xref: /linux/drivers/spi/spi-nxp-fspi.c (revision 51a8f9d7f587290944d6fc733d1f897091c63159)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/of_device.h>
51 #include <linux/platform_device.h>
52 #include <linux/pm_qos.h>
53 #include <linux/regmap.h>
54 #include <linux/sizes.h>
55 #include <linux/sys_soc.h>
56 
57 #include <linux/mfd/syscon.h>
58 #include <linux/spi/spi.h>
59 #include <linux/spi/spi-mem.h>
60 
61 /*
62  * The driver only uses one single LUT entry, that is updated on
63  * each call of exec_op(). Index 0 is preset at boot with a basic
64  * read operation, so let's use the last entry (31).
65  */
66 #define	SEQID_LUT			31
67 
68 /* Registers used by the driver */
69 #define FSPI_MCR0			0x00
70 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
71 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
72 #define FSPI_MCR0_LEARN_EN		BIT(15)
73 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
74 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
75 #define FSPI_MCR0_DOZE_EN		BIT(12)
76 #define FSPI_MCR0_HSEN			BIT(11)
77 #define FSPI_MCR0_SERCLKDIV		BIT(8)
78 #define FSPI_MCR0_ATDF_EN		BIT(7)
79 #define FSPI_MCR0_ARDF_EN		BIT(6)
80 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
81 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
82 #define FSPI_MCR0_MDIS			BIT(1)
83 #define FSPI_MCR0_SWRST			BIT(0)
84 
85 #define FSPI_MCR1			0x04
86 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
87 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
88 
89 #define FSPI_MCR2			0x08
90 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
91 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
92 #define FSPI_MCR2_CLRLRPHS		BIT(14)
93 #define FSPI_MCR2_ABRDATSZ		BIT(8)
94 #define FSPI_MCR2_ABRLEARN		BIT(7)
95 #define FSPI_MCR2_ABR_READ		BIT(6)
96 #define FSPI_MCR2_ABRWRITE		BIT(5)
97 #define FSPI_MCR2_ABRDUMMY		BIT(4)
98 #define FSPI_MCR2_ABR_MODE		BIT(3)
99 #define FSPI_MCR2_ABRCADDR		BIT(2)
100 #define FSPI_MCR2_ABRRADDR		BIT(1)
101 #define FSPI_MCR2_ABR_CMD		BIT(0)
102 
103 #define FSPI_AHBCR			0x0c
104 #define FSPI_AHBCR_RDADDROPT		BIT(6)
105 #define FSPI_AHBCR_PREF_EN		BIT(5)
106 #define FSPI_AHBCR_BUFF_EN		BIT(4)
107 #define FSPI_AHBCR_CACH_EN		BIT(3)
108 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
109 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
110 #define FSPI_AHBCR_PAR_EN		BIT(0)
111 
112 #define FSPI_INTEN			0x10
113 #define FSPI_INTEN_SCLKSBWR		BIT(9)
114 #define FSPI_INTEN_SCLKSBRD		BIT(8)
115 #define FSPI_INTEN_DATALRNFL		BIT(7)
116 #define FSPI_INTEN_IPTXWE		BIT(6)
117 #define FSPI_INTEN_IPRXWA		BIT(5)
118 #define FSPI_INTEN_AHBCMDERR		BIT(4)
119 #define FSPI_INTEN_IPCMDERR		BIT(3)
120 #define FSPI_INTEN_AHBCMDGE		BIT(2)
121 #define FSPI_INTEN_IPCMDGE		BIT(1)
122 #define FSPI_INTEN_IPCMDDONE		BIT(0)
123 
124 #define FSPI_INTR			0x14
125 #define FSPI_INTR_SCLKSBWR		BIT(9)
126 #define FSPI_INTR_SCLKSBRD		BIT(8)
127 #define FSPI_INTR_DATALRNFL		BIT(7)
128 #define FSPI_INTR_IPTXWE		BIT(6)
129 #define FSPI_INTR_IPRXWA		BIT(5)
130 #define FSPI_INTR_AHBCMDERR		BIT(4)
131 #define FSPI_INTR_IPCMDERR		BIT(3)
132 #define FSPI_INTR_AHBCMDGE		BIT(2)
133 #define FSPI_INTR_IPCMDGE		BIT(1)
134 #define FSPI_INTR_IPCMDDONE		BIT(0)
135 
136 #define FSPI_LUTKEY			0x18
137 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
138 
139 #define FSPI_LCKCR			0x1C
140 
141 #define FSPI_LCKER_LOCK			0x1
142 #define FSPI_LCKER_UNLOCK		0x2
143 
144 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
145 #define FSPI_AHBRX_BUF0CR0		0x20
146 #define FSPI_AHBRX_BUF1CR0		0x24
147 #define FSPI_AHBRX_BUF2CR0		0x28
148 #define FSPI_AHBRX_BUF3CR0		0x2C
149 #define FSPI_AHBRX_BUF4CR0		0x30
150 #define FSPI_AHBRX_BUF5CR0		0x34
151 #define FSPI_AHBRX_BUF6CR0		0x38
152 #define FSPI_AHBRX_BUF7CR0		0x3C
153 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
154 
155 #define FSPI_AHBRX_BUF0CR1		0x40
156 #define FSPI_AHBRX_BUF1CR1		0x44
