xref: /linux/drivers/spi/spi-omap2-mcspi.c (revision 0883c2c06fb5bcf5b9e008270827e63c09a88c1e)
1 /*
2  * OMAP2 McSPI controller driver
3  *
4  * Copyright (C) 2005, 2006 Nokia Corporation
5  * Author:	Samuel Ortiz <samuel.ortiz@nokia.com> and
6  *		Juha Yrj�l� <juha.yrjola@nokia.com>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  * This program is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16  * GNU General Public License for more details.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/interrupt.h>
21 #include <linux/module.h>
22 #include <linux/device.h>
23 #include <linux/delay.h>
24 #include <linux/dma-mapping.h>
25 #include <linux/dmaengine.h>
26 #include <linux/pinctrl/consumer.h>
27 #include <linux/platform_device.h>
28 #include <linux/err.h>
29 #include <linux/clk.h>
30 #include <linux/io.h>
31 #include <linux/slab.h>
32 #include <linux/pm_runtime.h>
33 #include <linux/of.h>
34 #include <linux/of_device.h>
35 #include <linux/gcd.h>
36 
37 #include <linux/spi/spi.h>
38 #include <linux/gpio.h>
39 
40 #include <linux/platform_data/spi-omap2-mcspi.h>
41 
42 #define OMAP2_MCSPI_MAX_FREQ		48000000
43 #define OMAP2_MCSPI_MAX_DIVIDER		4096
44 #define OMAP2_MCSPI_MAX_FIFODEPTH	64
45 #define OMAP2_MCSPI_MAX_FIFOWCNT	0xFFFF
46 #define SPI_AUTOSUSPEND_TIMEOUT		2000
47 
48 #define OMAP2_MCSPI_REVISION		0x00
49 #define OMAP2_MCSPI_SYSSTATUS		0x14
50 #define OMAP2_MCSPI_IRQSTATUS		0x18
51 #define OMAP2_MCSPI_IRQENABLE		0x1c
52 #define OMAP2_MCSPI_WAKEUPENABLE	0x20
53 #define OMAP2_MCSPI_SYST		0x24
54 #define OMAP2_MCSPI_MODULCTRL		0x28
55 #define OMAP2_MCSPI_XFERLEVEL		0x7c
56 
57 /* per-channel banks, 0x14 bytes each, first is: */
58 #define OMAP2_MCSPI_CHCONF0		0x2c
59 #define OMAP2_MCSPI_CHSTAT0		0x30
60 #define OMAP2_MCSPI_CHCTRL0		0x34
61 #define OMAP2_MCSPI_TX0			0x38
62 #define OMAP2_MCSPI_RX0			0x3c
63 
64 /* per-register bitmasks: */
65 #define OMAP2_MCSPI_IRQSTATUS_EOW	BIT(17)
66 
67 #define OMAP2_MCSPI_MODULCTRL_SINGLE	BIT(0)
68 #define OMAP2_MCSPI_MODULCTRL_MS	BIT(2)
69 #define OMAP2_MCSPI_MODULCTRL_STEST	BIT(3)
70 
71 #define OMAP2_MCSPI_CHCONF_PHA		BIT(0)
72 #define OMAP2_MCSPI_CHCONF_POL		BIT(1)
73 #define OMAP2_MCSPI_CHCONF_CLKD_MASK	(0x0f << 2)
74 #define OMAP2_MCSPI_CHCONF_EPOL		BIT(6)
75 #define OMAP2_MCSPI_CHCONF_WL_MASK	(0x1f << 7)
76 #define OMAP2_MCSPI_CHCONF_TRM_RX_ONLY	BIT(12)
77 #define OMAP2_MCSPI_CHCONF_TRM_TX_ONLY	BIT(13)
78 #define OMAP2_MCSPI_CHCONF_TRM_MASK	(0x03 << 12)
79 #define OMAP2_MCSPI_CHCONF_DMAW		BIT(14)
80 #define OMAP2_MCSPI_CHCONF_DMAR		BIT(15)
81 #define OMAP2_MCSPI_CHCONF_DPE0		BIT(16)
82 #define OMAP2_MCSPI_CHCONF_DPE1		BIT(17)
83 #define OMAP2_MCSPI_CHCONF_IS		BIT(18)
84 #define OMAP2_MCSPI_CHCONF_TURBO	BIT(19)
85 #define OMAP2_MCSPI_CHCONF_FORCE	BIT(20)
86 #define OMAP2_MCSPI_CHCONF_FFET		BIT(27)
87 #define OMAP2_MCSPI_CHCONF_FFER		BIT(28)
88 #define OMAP2_MCSPI_CHCONF_CLKG		BIT(29)
89 
90 #define OMAP2_MCSPI_CHSTAT_RXS		BIT(0)
91 #define OMAP2_MCSPI_CHSTAT_TXS		BIT(1)
92 #define OMAP2_MCSPI_CHSTAT_EOT		BIT(2)
93 #define OMAP2_MCSPI_CHSTAT_TXFFE	BIT(3)
94 
95 #define OMAP2_MCSPI_CHCTRL_EN		BIT(0)
96 #define OMAP2_MCSPI_CHCTRL_EXTCLK_MASK	(0xff << 8)
97 
98 #define OMAP2_MCSPI_WAKEUPENABLE_WKEN	BIT(0)
99 
100 /* We have 2 DMA channels per CS, one for RX and one for TX */
101 struct omap2_mcspi_dma {
102 	struct dma_chan *dma_tx;
103 	struct dma_chan *dma_rx;
104 
105 	struct completion dma_tx_completion;
106 	struct completion dma_rx_completion;
107 
108 	char dma_rx_ch_name[14];
109 	char dma_tx_ch_name[14];
110 };
111 
112 /* use PIO for small transfers, avoiding DMA setup/teardown overhead and
113  * cache operations; better heuristics consider wordsize and bitrate.
114  */
115 #define DMA_MIN_BYTES			160
116 
117 
118 /*
119  * Used for context save and restore, structure members to be updated whenever
120  * corresponding registers are modified.
