1 // SPDX-License-Identifier: GPL-2.0+ 2 3 /* 4 * NXP FlexSPI(FSPI) controller driver. 5 * 6 * Copyright 2019-2020 NXP 7 * Copyright 2020 Puresoftware Ltd. 8 * 9 * FlexSPI is a flexsible SPI host controller which supports two SPI 10 * channels and up to 4 external devices. Each channel supports 11 * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional 12 * data lines). 13 * 14 * FlexSPI controller is driven by the LUT(Look-up Table) registers 15 * LUT registers are a look-up-table for sequences of instructions. 16 * A valid sequence consists of four LUT registers. 17 * Maximum 32 LUT sequences can be programmed simultaneously. 18 * 19 * LUTs are being created at run-time based on the commands passed 20 * from the spi-mem framework, thus using single LUT index. 21 * 22 * Software triggered Flash read/write access by IP Bus. 23 * 24 * Memory mapped read access by AHB Bus. 25 * 26 * Based on SPI MEM interface and spi-fsl-qspi.c driver. 27 * 28 * Author: 29 * Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com> 30 * Boris Brezillon <bbrezillon@kernel.org> 31 * Frieder Schrempf <frieder.schrempf@kontron.de> 32 */ 33 34 #include <linux/acpi.h> 35 #include <linux/bitops.h> 36 #include <linux/bitfield.h> 37 #include <linux/clk.h> 38 #include <linux/completion.h> 39 #include <linux/delay.h> 40 #include <linux/err.h> 41 #include <linux/errno.h> 42 #include <linux/interrupt.h> 43 #include <linux/io.h> 44 #include <linux/iopoll.h> 45 #include <linux/jiffies.h> 46 #include <linux/kernel.h> 47 #include <linux/module.h> 48 #include <linux/mutex.h> 49 #include <linux/of.h> 50 #include <linux/platform_device.h> 51 #include <linux/pm_qos.h> 52 #include <linux/regmap.h> 53 #include <linux/sizes.h> 54 #include <linux/sys_soc.h> 55 56 #include <linux/mfd/syscon.h> 57 #include <linux/spi/spi.h> 58 #include <linux/spi/spi-mem.h> 59 60 /* Registers used by the driver */ 61 #define FSPI_MCR0 0x00 62 #define FSPI_MCR0_AHB_TIMEOUT(x) ((x) << 24) 63 #define FSPI_MCR0_IP_TIMEOUT(x) ((x) << 16) 64 #define FSPI_MCR0_LEARN_EN BIT(15) 65 #define FSPI_MCR0_SCRFRUN_EN BIT(14) 66 #define FSPI_MCR0_OCTCOMB_EN BIT(13) 67 #define FSPI_MCR0_DOZE_EN BIT(12) 68 #define FSPI_MCR0_HSEN BIT(11) 69 #define FSPI_MCR0_SERCLKDIV BIT(8) 70 #define FSPI_MCR0_ATDF_EN BIT(7) 71 #define FSPI_MCR0_ARDF_EN BIT(6) 72 #define FSPI_MCR0_RXCLKSRC(x) ((x) << 4) 73 #define FSPI_MCR0_END_CFG(x) ((x) << 2) 74 #define FSPI_MCR0_MDIS BIT(1) 75 #define FSPI_MCR0_SWRST BIT(0) 76 77 #define FSPI_MCR1 0x04 78 #define FSPI_MCR1_SEQ_TIMEOUT(x) ((x) << 16) 79 #define FSPI_MCR1_AHB_TIMEOUT(x) (x) 80 81 #define FSPI_MCR2 0x08 82 #define FSPI_MCR2_IDLE_WAIT(x) ((x) << 24) 83 #define FSPI_MCR2_SAMEDEVICEEN BIT(15) 84 #define FSPI_MCR2_CLRLRPHS BIT(14) 85 #define FSPI_MCR2_ABRDATSZ BIT(8) 86 #define FSPI_MCR2_ABRLEARN BIT(7) 87 #define FSPI_MCR2_ABR_READ BIT(6) 88 #define FSPI_MCR2_ABRWRITE BIT(5) 89 #define FSPI_MCR2_ABRDUMMY BIT(4) 90 #define FSPI_MCR2_ABR_MODE BIT(3) 91 #define FSPI_MCR2_ABRCADDR BIT(2) 92 #define FSPI_MCR2_ABRRADDR BIT(1) 93 #define FSPI_MCR2_ABR_CMD BIT(0) 94 95 #define FSPI_AHBCR 0x0c 96 #define FSPI_AHBCR_RDADDROPT BIT(6) 97 #define FSPI_AHBCR_PREF_EN BIT(5) 98 #define FSPI_AHBCR_BUFF_EN BIT(4) 99 #define FSPI_AHBCR_CACH_EN BIT(3) 100 #define FSPI_AHBCR_CLRTXBUF BIT(2) 101 #define FSPI_AHBCR_CLRRXBUF BIT(1) 102 #define FSPI_AHBCR_PAR_EN BIT(0) 103 104 #define FSPI_INTEN 0x10 105 #define FSPI_INTEN_SCLKSBWR BIT(9) 106 #define FSPI_INTEN_SCLKSBRD BIT(8) 107 #define FSPI_INTEN_DATALRNFL BIT(7) 108 #define FSPI_INTEN_IPTXWE BIT(6) 109 #define FSPI_INTEN_IPRXWA BIT(5) 110 #define FSPI_INTEN_AHBCMDERR BIT(4) 111 #define FSPI_INTEN_IPCMDERR BIT(3) 112 #define FSPI_INTEN_AHBCMDGE BIT(2) 113 #define FSPI_INTEN_IPCMDGE BIT(1) 114 #define FSPI_INTEN_IPCMDDONE BIT(0) 115 116 #define FSPI_INTR 0x14 117 #define FSPI_INTR_SCLKSBWR BIT(9) 118 #define FSPI_INTR_SCLKSBRD BIT(8) 119 #define FSPI_INTR_DATALRNFL BIT(7) 120 #define FSPI_INTR_IPTXWE BIT(6) 121 #define FSPI_INTR_IPRXWA BIT(5) 122 #define FSPI_INTR_AHBCMDERR BIT(4) 123 #define FSPI_INTR_IPCMDERR BIT(3) 124 #define FSPI_INTR_AHBCMDGE BIT(2) 125 #define FSPI_INTR_IPCMDGE BIT(1) 126 #define FSPI_INTR_IPCMDDONE BIT(0) 127 128 #define FSPI_LUTKEY 0x18 129 #define FSPI_LUTKEY_VALUE 0x5AF05AF0 130 131 #define FSPI_LCKCR 0x1C 132 133 #define FSPI_LCKER_LOCK 0x1 134 #define FSPI_LCKER_UNLOCK 0x2 135 136 #define FSPI_BUFXCR_INVALID_MSTRID 0xE 137 #define FSPI_AHBRX_BUF0CR0 0x20 138 #define FSPI_AHBRX_BUF1CR0 0x24 139 #define FSPI_AHBRX_BUF2CR0 0x28 140 #define FSPI_AHBRX_BUF3CR0 0x2C 141 #define FSPI_AHBRX_BUF4CR0 0x30 142 #define FSPI_AHBRX_BUF5CR0 0x34 143 #define FSPI_AHBRX_BUF6CR0 0x38 144 #define FSPI_AHBRX_BUF7CR0 0x3C 145 #define FSPI_AHBRXBUF0CR7_PREF BIT(31) 146 147 #define FSPI_AHBRX_BUF0CR1 0x40 148 #define FSPI_AHBRX_BUF1CR1 0x44 149 #define FSPI_AHBRX_BUF2CR1 0x48 150 #define FSPI_AHBRX_BUF3CR1 0x4C 151 #define FSPI_AHBRX_BUF4CR1 0x50 152 #define FSPI_AHBRX_BUF5CR1 0x54 153 #define FSPI_AHBRX_BUF6CR1 0x58 154 #define FSPI_AHBRX_BUF7CR1 0x5C 155 156 #define