157 #define FSPI_AHBRX_BUF2CR1		0x48
158 #define FSPI_AHBRX_BUF3CR1		0x4C
159 #define FSPI_AHBRX_BUF4CR1		0x50
160 #define FSPI_AHBRX_BUF5CR1		0x54
161 #define FSPI_AHBRX_BUF6CR1		0x58
162 #define FSPI_AHBRX_BUF7CR1		0x5C
163 
164 #define FSPI_FLSHA1CR0			0x60
165 #define FSPI_FLSHA2CR0			0x64
166 #define FSPI_FLSHB1CR0			0x68
167 #define FSPI_FLSHB2CR0			0x6C
168 #define FSPI_FLSHXCR0_SZ_KB		10
169 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
170 
171 #define FSPI_FLSHA1CR1			0x70
172 #define FSPI_FLSHA2CR1			0x74
173 #define FSPI_FLSHB1CR1			0x78
174 #define FSPI_FLSHB2CR1			0x7C
175 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
176 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
177 #define FSPI_FLSHXCR1_WA		BIT(10)
178 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
179 #define FSPI_FLSHXCR1_TCSS(x)		(x)
180 
181 #define FSPI_FLSHA1CR2			0x80
182 #define FSPI_FLSHA2CR2			0x84
183 #define FSPI_FLSHB1CR2			0x88
184 #define FSPI_FLSHB2CR2			0x8C
185 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
186 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
187 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
188 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
189 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
190 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
191 
192 #define FSPI_IPCR0			0xA0
193 
194 #define FSPI_IPCR1			0xA4
195 #define FSPI_IPCR1_IPAREN		BIT(31)
196 #define FSPI_IPCR1_SEQNUM_SHIFT		24
197 #define FSPI_IPCR1_SEQID_SHIFT		16
198 #define FSPI_IPCR1_IDATSZ(x)		(x)
199 
200 #define FSPI_IPCMD			0xB0
201 #define FSPI_IPCMD_TRG			BIT(0)
202 
203 #define FSPI_DLPR			0xB4
204 
205 #define FSPI_IPRXFCR			0xB8
206 #define FSPI_IPRXFCR_CLR		BIT(0)
207 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
208 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
209 
210 #define FSPI_IPTXFCR			0xBC
211 #define FSPI_IPTXFCR_CLR		BIT(0)
212 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
213 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
214 
215 #define FSPI_DLLACR			0xC0
216 #define FSPI_DLLACR_OVRDEN		BIT(8)
217 
218 #define FSPI_DLLBCR			0xC4
219 #define FSPI_DLLBCR_OVRDEN		BIT(8)
220 
221 #define FSPI_STS0			0xE0
222 #define FSPI_STS0_DLPHB(x)		((x) << 8)
223 #define FSPI_STS0_DLPHA(x)		((x) << 4)
224 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
225 #define FSPI_STS0_ARB_IDLE		BIT(1)
226 #define FSPI_STS0_SEQ_IDLE		BIT(0)
227 
228 #define FSPI_STS1			0xE4
229 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
230 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
231 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
232 #define FSPI_STS1_AHB_ERRID(x)		(x)
233 
234 #define FSPI_AHBSPNST			0xEC
235 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
236 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
237 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
238 
239 #define FSPI_IPRXFSTS			0xF0
240 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
241 #define FSPI_IPRXFSTS_FILL(x)		(x)
242 
243 #define FSPI_IPTXFSTS			0xF4
244 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
245 #define FSPI_IPTXFSTS_FILL(x)		(x)
246 
247 #define FSPI_RFDR			0x100
248 #define FSPI_TFDR			0x180
249 
250 #define FSPI_LUT_BASE			0x200
251 #define FSPI_LUT_OFFSET			(SEQID_LUT * 4 * 4)
252 #define FSPI_LUT_REG(idx) \
253 	(FSPI_LUT_BASE + FSPI_LUT_OFFSET + (idx) * 4)
254 
255 /* register map end */
256 
257 /* Instruction set for the LUT register. */
258 #define LUT_STOP			0x00
259 #define LUT_CMD				0x01
260 #define LUT_ADDR			0x02
261 #define LUT_CADDR_SDR			0x03
262 #define LUT_MODE			0x04
263 #define LUT_MODE2			0x05
264 #define LUT_MODE4			0x06
265 #define LUT_MODE8			0x07
266 #define LUT_NXP_WRITE			0x08
267 #define LUT_NXP_READ			0x09
268 #define LUT_LEARN_SDR			0x0A
269 #define LUT_DATSZ_SDR			0x0B
270 #define LUT_DUMMY			0x0C
271 #define LUT_DUMMY_RWDS_SDR		0x0D
272 #define LUT_JMP_ON_CS			0x1F
