (c >= 4); 876 } 877 878 /* for TX_ONLY mode, be sure all words have shifted out */ 879 if (xfer->rx_buf == NULL) { 880 if (mcspi_wait_for_reg_bit(chstat_reg, 881 OMAP2_MCSPI_CHSTAT_TXS) < 0) { 882 dev_err(&spi->dev, "TXS timed out\n"); 883 } else if (mcspi_wait_for_reg_bit(chstat_reg, 884 OMAP2_MCSPI_CHSTAT_EOT) < 0) 885 dev_err(&spi->dev, "EOT timed out\n"); 886 887 /* disable chan to purge rx datas received in TX_ONLY transfer, 888 * otherwise these rx datas will affect the direct following 889 * RX_ONLY transfer. 890 */ 891 omap2_mcspi_set_enable(spi, 0); 892 } 893 out: 894 omap2_mcspi_set_enable(spi, 1); 895 return count - c; 896 } 897 898 static u32 omap2_mcspi_calc_divisor(u32 speed_hz, u32 ref_clk_hz) 899 { 900 u32 div; 901 902 for (div = 0; div < 15; div++) 903 if (speed_hz >= (ref_clk_hz >> div)) 904 return div; 905 906 return 15; 907 } 908 909 /* called only when no transfer is active to this device */ 910 static int omap2_mcspi_setup_transfer(struct spi_device *spi, 911 struct spi_transfer *t) 912 { 913 struct omap2_mcspi_cs *cs = spi->controller_state; 914 struct omap2_mcspi *mcspi; 915 u32 ref_clk_hz, l = 0, clkd = 0, div, extclk = 0, clkg = 0; 916 u8 word_len = spi->bits_per_word; 917 u32 speed_hz = spi->max_speed_hz; 918 919 mcspi = spi_controller_get_devdata(spi->controller); 920 921 if (t != NULL && t->bits_per_word) 922 word_len = t->bits_per_word; 923 924 cs->word_len = word_len; 925 926 if (t && t->speed_hz) 927 speed_hz = t->speed_hz; 928 929 ref_clk_hz = mcspi->ref_clk_hz; 930 speed_hz = min_t(u32, speed_hz, ref_clk_hz); 931 if (speed_hz < (ref_clk_hz / OMAP2_MCSPI_MAX_DIVIDER)) { 932 clkd = omap2_mcspi_calc_divisor(speed_hz, ref_clk_hz); 933 speed_hz = ref_clk_hz >> clkd; 934 clkg = 0; 935 } else { 936 div = (ref_clk_hz + speed_hz - 1) / speed_hz; 937 speed_hz = ref_clk_hz / div; 938 clkd = (div - 1) & 0xf; 939 extclk = (div - 1) >> 4; 940 clkg = OMAP2_MCSPI_CHCONF_CLKG; 941 } 942 943 l = mcspi_cached_chconf0(spi); 944 945 /* standard 4-wire host mode: SCK, MOSI/out, MISO/in, nCS 946 * REVISIT: this controller could support SPI_3WIRE mode. 947 */ 948 if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) { 949 l &= ~OMAP2_MCSPI_CHCONF_IS; 950 l &= ~OMAP2_MCSPI_CHCONF_DPE1; 951 l |= OMAP2_MCSPI_CHCONF_DPE0; 952 } else { 953 l |= OMAP2_MCSPI_CHCONF_IS; 954 l |= OMAP2_MCSPI_CHCONF_DPE1; 955 l &= ~OMAP2_MCSPI_CHCONF_DPE0; 956 } 957 958 /* wordlength */ 959 l &= ~OMAP2_MCSPI_CHCONF_WL_MASK; 960 l |= (word_len - 1) << 7; 961 962 /* set chipselect polarity; manage with FORCE */ 963 if (!(spi->mode & SPI_CS_HIGH)) 964 l |= OMAP2_MCSPI_CHCONF_EPOL; /* active-low; normal */ 965 else 966 l &= ~OMAP2_MCSPI_CHCONF_EPOL; 967 968 /* set clock divisor */ 969 l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK; 970 l |= clkd << 2; 971 972 /* set clock granularity */ 973 l &= ~OMAP2_MCSPI_CHCONF_CLKG; 974 l |= clkg; 975 if (clkg) { 976 cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK; 977 cs->chctrl0 |= extclk << 8; 978 mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0); 979 } 980 981 /* set SPI mode 0..3 */ 982 if (spi->mode & SPI_CPOL) 983 l |= OMAP2_MCSPI_CHCONF_POL; 984 else 985 l &= ~OMAP2_MCSPI_CHCONF_POL; 986 if (spi->mode & SPI_CPHA) 987 l |= OMAP2_MCSPI_CHCONF_PHA; 988 else 989 l &= ~OMAP2_MCSPI_CHCONF_PHA; 990 991 mcspi_write_chconf0(spi, l); 992 993 cs->mode = spi->mode; 994 995 dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n", 996 speed_hz, 997 (spi->mode & SPI_CPHA) ? "trailing" : "leading", 998 (spi->mode & SPI_CPOL) ? "inverted" : "normal"); 999 1000 return 0; 1001 } 1002 1003 /* 1004 * Note that we currently allow DMA only if we get a channel 1005 * for both rx and tx. Otherwise we'll do PIO for both rx and tx. 1006 */ 1007 static int omap2_mcspi_request_dma(struct omap2_mcspi *mcspi, 1008 struct omap2_mcspi_dma *mcspi_dma) 1009 { 1010 int ret = 0; 1011 1012 mcspi_dma->dma_rx = dma_request_chan(mcspi->dev, 1013 mcspi_dma->dma_rx_ch_name); 1014 if (IS_ERR(mcspi_dma->dma_rx)) { 1015 ret = PTR_ERR(mcspi_dma->dma_rx); 1016 mcspi_dma->dma_rx = NULL; 1017 goto no_dma; 1018 } 1019 1020 mcspi_dma->dma_tx = dma_request_chan(mcspi->dev, 1021 mcspi_dma->dma_tx_ch_name); 1022 if (IS_ERR(mcspi_dma->dma_tx)) { 1023 ret = PTR_ERR(mcspi_dma->dma_tx); 1024 mcspi_dma->dma_tx = NULL; 1025 dma_release_channel(mcspi_dma->dma_rx); 1026 mcspi_dma->dma_rx = NULL; 1027 } 1028 1029 init_completion(&mcspi_dma->dma_rx_completion); 1030 init_completion(&mcspi_dma->dma_tx_completion); 1031 1032 no_dma: 1033 return ret; 1034 } 1035 1036 static void omap2_mcspi_release_dma(struct spi_controller *ctlr) 1037 { 1038 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1039 struct omap2_mcspi_dma *mcspi_dma; 1040 int i; 1041 1042 for (i = 0; i < ctlr->num_chipselect; i++) { 1043 mcspi_dma = &mcspi->dma_channels[i]; 1044 1045 if (mcspi_dma->dma_rx) { 1046 dma_release_channel(mcspi_dma->dma_rx); 1047 mcspi_dma->dma_rx = NULL; 1048 } 1049 if (mcspi_dma->dma_tx) { 1050 dma_release_channel(mcspi_dma->dma_tx); 1051 mcspi_dma->dma_tx = NULL; 1052 } 1053 } 1054 } 1055 1056 static void omap2_mcspi_cleanup(struct spi_device *spi) 1057 { 1058 struct omap2_mcspi_cs *cs; 1059 1060 if (spi->controller_state) { 1061 /* Unlink controller state from context save list */ 1062 cs = spi->controller_state; 1063 list_del(&cs->node); 1064 1065 kfree(cs); 1066 } 1067 } 1068 1069 static int omap2_mcspi_setup(struct spi_device *spi) 1070 { 1071 bool initial_setup = false; 1072 int ret; 1073 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 1074 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1075 struct omap2_mcspi_cs *cs = spi->controller_state; 1076 1077 if (!cs) { 1078 cs = kzalloc(sizeof(*cs), GFP_KERNEL); 1079 if (!cs) 1080 return -ENOMEM; 1081 cs->base = mcspi->base + spi_get_chipselect(spi, 0) * 0x14; 1082 cs->phys = mcspi->phys + spi_get_chipselect(spi, 0) * 0x14; 1083 cs->mode = 0; 1084 cs->chconf0 = 0; 1085 cs->chctrl0 = 0; 1086 spi->controller_state = cs; 1087 /* Link this to context save list */ 1088 list_add_tail(&cs->node, &ctx->cs); 1089 initial_setup = true; 1090 } 1091 1092 ret = pm_runtime_resume_and_get(mcspi->dev); 1093 if (ret < 0) { 1094 if (initial_setup) 1095 omap2_mcspi_cleanup(spi); 1096 1097 return ret; 1098 } 1099 1100 ret = omap2_mcspi_setup_transfer(spi, NULL); 1101 if (ret && initial_setup) 1102 omap2_mcspi_cleanup(spi); 1103 1104 pm_runtime_mark_last_busy(mcspi->dev); 1105 pm_runtime_put_autosuspend(mcspi->dev); 1106 1107 return ret; 1108 } 1109 1110 static irqreturn_t omap2_mcspi_irq_handler(int irq, void *data) 1111 { 1112 struct omap2_mcspi *mcspi = data; 1113 u32 irqstat; 1114 1115 irqstat = mcspi_read_reg(mcspi->ctlr, OMAP2_MCSPI_IRQSTATUS); 1116 if (!irqstat) 1117 return IRQ_NONE; 1118 1119 /* Disable IRQ and