FSPI_FLSHA1CR0 0x60 157 #define FSPI_FLSHA2CR0 0x64 158 #define FSPI_FLSHB1CR0 0x68 159 #define FSPI_FLSHB2CR0 0x6C 160 #define FSPI_FLSHXCR0_SZ_KB 10 161 #define FSPI_FLSHXCR0_SZ(x) ((x) >> FSPI_FLSHXCR0_SZ_KB) 162 163 #define FSPI_FLSHA1CR1 0x70 164 #define FSPI_FLSHA2CR1 0x74 165 #define FSPI_FLSHB1CR1 0x78 166 #define FSPI_FLSHB2CR1 0x7C 167 #define FSPI_FLSHXCR1_CSINTR(x) ((x) << 16) 168 #define FSPI_FLSHXCR1_CAS(x) ((x) << 11) 169 #define FSPI_FLSHXCR1_WA BIT(10) 170 #define FSPI_FLSHXCR1_TCSH(x) ((x) << 5) 171 #define FSPI_FLSHXCR1_TCSS(x) (x) 172 173 #define FSPI_FLSHA1CR2 0x80 174 #define FSPI_FLSHA2CR2 0x84 175 #define FSPI_FLSHB1CR2 0x88 176 #define FSPI_FLSHB2CR2 0x8C 177 #define FSPI_FLSHXCR2_CLRINSP BIT(24) 178 #define FSPI_FLSHXCR2_AWRWAIT BIT(16) 179 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT 13 180 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT 8 181 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT 5 182 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT 0 183 184 #define FSPI_IPCR0 0xA0 185 186 #define FSPI_IPCR1 0xA4 187 #define FSPI_IPCR1_IPAREN BIT(31) 188 #define FSPI_IPCR1_SEQNUM_SHIFT 24 189 #define FSPI_IPCR1_SEQID_SHIFT 16 190 #define FSPI_IPCR1_IDATSZ(x) (x) 191 192 #define FSPI_IPCMD 0xB0 193 #define FSPI_IPCMD_TRG BIT(0) 194 195 #define FSPI_DLPR 0xB4 196 197 #define FSPI_IPRXFCR 0xB8 198 #define FSPI_IPRXFCR_CLR BIT(0) 199 #define FSPI_IPRXFCR_DMA_EN BIT(1) 200 #define FSPI_IPRXFCR_WMRK(x) ((x) << 2) 201 202 #define FSPI_IPTXFCR 0xBC 203 #define FSPI_IPTXFCR_CLR BIT(0) 204 #define FSPI_IPTXFCR_DMA_EN BIT(1) 205 #define FSPI_IPTXFCR_WMRK(x) ((x) << 2) 206 207 #define FSPI_DLLACR 0xC0 208 #define FSPI_DLLACR_OVRDEN BIT(8) 209 #define FSPI_DLLACR_SLVDLY(x) ((x) << 3) 210 #define FSPI_DLLACR_DLLRESET BIT(1) 211 #define FSPI_DLLACR_DLLEN BIT(0) 212 213 #define FSPI_DLLBCR 0xC4 214 #define FSPI_DLLBCR_OVRDEN BIT(8) 215 #define FSPI_DLLBCR_SLVDLY(x) ((x) << 3) 216 #define FSPI_DLLBCR_DLLRESET BIT(1) 217 #define FSPI_DLLBCR_DLLEN BIT(0) 218 219 #define FSPI_STS0 0xE0 220 #define FSPI_STS0_DLPHB(x) ((x) << 8) 221 #define FSPI_STS0_DLPHA(x) ((x) << 4) 222 #define FSPI_STS0_CMD_SRC(x) ((x) << 2) 223 #define FSPI_STS0_ARB_IDLE BIT(1) 224 #define FSPI_STS0_SEQ_IDLE BIT(0) 225 226 #define FSPI_STS1 0xE4 227 #define FSPI_STS1_IP_ERRCD(x) ((x) << 24) 228 #define FSPI_STS1_IP_ERRID(x) ((x) << 16) 229 #define FSPI_STS1_AHB_ERRCD(x) ((x) << 8) 230 #define FSPI_STS1_AHB_ERRID(x) (x) 231 232 #define FSPI_STS2 0xE8 233 #define FSPI_STS2_BREFLOCK BIT(17) 234 #define FSPI_STS2_BSLVLOCK BIT(16) 235 #define FSPI_STS2_AREFLOCK BIT(1) 236 #define FSPI_STS2_ASLVLOCK BIT(0) 237 #define FSPI_STS2_AB_LOCK (FSPI_STS2_BREFLOCK | \ 238 FSPI_STS2_BSLVLOCK | \ 239 FSPI_STS2_AREFLOCK | \ 240 FSPI_STS2_ASLVLOCK) 241 242 #define FSPI_AHBSPNST 0xEC 243 #define FSPI_AHBSPNST_DATLFT(x) ((x) << 16) 244 #define FSPI_AHBSPNST_BUFID(x) ((x) << 1) 245 #define FSPI_AHBSPNST_ACTIVE BIT(0) 246 247 #define FSPI_IPRXFSTS 0xF0 248 #define FSPI_IPRXFSTS_RDCNTR(x) ((x) << 16) 249 #define FSPI_IPRXFSTS_FILL(x) (x) 250 251 #define FSPI_IPTXFSTS 0xF4 252 #define FSPI_IPTXFSTS_WRCNTR(x) ((x) << 16) 253 #define FSPI_IPTXFSTS_FILL(x) (x) 254 255 #define FSPI_RFDR 0x100 256 #define FSPI_TFDR 0x180 257 258 #define FSPI_LUT_BASE 0x200 259 260 /* register map end */ 261 262 /* Instruction set for the LUT register. */ 263 #define LUT_STOP 0x00 264 #define LUT_CMD 0x01 265 #define LUT_ADDR 0x02 266 #define LUT_CADDR_SDR 0x03 267 #define LUT_MODE 0x04 268 #define LUT_MODE2 0x05 269 #define LUT_MODE4 0x06 270 #define LUT_MODE8 0x07 271 #define LUT_NXP_WRITE 0x08 272 #define LUT_NXP_READ 0x09 273 #define LUT_LEARN_SDR 0x0A 274 #define LUT_DATSZ_SDR 0x0B 275 #define LUT_DUMMY 0x0C 276 #define LUT_DUMMY_RWDS_SDR 0x0D 277 #define LUT_JMP_ON_CS 0x1F 278 #define LUT_CMD_DDR 0x21 279 #define LUT_ADDR_DDR 0x22 280 #define LUT_CADDR_DDR 0x23 281 #define LUT_MODE_DDR 0x24 282 #define LUT_MODE2_DDR 0x25 283 #define LUT_MODE4_DDR 0x26 284 #define LUT_MODE8_DDR 0x27 285 #define LUT_WRITE_DDR 0x28 286 #define LUT_READ_DDR 0x29 287 #define LUT_LEARN_DDR 0x2A 288 #define LUT_DATSZ_DDR 0x2B 289 #define LUT_DUMMY_DDR 0x2C 290 #define LUT_DUMMY_RWDS_DDR 0x2D 291 292 /* 293 * Calculate number of required PAD bits for LUT register. 294 * 295 * The pad stands for the number of IO lines [0:7]. 