121  */
122 struct omap2_mcspi_regs {
123 	u32 modulctrl;
124 	u32 wakeupenable;
125 	struct list_head cs;
126 };
127 
128 struct omap2_mcspi {
129 	struct spi_master	*master;
130 	/* Virtual base address of the controller */
131 	void __iomem		*base;
132 	unsigned long		phys;
133 	/* SPI1 has 4 channels, while SPI2 has 2 */
134 	struct omap2_mcspi_dma	*dma_channels;
135 	struct device		*dev;
136 	struct omap2_mcspi_regs ctx;
137 	int			fifo_depth;
138 	unsigned int		pin_dir:1;
139 };
140 
141 struct omap2_mcspi_cs {
142 	void __iomem		*base;
143 	unsigned long		phys;
144 	int			word_len;
145 	u16			mode;
146 	struct list_head	node;
147 	/* Context save and restore shadow register */
148 	u32			chconf0, chctrl0;
149 };
150 
151 static inline void mcspi_write_reg(struct spi_master *master,
152 		int idx, u32 val)
153 {
154 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
155 
156 	writel_relaxed(val, mcspi->base + idx);
157 }
158 
159 static inline u32 mcspi_read_reg(struct spi_master *master, int idx)
160 {
161 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
162 
163 	return readl_relaxed(mcspi->base + idx);
164 }
165 
166 static inline void mcspi_write_cs_reg(const struct spi_device *spi,
167 		int idx, u32 val)
168 {
169 	struct omap2_mcspi_cs	*cs = spi->controller_state;
170 
171 	writel_relaxed(val, cs->base +  idx);
172 }
173 
174 static inline u32 mcspi_read_cs_reg(const struct spi_device *spi, int idx)
175 {
176 	struct omap2_mcspi_cs	*cs = spi->controller_state;
177 
178 	return readl_relaxed(cs->base + idx);
179 }
180 
181 static inline u32 mcspi_cached_chconf0(const struct spi_device *spi)
182 {
183 	struct omap2_mcspi_cs *cs = spi->controller_state;
184 
185 	return cs->chconf0;
186 }
187 
188 static inline void mcspi_write_chconf0(const struct spi_device *spi, u32 val)
189 {
190 	struct omap2_mcspi_cs *cs = spi->controller_state;
191 
192 	cs->chconf0 = val;
193 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCONF0, val);
194 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCONF0);
195 }
196 
197 static inline int mcspi_bytes_per_word(int word_len)
198 {
199 	if (word_len <= 8)
200 		return 1;
201 	else if (word_len <= 16)
202 		return 2;
203 	else /* word_len <= 32 */
204 		return 4;
205 }
206 
207 static void omap2_mcspi_set_dma_req(const struct spi_device *spi,
208 		int is_read, int enable)
209 {
210 	u32 l, rw;
211 
212 	l = mcspi_cached_chconf0(spi);
213 
214 	if (is_read) /* 1 is read, 0 write */
215 		rw = OMAP2_MCSPI_CHCONF_DMAR;
216 	else
217 		rw = OMAP2_MCSPI_CHCONF_DMAW;
218 
219 	if (enable)
220 		l |= rw;
221 	else
222 		l &= ~rw;
223 
224 	mcspi_write_chconf0(spi, l);
225 }
226 
227 static void omap2_mcspi_set_enable(const struct spi_device *spi, int enable)
228 {
229 	struct omap2_mcspi_cs *cs = spi->controller_state;
230 	u32 l;
231 
232 	l = cs->chctrl0;
233 	if (enable)
234 		l |= OMAP2_MCSPI_CHCTRL_EN;
235 	else
236 		l &= ~OMAP2_MCSPI_CHCTRL_EN;
237 	cs->chctrl0 = l;
238 	mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
239 	/* Flash post-writes */
240 	mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHCTRL0);
241 }
242 
243 static void omap2_mcspi_set_cs(struct spi_device *spi, bool enable)
244 {
245 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
246 	u32 l;
247 
248 	/* The controller handles the inverted chip selects
249 	 * using the OMAP2_MCSPI_CHCONF_EPOL bit so revert
250 	 * the inversion from the core spi_set_cs function.
251 	 */
252 	if (spi->mode & SPI_CS_HIGH)
253 		enable = !enable;
254 
255 	if (spi->controller_state) {
256 		int err = pm_runtime_get_sync(mcspi->dev);
257 		if (err < 0) {
258 			dev_err(mcspi->dev, "failed to get sync: %d\n", err);
259 			return;
260 		}
261 
262 		l = mcspi_cached_chconf0(spi);
263 
264 		if (enable)
265 			l &= ~OMAP2_MCSPI_CHCONF_FORCE;
266 		else
267 			l |= OMAP2_MCSPI_CHCONF_FORCE;
268 
269 		mcspi_write_chconf0(spi, l);
270 
271 		pm_runtime_mark_last_busy(mcspi->dev);
272 		pm_runtime_put_autosuspend(mcspi->dev);
273 	}
274 }
275 
276 static void omap2_mcspi_set_master_mode(struct spi_master *master)
277 {
278 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
279 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
280 	u32 l;
281 
282 	/*
283 	 * Setup when switching from (reset default) slave mode
284 	 * to single-channel master mode
285 	 */
286 	l = mcspi_read_reg(master, OMAP2_MCSPI_MODULCTRL);
287 	l &= ~(OMAP2_MCSPI_MODULCTRL_STEST | OMAP2_MCSPI_MODULCTRL_MS);
288 	l |= OMAP2_MCSPI_MODULCTRL_SINGLE;
289 	mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, l);
290 
291 	ctx->modulctrl = l;
292 }
293 
294 static void omap2_mcspi_set_fifo(const struct spi_device *spi,
295 				struct spi_transfer *t, int enable)
296 {
297 	struct spi_master *master = spi->master;
298 	struct omap2_mcspi_cs *cs = spi->controller_state;
299 	struct omap2_mcspi *mcspi;
300 	unsigned int wcnt;
301 	int max_fifo_depth, fifo_depth, bytes_per_word;
302 	u32 chconf, xferlevel;
303 
304 	mcspi = spi_master_get_devdata(master);
305 
306 	chconf = mcspi_cached_chconf0(spi);
307 	if (enable) {
308 		bytes_per_word = mcspi_bytes_per_word(cs->word_len);
309 		if (t->len % bytes_per_word != 0)
310 			goto disable_fifo;
311 
312 		if (t->rx_buf != NULL && t->tx_buf != NULL)
313 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH / 2;
314 		else
315 			max_fifo_depth = OMAP2_MCSPI_MAX_FIFODEPTH;
316 
317 		fifo_depth = gcd(t->len, max_fifo_depth);
318 		if (fifo_depth < 2 || fifo_depth % bytes_per_word != 0)
319 			goto disable_fifo;
320 
321 		wcnt = t->len / bytes_per_word;
322 		if (wcnt > OMAP2_MCSPI_MAX_FIFOWCNT)
323 			goto disable_fifo;
324 
325 		xferlevel = wcnt << 16;
326 		if (t->rx_buf != NULL) {
327 			chconf |= OMAP2_MCSPI_CHCONF_FFER;
328 			xferlevel |= (fifo_depth - 1) << 8;
329 		}
330 		if (t->tx_buf != NULL) {
331 			chconf |= OMAP2_MCSPI_CHCONF_FFET;
332 			xferlevel |= fifo_depth - 1;
333 		}
334 
335 		mcspi_write_reg(master, OMAP2_MCSPI_XFERLEVEL, xferlevel);
336 		mcspi_write_chconf0(spi, chconf);
337 		mcspi->fifo_depth = fifo_depth;
338 
339 		return;
340 	}
341 
342 disable_fifo:
343 	if (t->rx_buf != NULL)
344 		chconf &= ~OMAP2_MCSPI_CHCONF_FFER;
345 
346 	if (t->tx_buf != NULL)
347 		chconf &= ~OMAP2_MCSPI_CHCONF_FFET;
348 
349 	mcspi_write_chconf0(spi, chconf);
350 	mcspi->fifo_depth = 0;
351 }
352 
353 static void omap2_mcspi_restore_ctx(struct omap2_mcspi *mcspi)
354 {
355 	struct spi_master	*spi_cntrl = mcspi->master;
356 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
357 	struct omap2_mcspi_cs	*cs;
358 
359 	/* McSPI: context restore */
360 	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_MODULCTRL, ctx->modulctrl);
361 	mcspi_write_reg(spi_cntrl, OMAP2_MCSPI_WAKEUPENABLE, ctx->wakeupenable);
362 
363 	list_for_each_entry(cs, &ctx->cs, node)
364 		writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
365 }
366 
367 static int mcspi_wait_for_reg_bit(void __iomem *reg, unsigned long bit)