wakeup target xfer task */ 1120 mcspi_write_reg(mcspi->ctlr, OMAP2_MCSPI_IRQENABLE, 0); 1121 if (irqstat & OMAP2_MCSPI_IRQSTATUS_EOW) 1122 complete(&mcspi->txdone); 1123 1124 return IRQ_HANDLED; 1125 } 1126 1127 static int omap2_mcspi_target_abort(struct spi_controller *ctlr) 1128 { 1129 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1130 struct omap2_mcspi_dma *mcspi_dma = mcspi->dma_channels; 1131 1132 mcspi->target_aborted = true; 1133 complete(&mcspi_dma->dma_rx_completion); 1134 complete(&mcspi_dma->dma_tx_completion); 1135 complete(&mcspi->txdone); 1136 1137 return 0; 1138 } 1139 1140 static int omap2_mcspi_transfer_one(struct spi_controller *ctlr, 1141 struct spi_device *spi, 1142 struct spi_transfer *t) 1143 { 1144 1145 /* We only enable one channel at a time -- the one whose message is 1146 * -- although this controller would gladly 1147 * arbitrate among multiple channels. This corresponds to "single 1148 * channel" host mode. As a side effect, we need to manage the 1149 * chipselect with the FORCE bit ... CS != channel enable. 1150 */ 1151 1152 struct omap2_mcspi *mcspi; 1153 struct omap2_mcspi_dma *mcspi_dma; 1154 struct omap2_mcspi_cs *cs; 1155 struct omap2_mcspi_device_config *cd; 1156 int par_override = 0; 1157 int status = 0; 1158 u32 chconf; 1159 1160 mcspi = spi_controller_get_devdata(ctlr); 1161 mcspi_dma = mcspi->dma_channels + spi_get_chipselect(spi, 0); 1162 cs = spi->controller_state; 1163 cd = spi->controller_data; 1164 1165 /* 1166 * The target driver could have changed spi->mode in which case 1167 * it will be different from cs->mode (the current hardware setup). 1168 * If so, set par_override (even though its not a parity issue) so 1169 * omap2_mcspi_setup_transfer will be called to configure the hardware 1170 * with the correct mode on the first iteration of the loop below. 1171 */ 1172 if (spi->mode != cs->mode) 1173 par_override = 1; 1174 1175 omap2_mcspi_set_enable(spi, 0); 1176 1177 if (spi_get_csgpiod(spi, 0)) 1178 omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH); 1179 1180 if (par_override || 1181 (t->speed_hz != spi->max_speed_hz) || 1182 (t->bits_per_word != spi->bits_per_word)) { 1183 par_override = 1; 1184 status = omap2_mcspi_setup_transfer(spi, t); 1185 if (status < 0) 1186 goto out; 1187 if (t->speed_hz == spi->max_speed_hz && 1188 t->bits_per_word == spi->bits_per_word) 1189 par_override = 0; 1190 } 1191 1192 chconf = mcspi_cached_chconf0(spi); 1193 chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK; 1194 chconf &= ~OMAP2_MCSPI_CHCONF_TURBO; 1195 1196 if (t->tx_buf == NULL) 1197 chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY; 1198 else if (t->rx_buf == NULL) 1199 chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY; 1200 1201 if (cd && cd->turbo_mode && t->tx_buf == NULL) { 1202 /* Turbo mode is for more than one word */ 1203 if (t->len > ((cs->word_len + 7) >> 3)) 1204 chconf |= OMAP2_MCSPI_CHCONF_TURBO; 1205 } 1206 1207 mcspi_write_chconf0(spi, chconf); 1208 1209 if (t->len) { 1210 unsigned count; 1211 1212 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1213 spi_xfer_is_dma_mapped(ctlr, spi, t)) 1214 omap2_mcspi_set_fifo(spi, t, 1); 1215 1216 omap2_mcspi_set_enable(spi, 1); 1217 1218 /* RX_ONLY mode needs dummy data in TX reg */ 1219 if (t->tx_buf == NULL) 1220 writel_relaxed(0, cs->base 1221 + OMAP2_MCSPI_TX0); 1222 1223 