296 * For example, the octal read needs eight IO lines, 297 * so you should use LUT_PAD(8). This macro 298 * returns 3 i.e. use eight (2^3) IP lines for read. 299 */ 300 #define LUT_PAD(x) (fls(x) - 1) 301 302 /* 303 * Macro for constructing the LUT entries with the following 304 * register layout: 305 * 306 * --------------------------------------------------- 307 * | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 | 308 * --------------------------------------------------- 309 */ 310 #define PAD_SHIFT 8 311 #define INSTR_SHIFT 10 312 #define OPRND_SHIFT 16 313 314 /* Macros for constructing the LUT register. */ 315 #define LUT_DEF(idx, ins, pad, opr) \ 316 ((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \ 317 (opr)) << (((idx) % 2) * OPRND_SHIFT)) 318 319 #define POLL_TOUT 5000 320 #define NXP_FSPI_MAX_CHIPSELECT 4 321 #define NXP_FSPI_MIN_IOMAP SZ_4M 322 323 #define DCFG_RCWSR1 0x100 324 #define SYS_PLL_RAT GENMASK(6, 2) 325 326 /* Access flash memory using IP bus only */ 327 #define FSPI_QUIRK_USE_IP_ONLY BIT(0) 328 329 struct nxp_fspi_devtype_data { 330 unsigned int rxfifo; 331 unsigned int txfifo; 332 unsigned int ahb_buf_size; 333 unsigned int quirks; 334 unsigned int lut_num; 335 bool little_endian; 336 }; 337 338 static struct nxp_fspi_devtype_data lx2160a_data = { 339 .rxfifo = SZ_512, /* (64 * 64 bits) */ 340 .txfifo = SZ_1K, /* (128 * 64 bits) */ 341 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 342 .quirks = 0, 343 .lut_num = 32, 344 .little_endian = true, /* little-endian */ 345 }; 346 347 static struct nxp_fspi_devtype_data imx8mm_data = { 348 .rxfifo = SZ_512, /* (64 * 64 bits) */ 349 .txfifo = SZ_1K, /* (128 * 64 bits) */ 350 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 351 .quirks = 0, 352 .lut_num = 32, 353 .little_endian = true, /* little-endian */ 354 }; 355 356 static struct nxp_fspi_devtype_data imx8qxp_data = { 357 .rxfifo = SZ_512, /* (64 * 64 bits) */ 358 .txfifo = SZ_1K, /* (128 * 64 bits) */ 359 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 360 .quirks = 0, 361 .lut_num = 32, 362 .little_endian = true, /* little-endian */ 363 }; 364 365 static struct nxp_fspi_devtype_data imx8dxl_data = { 366 .rxfifo = SZ_512, /* (64 * 64 bits) */ 367 .txfifo = SZ_1K, /* (128 * 64 bits) */ 368 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 369 .quirks = FSPI_QUIRK_USE_IP_ONLY, 370 .lut_num = 32, 371 .little_endian = true, /* little-endian */ 372 }; 373 374 static struct nxp_fspi_devtype_data imx8ulp_data = { 375 .rxfifo = SZ_512, /* (64 * 64 bits) */ 376 .txfifo = SZ_1K, /* (128 * 64 bits) */ 377 .ahb_buf_size = SZ_2K, /* (256 * 64 bits) */ 378 .quirks = 0, 379 .lut_num = 16, 380 .little_endian = true, /* little-endian */ 381 }; 382 383 struct nxp_fspi { 384 void __iomem *iobase; 385 void __iomem *ahb_addr; 386 u32 memmap_phy; 387 u32 memmap_phy_size; 388 u32 memmap_start; 389 u32 memmap_len; 390 struct clk *clk, *clk_en; 391 struct device *dev; 392 struct completion c; 393 struct nxp_fspi_devtype_data *devtype_data; 394 struct mutex lock; 395 struct pm_qos_request pm_qos_req; 396 int selected; 397 }; 398 399 static inline int needs_ip_only(struct nxp_fspi *f) 400 { 401 return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY; 402 } 403 404 /* 405 * R/W functions for big- or little-endian registers: 406 * The FSPI controller's endianness is independent of 407 * the CPU core's endianness. So far, although the CPU 408 * core is little-endian the FSPI controller can use 409 * big-endian or little-endian. 410 */ 411 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr) 412 { 413 if (f->devtype_data->little_endian) 414 iowrite32(val, addr); 415 else 416 iowrite32be(val, addr); 417 } 418 419 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr) 420 { 421 if (f->devtype_data->little_endian) 422 return ioread32(addr); 423 else 424 return ioread32be(addr); 425 } 426 427 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id) 428 { 429 struct nxp_fspi *f = dev_id; 430 u32 reg; 431 432 /* clear interrupt */ 433 reg = fspi_readl(f, f->iobase + FSPI_INTR); 434 fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR); 435 436 if (reg & FSPI_INTR_IPCMDDONE) 437 complete(&f->c); 438 439 return IRQ_HANDLED; 440 } 441 442 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width) 443 { 444 switch (width) { 445 case 1: 446 case 2: 447 case 4: 448 case 8: 449 return 0; 450 } 451 452 return -ENOTSUPP; 453 } 454 455 static bool nxp_fspi_supports_op(struct spi_mem *mem, 456 const struct spi_mem_op *op) 457 { 458 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); 459 int ret; 460 461 ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth); 462 463 if (op->addr.nbytes) 464 ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth); 465 466 if (op->dummy.nbytes) 467 ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth); 468 469 if (op->data.nbytes) 470 ret |= nxp_fspi_check_buswidth(f, op->data.buswidth); 471 472 if (ret) 473 return false; 474 475 /* 476 * The number of address bytes should be equal to or less than 4 bytes. 477 */ 478 if (op->addr.nbytes > 4) 479 return false; 480 481 /* 482 * If requested address value is greater than controller assigned 483 * memory mapped space, return error as it didn't fit in the range 484 * of assigned address space. 