368 {
369 	unsigned long timeout;
370 
371 	timeout = jiffies + msecs_to_jiffies(1000);
372 	while (!(readl_relaxed(reg) & bit)) {
373 		if (time_after(jiffies, timeout)) {
374 			if (!(readl_relaxed(reg) & bit))
375 				return -ETIMEDOUT;
376 			else
377 				return 0;
378 		}
379 		cpu_relax();
380 	}
381 	return 0;
382 }
383 
384 static void omap2_mcspi_rx_callback(void *data)
385 {
386 	struct spi_device *spi = data;
387 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
388 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
389 
390 	/* We must disable the DMA RX request */
391 	omap2_mcspi_set_dma_req(spi, 1, 0);
392 
393 	complete(&mcspi_dma->dma_rx_completion);
394 }
395 
396 static void omap2_mcspi_tx_callback(void *data)
397 {
398 	struct spi_device *spi = data;
399 	struct omap2_mcspi *mcspi = spi_master_get_devdata(spi->master);
400 	struct omap2_mcspi_dma *mcspi_dma = &mcspi->dma_channels[spi->chip_select];
401 
402 	/* We must disable the DMA TX request */
403 	omap2_mcspi_set_dma_req(spi, 0, 0);
404 
405 	complete(&mcspi_dma->dma_tx_completion);
406 }
407 
408 static void omap2_mcspi_tx_dma(struct spi_device *spi,
409 				struct spi_transfer *xfer,
410 				struct dma_slave_config cfg)
411 {
412 	struct omap2_mcspi	*mcspi;
413 	struct omap2_mcspi_dma  *mcspi_dma;
414 	unsigned int		count;
415 
416 	mcspi = spi_master_get_devdata(spi->master);
417 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
418 	count = xfer->len;
419 
420 	if (mcspi_dma->dma_tx) {
421 		struct dma_async_tx_descriptor *tx;
422 		struct scatterlist sg;
423 
424 		dmaengine_slave_config(mcspi_dma->dma_tx, &cfg);
425 
426 		sg_init_table(&sg, 1);
427 		sg_dma_address(&sg) = xfer->tx_dma;
428 		sg_dma_len(&sg) = xfer->len;
429 
430 		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_tx, &sg, 1,
431 		DMA_MEM_TO_DEV, DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
432 		if (tx) {
433 			tx->callback = omap2_mcspi_tx_callback;
434 			tx->callback_param = spi;
435 			dmaengine_submit(tx);
436 		} else {
437 			/* FIXME: fall back to PIO? */
438 		}
439 	}
440 	dma_async_issue_pending(mcspi_dma->dma_tx);
441 	omap2_mcspi_set_dma_req(spi, 0, 1);
442 
443 }
444 
445 static unsigned
446 omap2_mcspi_rx_dma(struct spi_device *spi, struct spi_transfer *xfer,
447 				struct dma_slave_config cfg,
448 				unsigned es)
449 {
450 	struct omap2_mcspi	*mcspi;
451 	struct omap2_mcspi_dma  *mcspi_dma;
452 	unsigned int		count, dma_count;
453 	u32			l;
454 	int			elements = 0;
455 	int			word_len, element_count;
456 	struct omap2_mcspi_cs	*cs = spi->controller_state;
457 	mcspi = spi_master_get_devdata(spi->master);
458 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
459 	count = xfer->len;
460 	dma_count = xfer->len;
461 
462 	if (mcspi->fifo_depth == 0)
463 		dma_count -= es;
464 
465 	word_len = cs->word_len;
466 	l = mcspi_cached_chconf0(spi);
467 
468 	if (word_len <= 8)
469 		element_count = count;
470 	else if (word_len <= 16)
471 		element_count = count >> 1;
472 	else /* word_len <= 32 */
473 		element_count = count >> 2;
474 
475 	if (mcspi_dma->dma_rx) {
476 		struct dma_async_tx_descriptor *tx;
477 		struct scatterlist sg;
478 
479 		dmaengine_slave_config(mcspi_dma->dma_rx, &cfg);
480 
481 		if ((l & OMAP2_MCSPI_CHCONF_TURBO) && mcspi->fifo_depth == 0)
482 			dma_count -= es;
483 
484 		sg_init_table(&sg, 1);
485 		sg_dma_address(&sg) = xfer->rx_dma;
486 		sg_dma_len(&sg) = dma_count;
487 
488 		tx = dmaengine_prep_slave_sg(mcspi_dma->dma_rx, &sg, 1,
489 				DMA_DEV_TO_MEM, DMA_PREP_INTERRUPT |
490 				DMA_CTRL_ACK);
491 		if (tx) {
492 			tx->callback = omap2_mcspi_rx_callback;
493 			tx->callback_param = spi;
494 			dmaengine_submit(tx);
495 		} else {
496 				/* FIXME: fall back to PIO? */
497 		}
498 	}
499 
500 	dma_async_issue_pending(mcspi_dma->dma_rx);
501 	omap2_mcspi_set_dma_req(spi, 1, 1);
502 
503 	wait_for_completion(&mcspi_dma->dma_rx_completion);
504 	dma_unmap_single(mcspi->dev, xfer->rx_dma, count,
505 			 DMA_FROM_DEVICE);
506 
507 	if (mcspi->fifo_depth > 0)
508 		return count;
509 
510 	omap2_mcspi_set_enable(spi, 0);
511 
512 	elements = element_count - 1;
513 
514 	if (l & OMAP2_MCSPI_CHCONF_TURBO) {
515 		elements--;
516 
517 		if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
518 				   & OMAP2_MCSPI_CHSTAT_RXS)) {
519 			u32 w;
520 
521 			w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
522 			if (word_len <= 8)
523 				((u8 *)xfer->rx_buf)[elements++] = w;
524 			else if (word_len <= 16)
525 				((u16 *)xfer->rx_buf)[elements++] = w;
526 			else /* word_len <= 32 */
527 				((u32 *)xfer->rx_buf)[elements++] = w;
528 		} else {
529 			int bytes_per_word = mcspi_bytes_per_word(word_len);
530 			dev_err(&spi->dev, "DMA RX penultimate word empty\n");
531 			count -= (bytes_per_word << 1);
532 			omap2_mcspi_set_enable(spi, 1);
533 			return count;
534 		}
535 	}
536 	if (likely(mcspi_read_cs_reg(spi, OMAP2_MCSPI_CHSTAT0)
537 				& OMAP2_MCSPI_CHSTAT_RXS)) {
538 		u32 w;
539 
540 		w = mcspi_read_cs_reg(spi, OMAP2_MCSPI_RX0);
541 		if (word_len <= 8)
542 			((u8 *)xfer->rx_buf)[elements] = w;
543 		else if (word_len <= 16)
544 			((u16 *)xfer->rx_buf)[elements] = w;
545 		else /* word_len <= 32 */
546 			((u32 *)xfer->rx_buf)[elements] = w;
547 	} else {
548 		dev_err(&spi->dev, "DMA RX last word empty\n");
549 		count -= mcspi_bytes_per_word(word_len);
550 	}
551 	omap2_mcspi_set_enable(spi, 1);
552 	return count;
553 }
554 
555 static unsigned
556 omap2_mcspi_txrx_dma(struct spi_device *spi, struct spi_transfer *xfer)
557 {
558 	struct omap2_mcspi	*mcspi;
559 	struct omap2_mcspi_cs	*cs = spi->controller_state;
560 	struct omap2_mcspi_dma  *mcspi_dma;
561 	unsigned int		count;
562 	u32			l;
563 	u8			*rx;
564 	const u8		*tx;
565 	struct dma_slave_config	cfg;
566 	enum dma_slave_buswidth width;
567 	unsigned es;
568 	u32			burst;
569 	void __iomem		*chstat_reg;
570 	void __iomem            *irqstat_reg;
571 	int			wait_res;
572 
573 	mcspi = spi_master_get_devdata(spi->master);
574 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
575 	l = mcspi_cached_chconf0(spi);
576 
577 
578 	if (cs->word_len <= 8) {
579 		width = DMA_SLAVE_BUSWIDTH_1_BYTE;
580 		es = 1;
581 	} else if (cs->word_len <= 16) {
582 		width = DMA_SLAVE_BUSWIDTH_2_BYTES;
583 		es = 2;
584 	} else {
585 		width = DMA_SLAVE_BUSWIDTH_4_BYTES;
586 		es = 4;
587 	}
588 
589 	count = xfer->len;
590 	burst = 1;
591 
592 	if (mcspi->fifo_depth > 0) {
593 		if (count > mcspi->fifo_depth)
594 			burst = mcspi->fifo_depth / es;
595 		else
596 			burst = count / es;
597 	}
598 
599 	memset(&cfg, 0, sizeof(cfg));
600 	cfg.src_addr = cs->phys + OMAP2_MCSPI_RX0;
601 	cfg.dst_addr = cs->phys + OMAP2_MCSPI_TX0;
602 	cfg.src_addr_width = width;
603 	cfg.dst_addr_width = width;
604 	cfg.src_maxburst = burst;
605 	cfg.dst_maxburst = burst;
606 
607 	rx = xfer->rx_buf;
608 	tx = xfer->tx_buf;
609 
610 	if (tx != NULL)