if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) && 1224 spi_xfer_is_dma_mapped(ctlr, spi, t)) 1225 count = omap2_mcspi_txrx_dma(spi, t); 1226 else 1227 count = omap2_mcspi_txrx_pio(spi, t); 1228 1229 if (count != t->len) { 1230 status = -EIO; 1231 goto out; 1232 } 1233 } 1234 1235 omap2_mcspi_set_enable(spi, 0); 1236 1237 if (mcspi->fifo_depth > 0) 1238 omap2_mcspi_set_fifo(spi, t, 0); 1239 1240 out: 1241 /* Restore defaults if they were overriden */ 1242 if (par_override) { 1243 par_override = 0; 1244 status = omap2_mcspi_setup_transfer(spi, NULL); 1245 } 1246 1247 omap2_mcspi_set_enable(spi, 0); 1248 1249 if (spi_get_csgpiod(spi, 0)) 1250 omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH)); 1251 1252 if (mcspi->fifo_depth > 0 && t) 1253 omap2_mcspi_set_fifo(spi, t, 0); 1254 1255 return status; 1256 } 1257 1258 static int omap2_mcspi_prepare_message(struct spi_controller *ctlr, 1259 struct spi_message *msg) 1260 { 1261 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1262 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1263 struct omap2_mcspi_cs *cs; 1264 struct spi_transfer *tr; 1265 u8 bits_per_word; 1266 1267 /* 1268 * The conditions are strict, it is mandatory to check each transfer of the list to see if 1269 * multi-mode is applicable. 1270 */ 1271 mcspi->use_multi_mode = true; 1272 list_for_each_entry(tr, &msg->transfers, transfer_list) { 1273 if (!tr->bits_per_word) 1274 bits_per_word = msg->spi->bits_per_word; 1275 else 1276 bits_per_word = tr->bits_per_word; 1277 1278 /* 1279 * Check if this transfer contains only one word; 1280 */ 1281 if (bits_per_word < 8 && tr->len == 1) { 1282 /* multi-mode is applicable, only one word (1..7 bits) */ 1283 } else if (bits_per_word >= 8 && tr->len == bits_per_word / 8) { 1284 /* multi-mode is applicable, only one word (8..32 bits) */ 1285 } else { 1286 /* multi-mode is not applicable: more than one word in the transfer */ 1287 mcspi->use_multi_mode = false; 1288 } 1289 1290 /* Check if transfer asks to change the CS status after the transfer */ 1291 if (!tr->cs_change) 1292 mcspi->use_multi_mode = false; 1293 1294 /* 1295 * If at least one message is not compatible, switch back to single mode 1296 * 1297 * The bits_per_word of certain transfer can be different, but it will have no 1298 * impact on the signal itself. 1299 */ 1300 if (!mcspi->use_multi_mode) 1301 break; 1302 } 1303 1304 omap2_mcspi_set_mode(ctlr); 1305 1306 /* In single mode only a single channel can have the FORCE bit enabled 1307 * in its chconf0 register. 1308 * Scan all channels and disable them except the current one. 1309 * A FORCE can remain from a last transfer having cs_change enabled 1310 * 1311 * In multi mode all FORCE bits must be disabled. 1312 */ 1313 list_for_each_entry(cs, &ctx->cs, node) { 1314 if (msg->spi->controller_state == cs && !mcspi->use_multi_mode) { 1315 continue; 1316 } 1317 1318 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) { 1319 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1320 writel_relaxed(cs->chconf0, 1321 cs->base + OMAP2_MCSPI_CHCONF0); 1322 readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0); 1323 } 1324 } 1325 1326 return 0; 1327 } 1328 1329 static bool omap2_mcspi_can_dma(struct spi_controller *ctlr, 1330 struct spi_device *spi, 1331 struct spi_transfer *xfer) 1332 { 1333 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 1334 struct