485 */ 486 if (op->addr.val >= f->memmap_phy_size) 487 return false; 488 489 /* Max 64 dummy clock cycles supported */ 490 if (op->dummy.buswidth && 491 (op->dummy.nbytes * 8 / op->dummy.buswidth > 64)) 492 return false; 493 494 /* Max data length, check controller limits and alignment */ 495 if (op->data.dir == SPI_MEM_DATA_IN && 496 (op->data.nbytes > f->devtype_data->ahb_buf_size || 497 (op->data.nbytes > f->devtype_data->rxfifo - 4 && 498 !IS_ALIGNED(op->data.nbytes, 8)))) 499 return false; 500 501 if (op->data.dir == SPI_MEM_DATA_OUT && 502 op->data.nbytes > f->devtype_data->txfifo) 503 return false; 504 505 return spi_mem_default_supports_op(mem, op); 506 } 507 508 /* Instead of busy looping invoke readl_poll_timeout functionality. */ 509 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base, 510 u32 mask, u32 delay_us, 511 u32 timeout_us, bool c) 512 { 513 u32 reg; 514 515 if (!f->devtype_data->little_endian) 516 mask = (u32)cpu_to_be32(mask); 517 518 if (c) 519 return readl_poll_timeout(base, reg, (reg & mask), 520 delay_us, timeout_us); 521 else 522 return readl_poll_timeout(base, reg, !(reg & mask), 523 delay_us, timeout_us); 524 } 525 526 /* 527 * If the target device content being changed by Write/Erase, need to 528 * invalidate the AHB buffer. This can be achieved by doing the reset 529 * of controller after setting MCR0[SWRESET] bit. 530 */ 531 static inline void nxp_fspi_invalid(struct nxp_fspi *f) 532 { 533 u32 reg; 534 int ret; 535 536 reg = fspi_readl(f, f->iobase + FSPI_MCR0); 537 fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0); 538 539 /* w1c register, wait unit clear */ 540 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 541 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 542 WARN_ON(ret); 543 } 544 545 static void nxp_fspi_prepare_lut(struct nxp_fspi *f, 546 const struct spi_mem_op *op) 547 { 548 void __iomem *base = f->iobase; 549 u32 lutval[4] = {}; 550 int lutidx = 1, i; 551 u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4; 552 u32 target_lut_reg; 553 554 /* cmd */ 555 lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth), 556 op->cmd.opcode); 557 558 /* addr bytes */ 559 if (op->addr.nbytes) { 560 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR, 561 LUT_PAD(op->addr.buswidth), 562 op->addr.nbytes * 8); 563 lutidx++; 564 } 565 566 /* dummy bytes, if needed */ 567 if (op->dummy.nbytes) { 568 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY, 569 /* 570 * Due to FlexSPI controller limitation number of PAD for dummy 571 * buswidth needs to be programmed as equal to data buswidth. 572 */ 573 LUT_PAD(op->data.buswidth), 574 op->dummy.nbytes * 8 / 575 op->dummy.buswidth); 576 lutidx++; 577 } 578 579 /* read/write data bytes */ 580 if (op->data.nbytes) { 581 lutval[lutidx / 2] |= LUT_DEF(lutidx, 582 op->data.dir == SPI_MEM_DATA_IN ? 583 LUT_NXP_READ : LUT_NXP_WRITE, 584 LUT_PAD(op->data.buswidth), 585 0); 586 lutidx++; 587 } 588 589 /* stop condition. */ 590 lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0); 591 592 /* unlock LUT */ 593 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 594 fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR); 595 596 /* fill LUT */ 597 for (i = 0; i < ARRAY_SIZE(lutval); i++) { 598 target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4; 599 fspi_writel(f, lutval[i], base + target_lut_reg); 600 } 601 602 dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n", 603 op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes); 604 605 /* lock LUT */ 606 fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY); 607 fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR); 608 } 609 610 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f) 611 { 612 int ret; 613 614 if (is_acpi_node(dev_fwnode(f->dev))) 615 return 0; 616 617 ret = clk_prepare_enable(f->clk_en); 618 if (ret) 619 return ret; 620 621 ret = clk_prepare_enable(f->clk); 622 if (ret) { 623 clk_disable_unprepare(f->clk_en); 624 return ret; 625 } 626 627 return 0; 628 } 629 630 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f) 631 { 632 if (is_acpi_node(dev_fwnode(f->dev))) 633 return 0; 634 635 clk_disable_unprepare(f->clk); 636 clk_disable_unprepare(f->clk_en); 637 638 return 0; 639 } 640 641 static void nxp_fspi_dll_calibration(struct nxp_fspi *f) 642 { 643 int ret; 644 645 /* Reset the DLL, set the DLLRESET to 1 and then set to 0 */ 646 fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR); 647 fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR); 648 fspi_writel(f, 0, f->iobase + FSPI_DLLACR); 649 fspi_writel(f, 0, f->iobase + FSPI_DLLBCR); 650 651 /* 652 * Enable the DLL calibration mode. 653 * The delay target for slave delay line is: 654 * ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock. 655 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which 656 * means half of clock cycle of reference clock. 657 */ 658 fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF), 659 f->iobase + FSPI_DLLACR); 660 fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF), 661 f->iobase + FSPI_DLLBCR); 662 663 /* Wait to get REF/SLV lock */ 664 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK, 665 0, POLL_TOUT, true); 666 if (ret) 667 dev_warn(f->dev, "DLL lock failed, please fix it!\n"); 668 } 669 670 /* 671 * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0 672 * register and start base address of the target device. 