611 		omap2_mcspi_tx_dma(spi, xfer, cfg);
612 
613 	if (rx != NULL)
614 		count = omap2_mcspi_rx_dma(spi, xfer, cfg, es);
615 
616 	if (tx != NULL) {
617 		wait_for_completion(&mcspi_dma->dma_tx_completion);
618 		dma_unmap_single(mcspi->dev, xfer->tx_dma, xfer->len,
619 				 DMA_TO_DEVICE);
620 
621 		if (mcspi->fifo_depth > 0) {
622 			irqstat_reg = mcspi->base + OMAP2_MCSPI_IRQSTATUS;
623 
624 			if (mcspi_wait_for_reg_bit(irqstat_reg,
625 						OMAP2_MCSPI_IRQSTATUS_EOW) < 0)
626 				dev_err(&spi->dev, "EOW timed out\n");
627 
628 			mcspi_write_reg(mcspi->master, OMAP2_MCSPI_IRQSTATUS,
629 					OMAP2_MCSPI_IRQSTATUS_EOW);
630 		}
631 
632 		/* for TX_ONLY mode, be sure all words have shifted out */
633 		if (rx == NULL) {
634 			chstat_reg = cs->base + OMAP2_MCSPI_CHSTAT0;
635 			if (mcspi->fifo_depth > 0) {
636 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
637 						OMAP2_MCSPI_CHSTAT_TXFFE);
638 				if (wait_res < 0)
639 					dev_err(&spi->dev, "TXFFE timed out\n");
640 			} else {
641 				wait_res = mcspi_wait_for_reg_bit(chstat_reg,
642 						OMAP2_MCSPI_CHSTAT_TXS);
643 				if (wait_res < 0)
644 					dev_err(&spi->dev, "TXS timed out\n");
645 			}
646 			if (wait_res >= 0 &&
647 				(mcspi_wait_for_reg_bit(chstat_reg,
648 					OMAP2_MCSPI_CHSTAT_EOT) < 0))
649 				dev_err(&spi->dev, "EOT timed out\n");
650 		}
651 	}
652 	return count;
653 }
654 
655 static unsigned
656 omap2_mcspi_txrx_pio(struct spi_device *spi, struct spi_transfer *xfer)
657 {
658 	struct omap2_mcspi	*mcspi;
659 	struct omap2_mcspi_cs	*cs = spi->controller_state;
660 	unsigned int		count, c;
661 	u32			l;
662 	void __iomem		*base = cs->base;
663 	void __iomem		*tx_reg;
664 	void __iomem		*rx_reg;
665 	void __iomem		*chstat_reg;
666 	int			word_len;
667 
668 	mcspi = spi_master_get_devdata(spi->master);
669 	count = xfer->len;
670 	c = count;
671 	word_len = cs->word_len;
672 
673 	l = mcspi_cached_chconf0(spi);
674 
675 	/* We store the pre-calculated register addresses on stack to speed
676 	 * up the transfer loop. */
677 	tx_reg		= base + OMAP2_MCSPI_TX0;
678 	rx_reg		= base + OMAP2_MCSPI_RX0;
679 	chstat_reg	= base + OMAP2_MCSPI_CHSTAT0;
680 
681 	if (c < (word_len>>3))
682 		return 0;
683 
684 	if (word_len <= 8) {
685 		u8		*rx;
686 		const u8	*tx;
687 
688 		rx = xfer->rx_buf;
689 		tx = xfer->tx_buf;
690 
691 		do {
692 			c -= 1;
693 			if (tx != NULL) {
694 				if (mcspi_wait_for_reg_bit(chstat_reg,
695 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
696 					dev_err(&spi->dev, "TXS timed out\n");
697 					goto out;
698 				}
699 				dev_vdbg(&spi->dev, "write-%d %02x\n",
700 						word_len, *tx);
701 				writel_relaxed(*tx++, tx_reg);
702 			}
703 			if (rx != NULL) {
704 				if (mcspi_wait_for_reg_bit(chstat_reg,
705 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
706 					dev_err(&spi->dev, "RXS timed out\n");
707 					goto out;
708 				}
709 
710 				if (c == 1 && tx == NULL &&
711 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
712 					omap2_mcspi_set_enable(spi, 0);
713 					*rx++ = readl_relaxed(rx_reg);
714 					dev_vdbg(&spi->dev, "read-%d %02x\n",
715 						    word_len, *(rx - 1));
716 					if (mcspi_wait_for_reg_bit(chstat_reg,
717 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
718 						dev_err(&spi->dev,
719 							"RXS timed out\n");
720 						goto out;
721 					}
722 					c = 0;
723 				} else if (c == 0 && tx == NULL) {
724 					omap2_mcspi_set_enable(spi, 0);
725 				}
726 
727 				*rx++ = readl_relaxed(rx_reg);
728 				dev_vdbg(&spi->dev, "read-%d %02x\n",
729 						word_len, *(rx - 1));
730 			}
731 		} while (c);
732 	} else if (word_len <= 16) {
733 		u16		*rx;
734 		const u16	*tx;
735 
736 		rx = xfer->rx_buf;
737 		tx = xfer->tx_buf;
738 		do {
739 			c -= 2;
740 			if (tx != NULL) {
741 				if (mcspi_wait_for_reg_bit(chstat_reg,
742 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
743 					dev_err(&spi->dev, "TXS timed out\n");
744 					goto out;
745 				}
746 				dev_vdbg(&spi->dev, "write-%d %04x\n",
747 						word_len, *tx);
748 				writel_relaxed(*tx++, tx_reg);
749 			}
750 			if (rx != NULL) {
751 				if (mcspi_wait_for_reg_bit(chstat_reg,
752 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
753 					dev_err(&spi->dev, "RXS timed out\n");
754 					goto out;
755 				}
756 
757 				if (c == 2 && tx == NULL &&
758 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
759 					omap2_mcspi_set_enable(spi, 0);
760 					*rx++ = readl_relaxed(rx_reg);
761 					dev_vdbg(&spi->dev, "read-%d %04x\n",
762 						    word_len, *(rx - 1));
763 					if (mcspi_wait_for_reg_bit(chstat_reg,
764 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
765 						dev_err(&spi->dev,
766 							"RXS timed out\n");
767 						goto out;
768 					}
769 					c = 0;
770 				} else if (c == 0 && tx == NULL) {
771 					omap2_mcspi_set_enable(spi, 0);
772 				}
773 
774 				*rx++ = readl_relaxed(rx_reg);
775 				dev_vdbg(&spi->dev, "read-%d %04x\n",
776 						word_len, *(rx - 1));
777 			}
778 		} while (c >= 2);
779 	} else if (word_len <= 32) {
780 		u32		*rx;
781 		const u32	*tx;
782 
783 		rx = xfer->rx_buf;
784 		tx = xfer->tx_buf;
785 		do {
786 			c -= 4;
787 			if (tx != NULL) {
788 				if (mcspi_wait_for_reg_bit(chstat_reg,
789 						OMAP2_MCSPI_CHSTAT_TXS) < 0) {
790 					dev_err(&spi->dev, "TXS timed out\n");
791 					goto out;
792 				}
793 				dev_vdbg(&spi->dev, "write-%d %08x\n",
794 						word_len, *tx);
795 				writel_relaxed(*tx++, tx_reg);
796 			}
797 			if (rx != NULL) {
798 				if (mcspi_wait_for_reg_bit(chstat_reg,
799 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
800 					dev_err(&spi->dev, "RXS timed out\n");
801 					goto out;
802 				}
803 
804 				if (c == 4 && tx == NULL &&
805 				    (l & OMAP2_MCSPI_CHCONF_TURBO)) {
806 					omap2_mcspi_set_enable(spi, 0);
807 					*rx++ = readl_relaxed(rx_reg);
808 					dev_vdbg(&spi->dev, "read-%d %08x\n",
809 						    word_len, *(rx - 1));
810 					if (mcspi_wait_for_reg_bit(chstat_reg,
811 						OMAP2_MCSPI_CHSTAT_RXS) < 0) {
812 						dev_err(&spi->dev,
813 							"RXS timed out\n");
814 						goto out;
815 					}
816 					c = 0;
817 				} else if (c == 0 && tx == NULL) {
818 					omap2_mcspi_set_enable(spi, 0);
819 				}
820 
821 				*rx++ = readl_relaxed(rx_reg);
822 				dev_vdbg(&spi->dev, "read-%d %08x\n",
823 						word_len, *(rx - 1));
824 			}
825 		} while (c >= 4);
826 	}
827 
828 	/* for TX_ONLY mode, be sure all words have shifted out */
829 	if (xfer->rx_buf == NULL) {
830 		if (mcspi_wait_for_reg_bit(chstat_reg,
831 				OMAP2_MCSPI_CHSTAT_TXS) < 0) {
832 			dev_err(&spi->dev, "TXS timed out\n");
833 		} else if (mcspi_wait_for_reg_bit(chstat_reg,
834 				OMAP2_MCSPI_CHSTAT_EOT) < 0)
835 			dev_err(&spi->dev, "EOT timed out\n");
836 
837 		/* disable chan to purge rx datas received in TX_ONLY transfer,
838 		 * otherwise these rx datas will affect the direct following
839 		 * RX_ONLY transfer.