273 #define LUT_CMD_DDR			0x21
274 #define LUT_ADDR_DDR			0x22
275 #define LUT_CADDR_DDR			0x23
276 #define LUT_MODE_DDR			0x24
277 #define LUT_MODE2_DDR			0x25
278 #define LUT_MODE4_DDR			0x26
279 #define LUT_MODE8_DDR			0x27
280 #define LUT_WRITE_DDR			0x28
281 #define LUT_READ_DDR			0x29
282 #define LUT_LEARN_DDR			0x2A
283 #define LUT_DATSZ_DDR			0x2B
284 #define LUT_DUMMY_DDR			0x2C
285 #define LUT_DUMMY_RWDS_DDR		0x2D
286 
287 /*
288  * Calculate number of required PAD bits for LUT register.
289  *
290  * The pad stands for the number of IO lines [0:7].
291  * For example, the octal read needs eight IO lines,
292  * so you should use LUT_PAD(8). This macro
293  * returns 3 i.e. use eight (2^3) IP lines for read.
294  */
295 #define LUT_PAD(x) (fls(x) - 1)
296 
297 /*
298  * Macro for constructing the LUT entries with the following
299  * register layout:
300  *
301  *  ---------------------------------------------------
302  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
303  *  ---------------------------------------------------
304  */
305 #define PAD_SHIFT		8
306 #define INSTR_SHIFT		10
307 #define OPRND_SHIFT		16
308 
309 /* Macros for constructing the LUT register. */
310 #define LUT_DEF(idx, ins, pad, opr)			  \
311 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
312 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
313 
314 #define POLL_TOUT		5000
315 #define NXP_FSPI_MAX_CHIPSELECT		4
316 #define NXP_FSPI_MIN_IOMAP	SZ_4M
317 
318 #define DCFG_RCWSR1		0x100
319 #define SYS_PLL_RAT		GENMASK(6, 2)
320 
321 /* Access flash memory using IP bus only */
322 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
323 
324 struct nxp_fspi_devtype_data {
325 	unsigned int rxfifo;
326 	unsigned int txfifo;
327 	unsigned int ahb_buf_size;
328 	unsigned int quirks;
329 	bool little_endian;
330 };
331 
332 static struct nxp_fspi_devtype_data lx2160a_data = {
333 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
334 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
335 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
336 	.quirks = 0,
337 	.little_endian = true,  /* little-endian    */
338 };
339 
340 static struct nxp_fspi_devtype_data imx8mm_data = {
341 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
342 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
343 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
344 	.quirks = 0,
345 	.little_endian = true,  /* little-endian    */
346 };
347 
348 static struct nxp_fspi_devtype_data imx8qxp_data = {
349 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
350 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
351 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
352 	.quirks = 0,
353 	.little_endian = true,  /* little-endian    */
354 };
355 
356 static struct nxp_fspi_devtype_data imx8dxl_data = {
357 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
358 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
359 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
360 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
361 	.little_endian = true,  /* little-endian    */
362 };
363 
364 struct nxp_fspi {
365 	void __iomem *iobase;
366 	void __iomem *ahb_addr;
367 	u32 memmap_phy;
368 	u32 memmap_phy_size;
369 	u32 memmap_start;
370 	u32 memmap_len;
371 	struct clk *clk, *clk_en;
372 	struct device *dev;
373 	struct completion c;
374 	struct nxp_fspi_devtype_data *devtype_data;
375 	struct mutex lock;
376 	struct pm_qos_request pm_qos_req;
377 	int selected;
378 };
379 
380 static inline int needs_ip_only(struct nxp_fspi *f)
381 {
382 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
383 }
384 
385 /*
386  * R/W functions for big- or little-endian registers:
387  * The FSPI controller's endianness is independent of
388  * the CPU core's endianness. So far, although the CPU
389  * core is little-endian the FSPI controller can use
390  * big-endian or little-endian.