673 * 674 * (Higher address) 675 * -------- <-- FLSHB2CR0 676 * | B2 | 677 * | | 678 * B2 start address --> -------- <-- FLSHB1CR0 679 * | B1 | 680 * | | 681 * B1 start address --> -------- <-- FLSHA2CR0 682 * | A2 | 683 * | | 684 * A2 start address --> -------- <-- FLSHA1CR0 685 * | A1 | 686 * | | 687 * A1 start address --> -------- (Lower address) 688 * 689 * 690 * Start base address defines the starting address range for given CS and 691 * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS. 692 * 693 * But, different targets are having different combinations of number of CS, 694 * some targets only have single CS or two CS covering controller's full 695 * memory mapped space area. 696 * Thus, implementation is being done as independent of the size and number 697 * of the connected target device. 698 * Assign controller memory mapped space size as the size to the connected 699 * target device. 700 * Mark FLSHxxCR0 as zero initially and then assign value only to the selected 701 * chip-select Flash configuration register. 702 * 703 * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the 704 * memory mapped size of the controller. 705 * Value for rest of the CS FLSHxxCR0 register would be zero. 706 * 707 */ 708 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi) 709 { 710 unsigned long rate = spi->max_speed_hz; 711 int ret; 712 uint64_t size_kb; 713 714 /* 715 * Return, if previously selected target device is same as current 716 * requested target device. 717 */ 718 if (f->selected == spi_get_chipselect(spi, 0)) 719 return; 720 721 /* Reset FLSHxxCR0 registers */ 722 fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0); 723 fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0); 724 fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0); 725 fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0); 726 727 /* Assign controller memory mapped space as size, KBytes, of flash. */ 728 size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size); 729 730 fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 + 731 4 * spi_get_chipselect(spi, 0)); 732 733 dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0)); 734 735 nxp_fspi_clk_disable_unprep(f); 736 737 ret = clk_set_rate(f->clk, rate); 738 if (ret) 739 return; 740 741 ret = nxp_fspi_clk_prep_enable(f); 742 if (ret) 743 return; 744 745 /* 746 * If clock rate > 100MHz, then switch from DLL override mode to 747 * DLL calibration mode. 748 */ 749 if (rate > 100000000) 750 nxp_fspi_dll_calibration(f); 751 752 f->selected = spi_get_chipselect(spi, 0); 753 } 754 755 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op) 756 { 757 u32 start = op->addr.val; 758 u32 len = op->data.nbytes; 759 760 /* if necessary, ioremap before AHB read */ 761 if ((!f->ahb_addr) || start < f->memmap_start || 762 start + len > f->memmap_start + f->memmap_len) { 763 if (f->ahb_addr) 764 iounmap(f->ahb_addr); 765 766 f->memmap_start = start; 767 f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP); 768 769 f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start, 770 f->memmap_len); 771 772 if (!f->ahb_addr) { 773 dev_err(f->dev, "failed to alloc memory\n"); 774 return -ENOMEM; 775 } 776 } 777 778 /* Read out the data directly from the AHB buffer. */ 779 memcpy_fromio(op->data.buf.in, 780 f->ahb_addr + start - f->memmap_start, len); 781 782 return 0; 783 } 784 785 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f, 786 const struct spi_mem_op *op) 787 { 788 void __iomem *base = f->iobase; 789 int i, ret; 790 u8 *buf = (u8 *) op->data.buf.out; 791 792 /* clear the TX FIFO. */ 793 fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR); 794 795 /* 796 * Default value of water mark level is 8 bytes, hence in single 797 * write request controller can write max 8 bytes of data. 798 */ 799 800 for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) { 801 /* Wait for TXFIFO empty */ 802 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 803 FSPI_INTR_IPTXWE, 0, 804 POLL_TOUT, true); 805 WARN_ON(ret); 806 807 fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR); 808 fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4); 809 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 810 } 811 812 if (i < op->data.nbytes) { 813 u32 data = 0; 814 int j; 815 /* Wait for TXFIFO empty */ 816 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 817 FSPI_INTR_IPTXWE, 0, 818 POLL_TOUT, true); 819 WARN_ON(ret); 820 821 for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) { 822 memcpy(&data, buf + i + j, 4); 823 fspi_writel(f, data, base + FSPI_TFDR + j); 824 } 825 fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR); 826 } 827 } 828 829 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f, 830 const struct spi_mem_op *op) 831 { 832 void __iomem *base = f->iobase; 833 int i, ret; 834 int len = op->data.nbytes; 835 u8 *buf = (u8 *) op->data.buf.in; 836 837 /* 838 * Default value of water mark level is 8 bytes, hence in single 839 * read request controller can read max 8 bytes of data. 840 */ 841 for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) { 842 /* Wait for RXFIFO available */ 843 