840 		 */
841 		omap2_mcspi_set_enable(spi, 0);
842 	}
843 out:
844 	omap2_mcspi_set_enable(spi, 1);
845 	return count - c;
846 }
847 
848 static u32 omap2_mcspi_calc_divisor(u32 speed_hz)
849 {
850 	u32 div;
851 
852 	for (div = 0; div < 15; div++)
853 		if (speed_hz >= (OMAP2_MCSPI_MAX_FREQ >> div))
854 			return div;
855 
856 	return 15;
857 }
858 
859 /* called only when no transfer is active to this device */
860 static int omap2_mcspi_setup_transfer(struct spi_device *spi,
861 		struct spi_transfer *t)
862 {
863 	struct omap2_mcspi_cs *cs = spi->controller_state;
864 	struct omap2_mcspi *mcspi;
865 	struct spi_master *spi_cntrl;
866 	u32 l = 0, clkd = 0, div, extclk = 0, clkg = 0;
867 	u8 word_len = spi->bits_per_word;
868 	u32 speed_hz = spi->max_speed_hz;
869 
870 	mcspi = spi_master_get_devdata(spi->master);
871 	spi_cntrl = mcspi->master;
872 
873 	if (t != NULL && t->bits_per_word)
874 		word_len = t->bits_per_word;
875 
876 	cs->word_len = word_len;
877 
878 	if (t && t->speed_hz)
879 		speed_hz = t->speed_hz;
880 
881 	speed_hz = min_t(u32, speed_hz, OMAP2_MCSPI_MAX_FREQ);
882 	if (speed_hz < (OMAP2_MCSPI_MAX_FREQ / OMAP2_MCSPI_MAX_DIVIDER)) {
883 		clkd = omap2_mcspi_calc_divisor(speed_hz);
884 		speed_hz = OMAP2_MCSPI_MAX_FREQ >> clkd;
885 		clkg = 0;
886 	} else {
887 		div = (OMAP2_MCSPI_MAX_FREQ + speed_hz - 1) / speed_hz;
888 		speed_hz = OMAP2_MCSPI_MAX_FREQ / div;
889 		clkd = (div - 1) & 0xf;
890 		extclk = (div - 1) >> 4;
891 		clkg = OMAP2_MCSPI_CHCONF_CLKG;
892 	}
893 
894 	l = mcspi_cached_chconf0(spi);
895 
896 	/* standard 4-wire master mode:  SCK, MOSI/out, MISO/in, nCS
897 	 * REVISIT: this controller could support SPI_3WIRE mode.
898 	 */
899 	if (mcspi->pin_dir == MCSPI_PINDIR_D0_IN_D1_OUT) {
900 		l &= ~OMAP2_MCSPI_CHCONF_IS;
901 		l &= ~OMAP2_MCSPI_CHCONF_DPE1;
902 		l |= OMAP2_MCSPI_CHCONF_DPE0;
903 	} else {
904 		l |= OMAP2_MCSPI_CHCONF_IS;
905 		l |= OMAP2_MCSPI_CHCONF_DPE1;
906 		l &= ~OMAP2_MCSPI_CHCONF_DPE0;
907 	}
908 
909 	/* wordlength */
910 	l &= ~OMAP2_MCSPI_CHCONF_WL_MASK;
911 	l |= (word_len - 1) << 7;
912 
913 	/* set chipselect polarity; manage with FORCE */
914 	if (!(spi->mode & SPI_CS_HIGH))
915 		l |= OMAP2_MCSPI_CHCONF_EPOL;	/* active-low; normal */
916 	else
917 		l &= ~OMAP2_MCSPI_CHCONF_EPOL;
918 
919 	/* set clock divisor */
920 	l &= ~OMAP2_MCSPI_CHCONF_CLKD_MASK;
921 	l |= clkd << 2;
922 
923 	/* set clock granularity */
924 	l &= ~OMAP2_MCSPI_CHCONF_CLKG;
925 	l |= clkg;
926 	if (clkg) {
927 		cs->chctrl0 &= ~OMAP2_MCSPI_CHCTRL_EXTCLK_MASK;
928 		cs->chctrl0 |= extclk << 8;
929 		mcspi_write_cs_reg(spi, OMAP2_MCSPI_CHCTRL0, cs->chctrl0);
930 	}
931 
932 	/* set SPI mode 0..3 */
933 	if (spi->mode & SPI_CPOL)
934 		l |= OMAP2_MCSPI_CHCONF_POL;
935 	else
936 		l &= ~OMAP2_MCSPI_CHCONF_POL;
937 	if (spi->mode & SPI_CPHA)
938 		l |= OMAP2_MCSPI_CHCONF_PHA;
939 	else
940 		l &= ~OMAP2_MCSPI_CHCONF_PHA;
941 
942 	mcspi_write_chconf0(spi, l);
943 
944 	cs->mode = spi->mode;
945 
946 	dev_dbg(&spi->dev, "setup: speed %d, sample %s edge, clk %s\n",
947 			speed_hz,
948 			(spi->mode & SPI_CPHA) ? "trailing" : "leading",
949 			(spi->mode & SPI_CPOL) ? "inverted" : "normal");
950 
951 	return 0;
952 }
953 
954 /*
955  * Note that we currently allow DMA only if we get a channel
956  * for both rx and tx. Otherwise we'll do PIO for both rx and tx.