omap2_mcspi_dma *mcspi_dma = 1335 &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 1336 1337 if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) 1338 return false; 1339 1340 if (spi_controller_is_target(ctlr)) 1341 return true; 1342 1343 ctlr->dma_rx = mcspi_dma->dma_rx; 1344 ctlr->dma_tx = mcspi_dma->dma_tx; 1345 1346 return (xfer->len >= DMA_MIN_BYTES); 1347 } 1348 1349 static size_t omap2_mcspi_max_xfer_size(struct spi_device *spi) 1350 { 1351 struct omap2_mcspi *mcspi = spi_controller_get_devdata(spi->controller); 1352 struct omap2_mcspi_dma *mcspi_dma = 1353 &mcspi->dma_channels[spi_get_chipselect(spi, 0)]; 1354 1355 if (mcspi->max_xfer_len && mcspi_dma->dma_rx) 1356 return mcspi->max_xfer_len; 1357 1358 return SIZE_MAX; 1359 } 1360 1361 static int omap2_mcspi_controller_setup(struct omap2_mcspi *mcspi) 1362 { 1363 struct spi_controller *ctlr = mcspi->ctlr; 1364 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1365 int ret = 0; 1366 1367 ret = pm_runtime_resume_and_get(mcspi->dev); 1368 if (ret < 0) 1369 return ret; 1370 1371 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, 1372 OMAP2_MCSPI_WAKEUPENABLE_WKEN); 1373 ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN; 1374 1375 omap2_mcspi_set_mode(ctlr); 1376 pm_runtime_mark_last_busy(mcspi->dev); 1377 pm_runtime_put_autosuspend(mcspi->dev); 1378 return 0; 1379 } 1380 1381 static int omap_mcspi_runtime_suspend(struct device *dev) 1382 { 1383 int error; 1384 1385 error = pinctrl_pm_select_idle_state(dev); 1386 if (error) 1387 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error); 1388 1389 return 0; 1390 } 1391 1392 /* 1393 * When SPI wake up from off-mode, CS is in activate state. If it was in 1394 * inactive state when driver was suspend, then force it to inactive state at 1395 * wake up. 1396 */ 1397 static int omap_mcspi_runtime_resume(struct device *dev) 1398 { 1399 struct spi_controller *ctlr = dev_get_drvdata(dev); 1400 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1401 struct omap2_mcspi_regs *ctx = &mcspi->ctx; 1402 struct omap2_mcspi_cs *cs; 1403 int error; 1404 1405 error = pinctrl_pm_select_default_state(dev); 1406 if (error) 1407 dev_warn(dev, "%s: failed to set pins: %i\n", __func__, error); 1408 1409 /* McSPI: context restore */ 1410 mcspi_write_reg(ctlr, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl); 1411 mcspi_write_reg(ctlr, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable); 1412 1413 list_for_each_entry(cs, &ctx->cs, node) { 1414 /* 1415 * We need to toggle CS state for OMAP take this 1416 * change in account. 1417 */ 1418 if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) { 1419 cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE; 1420 writel_relaxed(cs->chconf0, 1421 cs->base + OMAP2_MCSPI_CHCONF0); 1422 cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE; 1423 writel_relaxed(cs->chconf0, 1424 cs->base + OMAP2_MCSPI_CHCONF0); 1425 } else { 1426 writel_relaxed(cs->chconf0, 1427 cs->base + OMAP2_MCSPI_CHCONF0); 1428 } 1429 } 1430 1431 return 0; 1432 } 1433 1434 static struct omap2_mcspi_platform_config omap2_pdata = { 1435 .regs_offset = 0, 1436 }; 1437 1438 static struct omap2_mcspi_platform_config omap4_pdata = { 1439 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1440 }; 1441 1442 static struct omap2_mcspi_platform_config am654_pdata = { 1443 .regs_offset = OMAP4_MCSPI_REG_OFFSET, 