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 844 FSPI_INTR_IPRXWA, 0, 845 POLL_TOUT, true); 846 WARN_ON(ret); 847 848 *(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR); 849 *(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4); 850 /* move the FIFO pointer */ 851 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 852 } 853 854 if (i < len) { 855 u32 tmp; 856 int size, j; 857 858 buf = op->data.buf.in + i; 859 /* Wait for RXFIFO available */ 860 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR, 861 FSPI_INTR_IPRXWA, 0, 862 POLL_TOUT, true); 863 WARN_ON(ret); 864 865 len = op->data.nbytes - i; 866 for (j = 0; j < op->data.nbytes - i; j += 4) { 867 tmp = fspi_readl(f, base + FSPI_RFDR + j); 868 size = min(len, 4); 869 memcpy(buf + j, &tmp, size); 870 len -= size; 871 } 872 } 873 874 /* invalid the RXFIFO */ 875 fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR); 876 /* move the FIFO pointer */ 877 fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR); 878 } 879 880 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op) 881 { 882 void __iomem *base = f->iobase; 883 int seqnum = 0; 884 int err = 0; 885 u32 reg, seqid_lut; 886 887 reg = fspi_readl(f, base + FSPI_IPRXFCR); 888 /* invalid RXFIFO first */ 889 reg &= ~FSPI_IPRXFCR_DMA_EN; 890 reg = reg | FSPI_IPRXFCR_CLR; 891 fspi_writel(f, reg, base + FSPI_IPRXFCR); 892 893 init_completion(&f->c); 894 895 fspi_writel(f, op->addr.val, base + FSPI_IPCR0); 896 /* 897 * Always start the sequence at the same index since we update 898 * the LUT at each exec_op() call. And also specify the DATA 899 * length, since it's has not been specified in the LUT. 900 */ 901 seqid_lut = f->devtype_data->lut_num - 1; 902 fspi_writel(f, op->data.nbytes | 903 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) | 904 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT), 905 base + FSPI_IPCR1); 906 907 /* Trigger the LUT now. */ 908 fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD); 909 910 /* Wait for the interrupt. */ 911 if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000))) 912 err = -ETIMEDOUT; 913 914 /* Invoke IP data read, if request is of data read. */ 915 if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN) 916 nxp_fspi_read_rxfifo(f, op); 917 918 return err; 919 } 920 921 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 922 { 923 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); 924 int err = 0; 925 926 mutex_lock(&f->lock); 927 928 /* Wait for controller being ready. */ 929 err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0, 930 FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true); 931 WARN_ON(err); 932 933 nxp_fspi_select_mem(f, mem->spi); 934 935 nxp_fspi_prepare_lut(f, op); 936 /* 937 * If we have large chunks of data, we read them through the AHB bus by 938 * accessing the mapped memory. In all other cases we use IP commands 939 * to access the flash. Read via AHB bus may be corrupted due to 940 * existence of an errata and therefore discard AHB read in such cases. 941 */ 942 if (op->data.nbytes > (f->devtype_data->rxfifo - 4) && 943 op->data.dir == SPI_MEM_DATA_IN && 944 !needs_ip_only(f)) { 945 err = nxp_fspi_read_ahb(f, op); 946 } else { 947 if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT) 948 nxp_fspi_fill_txfifo(f, op); 949 950 err = nxp_fspi_do_op(f, op); 951 } 952 953 /* Invalidate the data in the AHB buffer. */ 954 nxp_fspi_invalid(f); 955 956 mutex_unlock(&f->lock); 957 958 return err; 959 } 960 961 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 962 { 963 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); 964 965 if (op->data.dir == SPI_MEM_DATA_OUT) { 966 if (op->data.nbytes > f->devtype_data->txfifo) 967 op->data.nbytes = f->devtype_data->txfifo; 968 } else { 969 if (op->data.nbytes > f->devtype_data->ahb_buf_size) 970 op->data.nbytes = f->devtype_data->ahb_buf_size; 971 else if (op->data.nbytes > (f->devtype_data->rxfifo - 4)) 972 op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8); 973 } 974 975 /* Limit data bytes to RX FIFO in case of IP read only */ 976 if (op->data.dir == SPI_MEM_DATA_IN && 977 needs_ip_only(f) && 978 op->data.nbytes > f->devtype_data->rxfifo) 979 op->data.nbytes = f->devtype_data->rxfifo; 980 981 return 0; 982 } 983 984 static void erratum_err050568(struct nxp_fspi *f) 985 { 986 static const struct soc_device_attribute ls1028a_soc_attr[] = { 987 { .family = "QorIQ LS1028A" }, 988 { /* sentinel */ } 989 }; 990 struct regmap *map; 991 u32 val, sys_pll_ratio; 992 int ret; 993 994 /* Check for LS1028A family */ 995 if (!soc_device_match(ls1028a_soc_attr)) { 996 dev_dbg(f->dev, "Errata applicable only for LS1028A\n"); 997 return; 998 } 999 1000 map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg"); 1001 if (IS_ERR(map)) { 1002 dev_err(f->dev, "No syscon regmap\n"); 1003 goto err; 1004 } 1005 1006 ret = regmap_read(map, DCFG_RCWSR1, &val); 1007 if (ret < 0) 1008 goto err; 1009 1010 sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val); 1011 dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio); 