957  */
958 static int omap2_mcspi_request_dma(struct spi_device *spi)
959 {
960 	struct spi_master	*master = spi->master;
961 	struct omap2_mcspi	*mcspi;
962 	struct omap2_mcspi_dma	*mcspi_dma;
963 	int ret = 0;
964 
965 	mcspi = spi_master_get_devdata(master);
966 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
967 
968 	init_completion(&mcspi_dma->dma_rx_completion);
969 	init_completion(&mcspi_dma->dma_tx_completion);
970 
971 	mcspi_dma->dma_rx = dma_request_chan(&master->dev,
972 					     mcspi_dma->dma_rx_ch_name);
973 	if (IS_ERR(mcspi_dma->dma_rx)) {
974 		ret = PTR_ERR(mcspi_dma->dma_rx);
975 		mcspi_dma->dma_rx = NULL;
976 		goto no_dma;
977 	}
978 
979 	mcspi_dma->dma_tx = dma_request_chan(&master->dev,
980 					     mcspi_dma->dma_tx_ch_name);
981 	if (IS_ERR(mcspi_dma->dma_tx)) {
982 		ret = PTR_ERR(mcspi_dma->dma_tx);
983 		mcspi_dma->dma_tx = NULL;
984 		dma_release_channel(mcspi_dma->dma_rx);
985 		mcspi_dma->dma_rx = NULL;
986 	}
987 
988 no_dma:
989 	return ret;
990 }
991 
992 static int omap2_mcspi_setup(struct spi_device *spi)
993 {
994 	int			ret;
995 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(spi->master);
996 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
997 	struct omap2_mcspi_dma	*mcspi_dma;
998 	struct omap2_mcspi_cs	*cs = spi->controller_state;
999 
1000 	mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1001 
1002 	if (!cs) {
1003 		cs = kzalloc(sizeof *cs, GFP_KERNEL);
1004 		if (!cs)
1005 			return -ENOMEM;
1006 		cs->base = mcspi->base + spi->chip_select * 0x14;
1007 		cs->phys = mcspi->phys + spi->chip_select * 0x14;
1008 		cs->mode = 0;
1009 		cs->chconf0 = 0;
1010 		cs->chctrl0 = 0;
1011 		spi->controller_state = cs;
1012 		/* Link this to context save list */
1013 		list_add_tail(&cs->node, &ctx->cs);
1014 
1015 		if (gpio_is_valid(spi->cs_gpio)) {
1016 			ret = gpio_request(spi->cs_gpio, dev_name(&spi->dev));
1017 			if (ret) {
1018 				dev_err(&spi->dev, "failed to request gpio\n");
1019 				return ret;
1020 			}
1021 			gpio_direction_output(spi->cs_gpio,
1022 					 !(spi->mode & SPI_CS_HIGH));
1023 		}
1024 	}
1025 
1026 	if (!mcspi_dma->dma_rx || !mcspi_dma->dma_tx) {
1027 		ret = omap2_mcspi_request_dma(spi);
1028 		if (ret)
1029 			dev_warn(&spi->dev, "not using DMA for McSPI (%d)\n",
1030 				 ret);
1031 	}
1032 
1033 	ret = pm_runtime_get_sync(mcspi->dev);
1034 	if (ret < 0)
1035 		return ret;
1036 
1037 	ret = omap2_mcspi_setup_transfer(spi, NULL);
1038 	pm_runtime_mark_last_busy(mcspi->dev);
1039 	pm_runtime_put_autosuspend(mcspi->dev);
1040 
1041 	return ret;
1042 }
1043 
1044 static void omap2_mcspi_cleanup(struct spi_device *spi)
1045 {
1046 	struct omap2_mcspi	*mcspi;
1047 	struct omap2_mcspi_dma	*mcspi_dma;
1048 	struct omap2_mcspi_cs	*cs;
1049 
1050 	mcspi = spi_master_get_devdata(spi->master);
1051 
1052 	if (spi->controller_state) {
1053 		/* Unlink controller state from context save list */
1054 		cs = spi->controller_state;
1055 		list_del(&cs->node);
1056 
1057 		kfree(cs);
1058 	}
1059 
1060 	if (spi->chip_select < spi->master->num_chipselect) {
1061 		mcspi_dma = &mcspi->dma_channels[spi->chip_select];
1062 
1063 		if (mcspi_dma->dma_rx) {
1064 			dma_release_channel(mcspi_dma->dma_rx);
1065 			mcspi_dma->dma_rx = NULL;
1066 		}
1067 		if (mcspi_dma->dma_tx) {
1068 			dma_release_channel(mcspi_dma->dma_tx);
1069 			mcspi_dma->dma_tx = NULL;
1070 		}
1071 	}
1072 
1073 	if (gpio_is_valid(spi->cs_gpio))
1074 		gpio_free(spi->cs_gpio);
1075 }
1076 
1077 static int omap2_mcspi_work_one(struct omap2_mcspi *mcspi,
1078 		struct spi_device *spi, struct spi_transfer *t)
1079 {
1080 
1081 	/* We only enable one channel at a time -- the one whose message is
1082 	 * -- although this controller would gladly
1083 	 * arbitrate among multiple channels.  This corresponds to "single
1084 	 * channel" master mode.  As a side effect, we need to manage the
1085 	 * chipselect with the FORCE bit ... CS != channel enable.
1086 	 */
1087 
1088 	struct spi_master		*master;
1089 	struct omap2_mcspi_dma		*mcspi_dma;
1090 	struct omap2_mcspi_cs		*cs;
1091 	struct omap2_mcspi_device_config *cd;
1092 	int				par_override = 0;
1093 	int				status = 0;
1094 	u32				chconf;
1095 
1096 	master = spi->master;
1097 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1098 	cs = spi->controller_state;
1099 	cd = spi->controller_data;
1100 
1101 	/*
1102 	 * The slave driver could have changed spi->mode in which case
1103 	 * it will be different from cs->mode (the current hardware setup).
1104 	 * If so, set par_override (even though its not a parity issue) so
1105 	 * omap2_mcspi_setup_transfer will be called to configure the hardware
1106 	 * with the correct mode on the first iteration of the loop below.