391  */
392 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
393 {
394 	if (f->devtype_data->little_endian)
395 		iowrite32(val, addr);
396 	else
397 		iowrite32be(val, addr);
398 }
399 
400 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
401 {
402 	if (f->devtype_data->little_endian)
403 		return ioread32(addr);
404 	else
405 		return ioread32be(addr);
406 }
407 
408 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
409 {
410 	struct nxp_fspi *f = dev_id;
411 	u32 reg;
412 
413 	/* clear interrupt */
414 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
415 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
416 
417 	if (reg & FSPI_INTR_IPCMDDONE)
418 		complete(&f->c);
419 
420 	return IRQ_HANDLED;
421 }
422 
423 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
424 {
425 	switch (width) {
426 	case 1:
427 	case 2:
428 	case 4:
429 	case 8:
430 		return 0;
431 	}
432 
433 	return -ENOTSUPP;
434 }
435 
436 static bool nxp_fspi_supports_op(struct spi_mem *mem,
437 				 const struct spi_mem_op *op)
438 {
439 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
440 	int ret;
441 
442 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
443 
444 	if (op->addr.nbytes)
445 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
446 
447 	if (op->dummy.nbytes)
448 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
449 
450 	if (op->data.nbytes)
451 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
452 
453 	if (ret)
454 		return false;
455 
456 	/*
457 	 * The number of address bytes should be equal to or less than 4 bytes.
458 	 */
459 	if (op->addr.nbytes > 4)
460 		return false;
461 
462 	/*
463 	 * If requested address value is greater than controller assigned
464 	 * memory mapped space, return error as it didn't fit in the range
465 	 * of assigned address space.
466 	 */
467 	if (op->addr.val >= f->memmap_phy_size)
468 		return false;
469 
470 	/* Max 64 dummy clock cycles supported */
471 	if (op->dummy.buswidth &&
472 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
473 		return false;
474 
475 	/* Max data length, check controller limits and alignment */
476 	if (op->data.dir == SPI_MEM_DATA_IN &&
477 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
478 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
479 	      !IS_ALIGNED(op->data.nbytes, 8))))
480 		return false;
481 
482 	if (op->data.dir == SPI_MEM_DATA_OUT &&
483 	    op->data.nbytes > f->devtype_data->txfifo)
484 		return false;
485 
486 	return spi_mem_default_supports_op(mem, op);
487 }
488 
489 /* Instead of busy looping invoke readl_poll_timeout functionality. */
490 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
491 				u32 mask, u32 delay_us,
492 				u32 timeout_us, bool c)
493 {
494 	u32 reg;
495 
496 	if (!f->devtype_data->little_endian)
497 		mask = (u32)cpu_to_be32(mask);
498 
499 	if (c)
500 		return readl_poll_timeout(base, reg, (reg & mask),
501 					  delay_us, timeout_us);
502 	else
503 		return readl_poll_timeout(base, reg, !(reg & mask),
504 					  delay_us, timeout_us);
505 }
506 
507 /*
508  * If the slave device content being changed by Write/Erase, need to
509  * invalidate the AHB buffer. This can be achieved by doing the reset
510  * of controller after setting MCR0[SWRESET] bit.
511  */
512 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
513 {
514 	u32 reg;
515 	int ret;
516 
517 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
518 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
519 
520 	/* w1c register, wait unit clear */
521 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
522 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
523 	WARN_ON(ret);
524 }
525 
526 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
527 				 const struct spi_mem_op *op)
528 {
529 	void __iomem *base = f->iobase;
530 	u32 lutval[4] = {};
531 	int lutidx = 1, i;
532 
533 	/* cmd */
534 	lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
535 			     op->cmd.opcode);
536 
537 	/* addr bytes */
538 	if (op->addr.nbytes) {
539 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_ADDR,
540 					      LUT_PAD(op->addr.buswidth),
541 					      op->addr.nbytes * 8);
542 		lutidx++;
543 	}
544 
545 	/* dummy bytes, if needed */
546 	if (op->dummy.nbytes) {
547 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_DUMMY,
548 		/*
549 		 * Due to FlexSPI controller limitation number of PAD for dummy
550 		 * buswidth needs to be programmed as equal to data buswidth.