1012 1013 /* Use IP bus only if platform clock is 300MHz */ 1014 if (sys_pll_ratio == 3) 1015 f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY; 1016 1017 return; 1018 1019 err: 1020 dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n"); 1021 } 1022 1023 static int nxp_fspi_default_setup(struct nxp_fspi *f) 1024 { 1025 void __iomem *base = f->iobase; 1026 int ret, i; 1027 u32 reg, seqid_lut; 1028 1029 /* disable and unprepare clock to avoid glitch pass to controller */ 1030 nxp_fspi_clk_disable_unprep(f); 1031 1032 /* the default frequency, we will change it later if necessary. */ 1033 ret = clk_set_rate(f->clk, 20000000); 1034 if (ret) 1035 return ret; 1036 1037 ret = nxp_fspi_clk_prep_enable(f); 1038 if (ret) 1039 return ret; 1040 1041 /* 1042 * ERR050568: Flash access by FlexSPI AHB command may not work with 1043 * platform frequency equal to 300 MHz on LS1028A. 1044 * LS1028A reuses LX2160A compatible entry. Make errata applicable for 1045 * Layerscape LS1028A platform. 1046 */ 1047 if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi")) 1048 erratum_err050568(f); 1049 1050 /* Reset the module */ 1051 /* w1c register, wait unit clear */ 1052 ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0, 1053 FSPI_MCR0_SWRST, 0, POLL_TOUT, false); 1054 WARN_ON(ret); 1055 1056 /* Disable the module */ 1057 fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0); 1058 1059 /* 1060 * Config the DLL register to default value, enable the target clock delay 1061 * line delay cell override mode, and use 1 fixed delay cell in DLL delay 1062 * chain, this is the suggested setting when clock rate < 100MHz. 1063 */ 1064 fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR); 1065 fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR); 1066 1067 /* enable module */ 1068 fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) | 1069 FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN, 1070 base + FSPI_MCR0); 1071 1072 /* 1073 * Disable same device enable bit and configure all target devices 1074 * independently. 1075 */ 1076 reg = fspi_readl(f, f->iobase + FSPI_MCR2); 1077 reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN); 1078 fspi_writel(f, reg, base + FSPI_MCR2); 1079 1080 /* AHB configuration for access buffer 0~7. */ 1081 for (i = 0; i < 7; i++) 1082 fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i); 1083 1084 /* 1085 * Set ADATSZ with the maximum AHB buffer size to improve the read 1086 * performance. 1087 */ 1088 fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 | 1089 FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0); 1090 1091 /* prefetch and no start address alignment limitation */ 1092 fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT, 1093 base + FSPI_AHBCR); 1094 1095 /* Reset the FLSHxCR1 registers. */ 1096 reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3); 1097 fspi_writel(f, reg, base + FSPI_FLSHA1CR1); 1098 fspi_writel(f, reg, base + FSPI_FLSHA2CR1); 1099 fspi_writel(f, reg, base + FSPI_FLSHB1CR1); 1100 fspi_writel(f, reg, base + FSPI_FLSHB2CR1); 1101 1102 /* 1103 * The driver only uses one single LUT entry, that is updated on 1104 * each call of exec_op(). Index 0 is preset at boot with a basic 1105 * read operation, so let's use the last entry. 1106 */ 1107 seqid_lut = f->devtype_data->lut_num - 1; 1108 /* AHB Read - Set lut sequence ID for all CS. */ 1109 fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2); 1110 fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2); 1111 fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2); 1112 fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2); 1113 1114 f->selected = -1; 1115 1116 /* enable the interrupt */ 1117 fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN); 1118 1119 return 0; 1120 } 1121 1122 static const char *nxp_fspi_get_name(struct spi_mem *mem) 1123 { 1124 struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller); 1125 struct device *dev = &mem->spi->dev; 1126 const char *name; 1127 1128 // Set custom name derived from the platform_device of the controller. 1129 if (of_get_available_child_count(f->dev->of_node) == 1) 1130 return dev_name(f->dev); 1131 1132 name = devm_kasprintf(dev, GFP_KERNEL, 1133 "%s-%d", dev_name(f->dev), 1134 spi_get_chipselect(mem->spi, 0)); 1135 1136 if (!name) { 1137 dev_err(dev, "failed to get memory for custom flash name\n"); 1138 return ERR_PTR(-ENOMEM); 1139 } 1140 1141 return name; 1142 } 1143 1144 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = { 1145 .adjust_op_size = nxp_fspi_adjust_op_size, 1146 .supports_op = nxp_fspi_supports_op, 1147 .exec_op = nxp_fspi_exec_op, 1148 .get_name = nxp_fspi_get_name, 1149 }; 1150 1151 static int nxp_fspi_probe(struct platform_device *pdev) 1152 { 1153 struct spi_controller *ctlr; 1154 struct device *dev = &pdev->dev; 1155 struct device_node *np = dev->of_node; 1156 struct resource *res; 1157 struct nxp_fspi *f; 1158 int ret; 1159 u32 reg; 1160 1161 ctlr = spi_alloc_host(&pdev->dev, sizeof(*f)); 1162 if (!ctlr) 1163 