1107 	 */
1108 	if (spi->mode != cs->mode)
1109 		par_override = 1;
1110 
1111 	omap2_mcspi_set_enable(spi, 0);
1112 
1113 	if (gpio_is_valid(spi->cs_gpio))
1114 		omap2_mcspi_set_cs(spi, spi->mode & SPI_CS_HIGH);
1115 
1116 	if (par_override ||
1117 	    (t->speed_hz != spi->max_speed_hz) ||
1118 	    (t->bits_per_word != spi->bits_per_word)) {
1119 		par_override = 1;
1120 		status = omap2_mcspi_setup_transfer(spi, t);
1121 		if (status < 0)
1122 			goto out;
1123 		if (t->speed_hz == spi->max_speed_hz &&
1124 		    t->bits_per_word == spi->bits_per_word)
1125 			par_override = 0;
1126 	}
1127 	if (cd && cd->cs_per_word) {
1128 		chconf = mcspi->ctx.modulctrl;
1129 		chconf &= ~OMAP2_MCSPI_MODULCTRL_SINGLE;
1130 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1131 		mcspi->ctx.modulctrl =
1132 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1133 	}
1134 
1135 	chconf = mcspi_cached_chconf0(spi);
1136 	chconf &= ~OMAP2_MCSPI_CHCONF_TRM_MASK;
1137 	chconf &= ~OMAP2_MCSPI_CHCONF_TURBO;
1138 
1139 	if (t->tx_buf == NULL)
1140 		chconf |= OMAP2_MCSPI_CHCONF_TRM_RX_ONLY;
1141 	else if (t->rx_buf == NULL)
1142 		chconf |= OMAP2_MCSPI_CHCONF_TRM_TX_ONLY;
1143 
1144 	if (cd && cd->turbo_mode && t->tx_buf == NULL) {
1145 		/* Turbo mode is for more than one word */
1146 		if (t->len > ((cs->word_len + 7) >> 3))
1147 			chconf |= OMAP2_MCSPI_CHCONF_TURBO;
1148 	}
1149 
1150 	mcspi_write_chconf0(spi, chconf);
1151 
1152 	if (t->len) {
1153 		unsigned	count;
1154 
1155 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1156 		    (t->len >= DMA_MIN_BYTES))
1157 			omap2_mcspi_set_fifo(spi, t, 1);
1158 
1159 		omap2_mcspi_set_enable(spi, 1);
1160 
1161 		/* RX_ONLY mode needs dummy data in TX reg */
1162 		if (t->tx_buf == NULL)
1163 			writel_relaxed(0, cs->base
1164 					+ OMAP2_MCSPI_TX0);
1165 
1166 		if ((mcspi_dma->dma_rx && mcspi_dma->dma_tx) &&
1167 		    (t->len >= DMA_MIN_BYTES))
1168 			count = omap2_mcspi_txrx_dma(spi, t);
1169 		else
1170 			count = omap2_mcspi_txrx_pio(spi, t);
1171 
1172 		if (count != t->len) {
1173 			status = -EIO;
1174 			goto out;
1175 		}
1176 	}
1177 
1178 	omap2_mcspi_set_enable(spi, 0);
1179 
1180 	if (mcspi->fifo_depth > 0)
1181 		omap2_mcspi_set_fifo(spi, t, 0);
1182 
1183 out:
1184 	/* Restore defaults if they were overriden */
1185 	if (par_override) {
1186 		par_override = 0;
1187 		status = omap2_mcspi_setup_transfer(spi, NULL);
1188 	}
1189 
1190 	if (cd && cd->cs_per_word) {
1191 		chconf = mcspi->ctx.modulctrl;
1192 		chconf |= OMAP2_MCSPI_MODULCTRL_SINGLE;
1193 		mcspi_write_reg(master, OMAP2_MCSPI_MODULCTRL, chconf);
1194 		mcspi->ctx.modulctrl =
1195 			mcspi_read_cs_reg(spi, OMAP2_MCSPI_MODULCTRL);
1196 	}
1197 
1198 	omap2_mcspi_set_enable(spi, 0);
1199 
1200 	if (gpio_is_valid(spi->cs_gpio))
1201 		omap2_mcspi_set_cs(spi, !(spi->mode & SPI_CS_HIGH));
1202 
1203 	if (mcspi->fifo_depth > 0 && t)
1204 		omap2_mcspi_set_fifo(spi, t, 0);
1205 
1206 	return status;
1207 }
1208 
1209 static int omap2_mcspi_prepare_message(struct spi_master *master,
1210 				       struct spi_message *msg)
1211 {
1212 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1213 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1214 	struct omap2_mcspi_cs	*cs;
1215 
1216 	/* Only a single channel can have the FORCE bit enabled
1217 	 * in its chconf0 register.
1218 	 * Scan all channels and disable them except the current one.
1219 	 * A FORCE can remain from a last transfer having cs_change enabled
1220 	 */
1221 	list_for_each_entry(cs, &ctx->cs, node) {
1222 		if (msg->spi->controller_state == cs)
1223 			continue;
1224 
1225 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE)) {
1226 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1227 			writel_relaxed(cs->chconf0,
1228 					cs->base + OMAP2_MCSPI_CHCONF0);
1229 			readl_relaxed(cs->base + OMAP2_MCSPI_CHCONF0);
1230 		}
1231 	}
1232 
1233 	return 0;
1234 }
1235 
1236 static int omap2_mcspi_transfer_one(struct spi_master *master,
1237 		struct spi_device *spi, struct spi_transfer *t)
1238 {
1239 	struct omap2_mcspi	*mcspi;
1240 	struct omap2_mcspi_dma	*mcspi_dma;
1241 	const void	*tx_buf = t->tx_buf;
1242 	void		*rx_buf = t->rx_buf;
1243 	unsigned	len = t->len;
1244 
1245 	mcspi = spi_master_get_devdata(master);
1246 	mcspi_dma = mcspi->dma_channels + spi->chip_select;
1247 
1248 	if ((len && !(rx_buf || tx_buf))) {
1249 		dev_dbg(mcspi->dev, "transfer: %d Hz, %d %s%s, %d bpw\n",
1250 				t->speed_hz,
1251 				len,
1252 				tx_buf ? "tx" : "",
1253 				rx_buf ? "rx" : "",
1254 				t->bits_per_word);
1255 		return -EINVAL;
1256 	}
1257 
1258 	if (len < DMA_MIN_BYTES)
1259 		goto skip_dma_map;
1260 
1261 	if (mcspi_dma->dma_tx && tx_buf != NULL) {
1262 		t->tx_dma = dma_map_single(mcspi->dev, (void *) tx_buf,
1263 				len, DMA_TO_DEVICE);
1264 		if (dma_mapping_error(mcspi->dev, t->tx_dma)) {
1265 			dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1266 					'T', len);
1267 			return -EINVAL;
1268 		}
1269 	}
1270 	if (mcspi_dma->dma_rx && rx_buf != NULL) {
1271 		t->rx_dma = dma_map_single(mcspi->dev, rx_buf, t->len,
1272 				DMA_FROM_DEVICE);
1273 		if (dma_mapping_error(mcspi->dev, t->rx_dma)) {
1274 			dev_dbg(mcspi->dev, "dma %cX %d bytes error\n",
1275 					'R', len);
1276 			if (tx_buf != NULL)
1277 				dma_unmap_single(mcspi->dev, t->tx_dma,
1278 						len, DMA_TO_DEVICE);
1279 			return -EINVAL;
1280 		}
1281 	}
1282 
1283 skip_dma_map:
1284 	return omap2_mcspi_work_one(mcspi, spi, t);
1285 }
1286 
1287 static int omap2_mcspi_master_setup(struct omap2_mcspi *mcspi)
1288 {
1289 	struct spi_master	*master = mcspi->master;
1290 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1291 	int			ret = 0;
1292 
1293 	ret = pm_runtime_get_sync(mcspi->dev);
1294 	if (ret < 0)
1295 		return ret;
1296 
1297 	mcspi_write_reg(master, OMAP2_MCSPI_WAKEUPENABLE,
1298 			OMAP2_MCSPI_WAKEUPENABLE_WKEN);
1299 	ctx->wakeupenable = OMAP2_MCSPI_WAKEUPENABLE_WKEN;
1300 
1301 	omap2_mcspi_set_master_mode(master);
1302 	pm_runtime_mark_last_busy(mcspi->dev);
1303 	pm_runtime_put_autosuspend(mcspi->dev);
1304 	return 0;
1305 }
1306 
1307 static int omap_mcspi_runtime_resume(struct device *dev)
1308 {
1309 	struct omap2_mcspi	*mcspi;
1310 	struct spi_master	*master;
1311 
1312 	master = dev_get_drvdata(dev);
1313 	mcspi = spi_master_get_devdata(master);
1314 	omap2_mcspi_restore_ctx(mcspi);
1315 
1316 	return 0;
1317 }
1318 
1319 static struct omap2_mcspi_platform_config omap2_pdata = {
1320 	.regs_offset = 0,
1321 };