1444 .max_xfer_len = SZ_4K - 1, 1445 }; 1446 1447 static const struct of_device_id omap_mcspi_of_match[] = { 1448 { 1449 .compatible = "ti,omap2-mcspi", 1450 .data = &omap2_pdata, 1451 }, 1452 { 1453 .compatible = "ti,omap4-mcspi", 1454 .data = &omap4_pdata, 1455 }, 1456 { 1457 .compatible = "ti,am654-mcspi", 1458 .data = &am654_pdata, 1459 }, 1460 { }, 1461 }; 1462 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match); 1463 1464 static int omap2_mcspi_probe(struct platform_device *pdev) 1465 { 1466 struct spi_controller *ctlr; 1467 const struct omap2_mcspi_platform_config *pdata; 1468 struct omap2_mcspi *mcspi; 1469 struct resource *r; 1470 int status = 0, i; 1471 u32 regs_offset = 0; 1472 struct device_node *node = pdev->dev.of_node; 1473 const struct of_device_id *match; 1474 1475 if (of_property_read_bool(node, "spi-slave")) 1476 ctlr = spi_alloc_target(&pdev->dev, sizeof(*mcspi)); 1477 else 1478 ctlr = spi_alloc_host(&pdev->dev, sizeof(*mcspi)); 1479 if (!ctlr) 1480 return -ENOMEM; 1481 1482 /* the spi->mode bits understood by this driver: */ 1483 ctlr->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH; 1484 ctlr->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32); 1485 ctlr->setup = omap2_mcspi_setup; 1486 ctlr->auto_runtime_pm = true; 1487 ctlr->prepare_message = omap2_mcspi_prepare_message; 1488 ctlr->can_dma = omap2_mcspi_can_dma; 1489 ctlr->transfer_one = omap2_mcspi_transfer_one; 1490 ctlr->set_cs = omap2_mcspi_set_cs; 1491 ctlr->cleanup = omap2_mcspi_cleanup; 1492 ctlr->target_abort = omap2_mcspi_target_abort; 1493 ctlr->dev.of_node = node; 1494 ctlr->use_gpio_descriptors = true; 1495 1496 platform_set_drvdata(pdev, ctlr); 1497 1498 mcspi = spi_controller_get_devdata(ctlr); 1499 mcspi->ctlr = ctlr; 1500 1501 match = of_match_device(omap_mcspi_of_match, &pdev->dev); 1502 if (match) { 1503 u32 num_cs = 1; /* default number of chipselect */ 1504 pdata = match->data; 1505 1506 of_property_read_u32(node, "ti,spi-num-cs", &num_cs); 1507 ctlr->num_chipselect = num_cs; 1508 if (of_property_read_bool(node, "ti,pindir-d0-out-d1-in")) 1509 mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN; 1510 } else { 1511 pdata = dev_get_platdata(&pdev->dev); 1512 ctlr->num_chipselect = pdata->num_cs; 1513 mcspi->pin_dir = pdata->pin_dir; 1514 } 1515 regs_offset = pdata->regs_offset; 1516 if (pdata->max_xfer_len) { 1517 mcspi->max_xfer_len = pdata->max_xfer_len; 1518 ctlr->max_transfer_size = omap2_mcspi_max_xfer_size; 1519 } 1520 1521 mcspi->base = devm_platform_get_and_ioremap_resource(pdev, 0, &r); 1522 if (IS_ERR(mcspi->base)) { 1523 status = PTR_ERR(mcspi->base); 1524 goto free_ctlr; 1525 } 1526 mcspi->phys = r->start + regs_offset; 1527 mcspi->base += regs_offset; 1528 1529 mcspi->dev = &pdev->dev; 1530 1531 INIT_LIST_HEAD(&mcspi->ctx.cs); 1532 1533 mcspi->dma_channels = devm_kcalloc(&pdev->dev, ctlr->num_chipselect, 1534 sizeof(struct omap2_mcspi_dma), 1535 GFP_KERNEL); 1536 if (mcspi->dma_channels == NULL) { 1537 status = -ENOMEM; 1538 goto free_ctlr; 1539 } 1540 1541 for (i = 0; i < ctlr->num_chipselect; i++) { 1542 sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i); 1543 sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i); 1544 1545 status = omap2_mcspi_request_dma(mcspi, 1546 &mcspi->dma_channels[i]); 1547 if (status == -EPROBE_DEFER) 1548 goto free_ctlr; 1549 } 1550 1551 status = platform_get_irq(pdev, 0); 1552 if (status < 0) 1553 goto free_ctlr; 1554 init_completion(&mcspi->txdone); 1555 status = devm_request_irq(&pdev->dev, status, 1556 omap2_mcspi_irq_handler, 0, pdev->name, 1557 mcspi); 1558 if (status) { 1559 dev_err(&pdev->dev, "Cannot request IRQ"); 1560 goto free_ctlr; 1561 } 1562 1563 mcspi->ref_clk = devm_clk_get_optional_enabled(&pdev->dev, NULL); 1564 if (IS_ERR(mcspi->ref_clk)) 1565 mcspi->ref_clk_hz = OMAP2_MCSPI_MAX_FREQ; 1566 else 1567 mcspi->ref_clk_hz = clk_get_rate(mcspi->ref_clk); 1568 ctlr->max_speed_hz = mcspi->ref_clk_hz; 1569 ctlr->min_speed_hz = mcspi->ref_clk_hz >> 15; 1570 1571 pm_runtime_use_autosuspend(&pdev->dev); 1572 pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT); 1573 pm_runtime_enable(&pdev->dev); 1574 1575 status = omap2_mcspi_controller_setup(mcspi); 1576 if (status < 0) 1577 goto disable_pm; 1578 1579 status = devm_spi_register_controller(&pdev->dev, ctlr); 1580 if (status < 0) 1581 goto disable_pm; 1582 1583 return status; 1584 1585 disable_pm: 1586 pm_runtime_dont_use_autosuspend(&pdev->dev); 1587 pm_runtime_put_sync(&pdev->dev); 1588 pm_runtime_disable(&pdev->dev); 1589 free_ctlr: 1590 omap2_mcspi_release_dma(ctlr); 1591 spi_controller_put(ctlr); 1592 return status; 1593 } 1594 1595 static void omap2_mcspi_remove(struct platform_device *pdev) 1596 { 1597 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1598 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1599 1600 omap2_mcspi_release_dma(ctlr); 1601 1602 pm_runtime_dont_use_autosuspend(mcspi->dev); 1603 pm_runtime_put_sync(mcspi->dev); 1604 pm_runtime_disable(&pdev->dev); 1605 } 1606 1607 /* work with hotplug and coldplug */ 1608 MODULE_ALIAS("platform:omap2_mcspi"); 1609 1610 static int __maybe_unused omap2_mcspi_suspend(struct device *dev) 1611 { 1612 struct spi_controller *ctlr = dev_get_drvdata(dev); 1613 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1614 int error; 1615 1616 error = pinctrl_pm_select_sleep_state(dev); 1617 if (error) 1618 dev_warn(mcspi->dev, "%s: failed to set pins: %i\n", 1619 __func__, error); 1620 1621 error = spi_controller_suspend(ctlr); 1622 if (error) 1623 dev_warn(mcspi->dev, "%s: controller suspend failed: %i\n", 1624 __func__, error); 1625 1626 return pm_runtime_force_suspend(dev); 1627 } 1628 1629 static int __maybe_unused omap2_mcspi_resume(struct device *dev) 1630 { 1631 struct spi_controller *ctlr = dev_get_drvdata(dev); 1632 struct omap2_mcspi *mcspi = spi_controller_get_devdata(ctlr); 1633 int error; 1634 1635 error = spi_controller_resume(ctlr); 1636 if (error) 1637 dev_warn(mcspi->dev, "%s: controller resume failed: %i\n", 1638 __func__, error); 1639 1640 return pm_runtime_force_resume(dev); 1641 } 1642 1643 static const struct dev_pm_ops omap2_mcspi_pm_ops = { 1644 SET_SYSTEM_SLEEP_PM_OPS(omap2_mcspi_suspend, 1645 omap2_mcspi_resume) 1646 .runtime_suspend = omap_mcspi_runtime_suspend, 1647 .runtime_resume = omap_mcspi_runtime_resume, 1648 }; 1649 1650 static struct platform_driver omap2_mcspi_driver = { 1651 .driver = { 1652 .name = "omap2_mcspi", 1653 .pm = &omap2_mcspi_pm_ops, 1654 .of_match_table = omap_mcspi_of_match, 1655 }, 1656 .probe = omap2_mcspi_probe, 1657 .remove = omap2_mcspi_remove, 1658 }; 1659 1660 module_platform_driver(omap2_mcspi_driver); 1661 MODULE_DESCRIPTION("OMAP2 McSPI controller driver"); 1662 MODULE_LICENSE("GPL"); 1663