return -ENOMEM; 1164 1165 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL | 1166 SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL; 1167 1168 f = spi_controller_get_devdata(ctlr); 1169 f->dev = dev; 1170 f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev); 1171 if (!f->devtype_data) { 1172 ret = -ENODEV; 1173 goto err_put_ctrl; 1174 } 1175 1176 platform_set_drvdata(pdev, f); 1177 1178 /* find the resources - configuration register address space */ 1179 if (is_acpi_node(dev_fwnode(f->dev))) 1180 f->iobase = devm_platform_ioremap_resource(pdev, 0); 1181 else 1182 f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base"); 1183 1184 if (IS_ERR(f->iobase)) { 1185 ret = PTR_ERR(f->iobase); 1186 goto err_put_ctrl; 1187 } 1188 1189 /* find the resources - controller memory mapped space */ 1190 if (is_acpi_node(dev_fwnode(f->dev))) 1191 res = platform_get_resource(pdev, IORESOURCE_MEM, 1); 1192 else 1193 res = platform_get_resource_byname(pdev, 1194 IORESOURCE_MEM, "fspi_mmap"); 1195 1196 if (!res) { 1197 ret = -ENODEV; 1198 goto err_put_ctrl; 1199 } 1200 1201 /* assign memory mapped starting address and mapped size. */ 1202 f->memmap_phy = res->start; 1203 f->memmap_phy_size = resource_size(res); 1204 1205 /* find the clocks */ 1206 if (dev_of_node(&pdev->dev)) { 1207 f->clk_en = devm_clk_get(dev, "fspi_en"); 1208 if (IS_ERR(f->clk_en)) { 1209 ret = PTR_ERR(f->clk_en); 1210 goto err_put_ctrl; 1211 } 1212 1213 f->clk = devm_clk_get(dev, "fspi"); 1214 if (IS_ERR(f->clk)) { 1215 ret = PTR_ERR(f->clk); 1216 goto err_put_ctrl; 1217 } 1218 1219 ret = nxp_fspi_clk_prep_enable(f); 1220 if (ret) { 1221 dev_err(dev, "can not enable the clock\n"); 1222 goto err_put_ctrl; 1223 } 1224 } 1225 1226 /* Clear potential interrupts */ 1227 reg = fspi_readl(f, f->iobase + FSPI_INTR); 1228 if (reg) 1229 fspi_writel(f, reg, f->iobase + FSPI_INTR); 1230 1231 /* find the irq */ 1232 ret = platform_get_irq(pdev, 0); 1233 if (ret < 0) 1234 goto err_disable_clk; 1235 1236 ret = devm_request_irq(dev, ret, 1237 nxp_fspi_irq_handler, 0, pdev->name, f); 1238 if (ret) { 1239 dev_err(dev, "failed to request irq: %d\n", ret); 1240 goto err_disable_clk; 1241 } 1242 1243 mutex_init(&f->lock); 1244 1245 ctlr->bus_num = -1; 1246 ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT; 1247 ctlr->mem_ops = &nxp_fspi_mem_ops; 1248 1249 nxp_fspi_default_setup(f); 1250 1251 ctlr->dev.of_node = np; 1252 1253 ret = devm_spi_register_controller(&pdev->dev, ctlr); 1254 if (ret) 1255 goto err_destroy_mutex; 1256 1257 return 0; 1258 1259 err_destroy_mutex: 1260 mutex_destroy(&f->lock); 1261 1262 err_disable_clk: 1263 nxp_fspi_clk_disable_unprep(f); 1264 1265 err_put_ctrl: 1266 spi_controller_put(ctlr); 1267 1268 dev_err(dev, "NXP FSPI probe failed\n"); 1269 return ret; 1270 } 1271 1272 static void nxp_fspi_remove(struct platform_device *pdev) 1273 { 1274 struct nxp_fspi *f = platform_get_drvdata(pdev); 1275 1276 /* disable the hardware */ 1277 fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0); 1278 1279 nxp_fspi_clk_disable_unprep(f); 1280 1281 mutex_destroy(&f->lock); 1282 1283 if (f->ahb_addr) 1284 iounmap(f->ahb_addr); 1285 } 1286 1287 static int nxp_fspi_suspend(struct device *dev) 1288 { 1289 return 0; 1290 } 1291 1292 static int nxp_fspi_resume(struct device *dev) 1293 { 1294 struct nxp_fspi *f = dev_get_drvdata(dev); 1295 1296 nxp_fspi_default_setup(f); 1297 1298 return 0; 1299 } 1300 1301 static const struct of_device_id nxp_fspi_dt_ids[] = { 1302 { .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, }, 1303 { .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, }, 1304 { .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, }, 1305 { .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, }, 1306 { .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, }, 1307 { .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, }, 1308 { /* sentinel */ } 1309 }; 1310 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids); 1311 1312 #ifdef CONFIG_ACPI 1313 static const struct acpi_device_id nxp_fspi_acpi_ids[] = { 1314 { "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, }, 1315 {} 1316 }; 1317 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids); 1318 #endif 1319 1320 static const struct dev_pm_ops nxp_fspi_pm_ops = { 1321 .suspend = nxp_fspi_suspend, 1322 .resume = nxp_fspi_resume, 1323 }; 1324 1325 static struct platform_driver nxp_fspi_driver = { 1326 .driver = { 1327 .name = "nxp-fspi", 1328 .of_match_table = nxp_fspi_dt_ids, 1329 .acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids), 1330 .pm = &nxp_fspi_pm_ops, 1331 }, 1332 .probe = nxp_fspi_probe, 1333 .remove_new = nxp_fspi_remove, 1334 }; 1335 module_platform_driver(nxp_fspi_driver); 1336 1337 MODULE_DESCRIPTION("NXP FSPI Controller Driver"); 1338 MODULE_AUTHOR("NXP Semiconductor"); 1339 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>"); 1340 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>"); 1341 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>"); 1342 MODULE_LICENSE("GPL v2"); 1343