1322 
1323 static struct omap2_mcspi_platform_config omap4_pdata = {
1324 	.regs_offset = OMAP4_MCSPI_REG_OFFSET,
1325 };
1326 
1327 static const struct of_device_id omap_mcspi_of_match[] = {
1328 	{
1329 		.compatible = "ti,omap2-mcspi",
1330 		.data = &omap2_pdata,
1331 	},
1332 	{
1333 		.compatible = "ti,omap4-mcspi",
1334 		.data = &omap4_pdata,
1335 	},
1336 	{ },
1337 };
1338 MODULE_DEVICE_TABLE(of, omap_mcspi_of_match);
1339 
1340 static int omap2_mcspi_probe(struct platform_device *pdev)
1341 {
1342 	struct spi_master	*master;
1343 	const struct omap2_mcspi_platform_config *pdata;
1344 	struct omap2_mcspi	*mcspi;
1345 	struct resource		*r;
1346 	int			status = 0, i;
1347 	u32			regs_offset = 0;
1348 	static int		bus_num = 1;
1349 	struct device_node	*node = pdev->dev.of_node;
1350 	const struct of_device_id *match;
1351 
1352 	master = spi_alloc_master(&pdev->dev, sizeof *mcspi);
1353 	if (master == NULL) {
1354 		dev_dbg(&pdev->dev, "master allocation failed\n");
1355 		return -ENOMEM;
1356 	}
1357 
1358 	/* the spi->mode bits understood by this driver: */
1359 	master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_CS_HIGH;
1360 	master->bits_per_word_mask = SPI_BPW_RANGE_MASK(4, 32);
1361 	master->setup = omap2_mcspi_setup;
1362 	master->auto_runtime_pm = true;
1363 	master->prepare_message = omap2_mcspi_prepare_message;
1364 	master->transfer_one = omap2_mcspi_transfer_one;
1365 	master->set_cs = omap2_mcspi_set_cs;
1366 	master->cleanup = omap2_mcspi_cleanup;
1367 	master->dev.of_node = node;
1368 	master->max_speed_hz = OMAP2_MCSPI_MAX_FREQ;
1369 	master->min_speed_hz = OMAP2_MCSPI_MAX_FREQ >> 15;
1370 
1371 	platform_set_drvdata(pdev, master);
1372 
1373 	mcspi = spi_master_get_devdata(master);
1374 	mcspi->master = master;
1375 
1376 	match = of_match_device(omap_mcspi_of_match, &pdev->dev);
1377 	if (match) {
1378 		u32 num_cs = 1; /* default number of chipselect */
1379 		pdata = match->data;
1380 
1381 		of_property_read_u32(node, "ti,spi-num-cs", &num_cs);
1382 		master->num_chipselect = num_cs;
1383 		master->bus_num = bus_num++;
1384 		if (of_get_property(node, "ti,pindir-d0-out-d1-in", NULL))
1385 			mcspi->pin_dir = MCSPI_PINDIR_D0_OUT_D1_IN;
1386 	} else {
1387 		pdata = dev_get_platdata(&pdev->dev);
1388 		master->num_chipselect = pdata->num_cs;
1389 		if (pdev->id != -1)
1390 			master->bus_num = pdev->id;
1391 		mcspi->pin_dir = pdata->pin_dir;
1392 	}
1393 	regs_offset = pdata->regs_offset;
1394 
1395 	r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1396 	if (r == NULL) {
1397 		status = -ENODEV;
1398 		goto free_master;
1399 	}
1400 
1401 	r->start += regs_offset;
1402 	r->end += regs_offset;
1403 	mcspi->phys = r->start;
1404 
1405 	mcspi->base = devm_ioremap_resource(&pdev->dev, r);
1406 	if (IS_ERR(mcspi->base)) {
1407 		status = PTR_ERR(mcspi->base);
1408 		goto free_master;
1409 	}
1410 
1411 	mcspi->dev = &pdev->dev;
1412 
1413 	INIT_LIST_HEAD(&mcspi->ctx.cs);
1414 
1415 	mcspi->dma_channels = devm_kcalloc(&pdev->dev, master->num_chipselect,
1416 					   sizeof(struct omap2_mcspi_dma),
1417 					   GFP_KERNEL);
1418 	if (mcspi->dma_channels == NULL) {
1419 		status = -ENOMEM;
1420 		goto free_master;
1421 	}
1422 
1423 	for (i = 0; i < master->num_chipselect; i++) {
1424 		sprintf(mcspi->dma_channels[i].dma_rx_ch_name, "rx%d", i);
1425 		sprintf(mcspi->dma_channels[i].dma_tx_ch_name, "tx%d", i);
1426 	}
1427 
1428 	if (status < 0)
1429 		goto free_master;
1430 
1431 	pm_runtime_use_autosuspend(&pdev->dev);
1432 	pm_runtime_set_autosuspend_delay(&pdev->dev, SPI_AUTOSUSPEND_TIMEOUT);
1433 	pm_runtime_enable(&pdev->dev);
1434 
1435 	status = omap2_mcspi_master_setup(mcspi);
1436 	if (status < 0)
1437 		goto disable_pm;
1438 
1439 	status = devm_spi_register_master(&pdev->dev, master);
1440 	if (status < 0)
1441 		goto disable_pm;
1442 
1443 	return status;
1444 
1445 disable_pm:
1446 	pm_runtime_dont_use_autosuspend(&pdev->dev);
1447 	pm_runtime_put_sync(&pdev->dev);
1448 	pm_runtime_disable(&pdev->dev);
1449 free_master:
1450 	spi_master_put(master);
1451 	return status;
1452 }
1453 
1454 static int omap2_mcspi_remove(struct platform_device *pdev)
1455 {
1456 	struct spi_master *master = platform_get_drvdata(pdev);
1457 	struct omap2_mcspi *mcspi = spi_master_get_devdata(master);
1458 
1459 	pm_runtime_dont_use_autosuspend(mcspi->dev);
1460 	pm_runtime_put_sync(mcspi->dev);
1461 	pm_runtime_disable(&pdev->dev);
1462 
1463 	return 0;
1464 }
1465 
1466 /* work with hotplug and coldplug */
1467 MODULE_ALIAS("platform:omap2_mcspi");
1468 
1469 #ifdef	CONFIG_SUSPEND
1470 /*
1471  * When SPI wake up from off-mode, CS is in activate state. If it was in
1472  * unactive state when driver was suspend, then force it to unactive state at
1473  * wake up.
1474  */
1475 static int omap2_mcspi_resume(struct device *dev)
1476 {
1477 	struct spi_master	*master = dev_get_drvdata(dev);
1478 	struct omap2_mcspi	*mcspi = spi_master_get_devdata(master);
1479 	struct omap2_mcspi_regs	*ctx = &mcspi->ctx;
1480 	struct omap2_mcspi_cs	*cs;
1481 
1482 	pm_runtime_get_sync(mcspi->dev);
1483 	list_for_each_entry(cs, &ctx->cs, node) {
1484 		if ((cs->chconf0 & OMAP2_MCSPI_CHCONF_FORCE) == 0) {
1485 			/*
1486 			 * We need to toggle CS state for OMAP take this
1487 			 * change in account.
1488 			 */
1489 			cs->chconf0 |= OMAP2_MCSPI_CHCONF_FORCE;
1490 			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1491 			cs->chconf0 &= ~OMAP2_MCSPI_CHCONF_FORCE;
1492 			writel_relaxed(cs->chconf0, cs->base + OMAP2_MCSPI_CHCONF0);
1493 		}
1494 	}
1495 	pm_runtime_mark_last_busy(mcspi->dev);
1496 	pm_runtime_put_autosuspend(mcspi->dev);
1497 
1498 	return pinctrl_pm_select_default_state(dev);
1499 }
1500 
1501 static int omap2_mcspi_suspend(struct device *dev)
1502 {
1503 	return pinctrl_pm_select_sleep_state(dev);
1504 }
1505 
1506 #else
1507 #define omap2_mcspi_suspend	NULL
1508 #define	omap2_mcspi_resume	NULL
1509 #endif
1510 
1511 static const struct dev_pm_ops omap2_mcspi_pm_ops = {
1512 	.resume = omap2_mcspi_resume,
1513 	.suspend = omap2_mcspi_suspend,
1514 	.runtime_resume	= omap_mcspi_runtime_resume,
1515 };
1516 
1517 static struct platform_driver omap2_mcspi_driver = {
1518 	.driver = {
1519 		.name =		"omap2_mcspi",
1520 		.pm =		&omap2_mcspi_pm_ops,
1521 		.of_match_table = omap_mcspi_of_match,
1522 	},
1523 	.probe =	omap2_mcspi_probe,
1524 	.remove =	omap2_mcspi_remove,
1525 };
1526 
1527 module_platform_driver(omap2_mcspi_driver);
1528 MODULE_LICENSE("GPL");
1529