551 		 */
552 					      LUT_PAD(op->data.buswidth),
553 					      op->dummy.nbytes * 8 /
554 					      op->dummy.buswidth);
555 		lutidx++;
556 	}
557 
558 	/* read/write data bytes */
559 	if (op->data.nbytes) {
560 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
561 					      op->data.dir == SPI_MEM_DATA_IN ?
562 					      LUT_NXP_READ : LUT_NXP_WRITE,
563 					      LUT_PAD(op->data.buswidth),
564 					      0);
565 		lutidx++;
566 	}
567 
568 	/* stop condition. */
569 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
570 
571 	/* unlock LUT */
572 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
573 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
574 
575 	/* fill LUT */
576 	for (i = 0; i < ARRAY_SIZE(lutval); i++)
577 		fspi_writel(f, lutval[i], base + FSPI_LUT_REG(i));
578 
579 	dev_dbg(f->dev, "CMD[%x] lutval[0:%x \t 1:%x \t 2:%x \t 3:%x], size: 0x%08x\n",
580 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
581 
582 	/* lock LUT */
583 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
584 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
585 }
586 
587 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
588 {
589 	int ret;
590 
591 	if (is_acpi_node(dev_fwnode(f->dev)))
592 		return 0;
593 
594 	ret = clk_prepare_enable(f->clk_en);
595 	if (ret)
596 		return ret;
597 
598 	ret = clk_prepare_enable(f->clk);
599 	if (ret) {
600 		clk_disable_unprepare(f->clk_en);
601 		return ret;
602 	}
603 
604 	return 0;
605 }
606 
607 static int nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
608 {
609 	if (is_acpi_node(dev_fwnode(f->dev)))
610 		return 0;
611 
612 	clk_disable_unprepare(f->clk);
613 	clk_disable_unprepare(f->clk_en);
614 
615 	return 0;
616 }
617 
618 /*
619  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
620  * register and start base address of the slave device.
621  *
622  *							    (Higher address)
623  *				--------    <-- FLSHB2CR0
624  *				|  B2  |
625  *				|      |
626  *	B2 start address -->	--------    <-- FLSHB1CR0
627  *				|  B1  |
628  *				|      |
629  *	B1 start address -->	--------    <-- FLSHA2CR0
630  *				|  A2  |
631  *				|      |
632  *	A2 start address -->	--------    <-- FLSHA1CR0
633  *				|  A1  |
634  *				|      |
635  *	A1 start address -->	--------		    (Lower address)
636  *
637  *
638  * Start base address defines the starting address range for given CS and
639  * FSPI_FLSHXXCR0 defines the size of the slave device connected at given CS.
640  *
641  * But, different targets are having different combinations of number of CS,
642  * some targets only have single CS or two CS covering controller's full
643  * memory mapped space area.
644  * Thus, implementation is being done as independent of the size and number
645  * of the connected slave device.
646  * Assign controller memory mapped space size as the size to the connected
647  * slave device.
648  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
649  * chip-select Flash configuration register.
650  *
651  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
652  * memory mapped size of the controller.
653  * Value for rest of the CS FLSHxxCR0 register would be zero.
654  *
655  */
656 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi)
657 {
658 	unsigned long rate = spi->max_speed_hz;
659 	int ret;
660 	uint64_t size_kb;
661 
662 	/*
663 	 * Return, if previously selected slave device is same as current
664 	 * requested slave device.
665 	 */
666 	if (f->selected == spi->chip_select)
667 		return;
668 
669 	/* Reset FLSHxxCR0 registers */
670 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
671 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
672 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
673 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
674 
675 	/* Assign controller memory mapped space as size, KBytes, of flash. */
676 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
677 
678 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
679 		    4 * spi->chip_select);
680 
681 	dev_dbg(f->dev, "Slave device [CS:%x] selected\n", spi->chip_select);
682 
683 	nxp_fspi_clk_disable_unprep(f);
684 
685 	ret = clk_set_rate(f->clk, rate);
686 	if (ret)
687 		return;
688 
689 	ret = nxp_fspi_clk_prep_enable(f);
690 	if (ret)
691 		return;
692 
693 	f->selected = spi->chip_select;
694 }
695 
696 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
697 {
698 	u32 start = op->addr.val;
699 	u32 len = op->data.nbytes;
700 
701 	/* if necessary, ioremap before AHB read */
702 	if ((!f->ahb_addr) || start < f->memmap_start ||
703 	     start + len > f->memmap_start + f->memmap_len) {
704 		if (f->ahb_addr)
705 			iounmap(f->ahb_addr);
706 
707 		f->memmap_start = start;
708 		f->memmap_len = len > NXP_FSPI_MIN_IOMAP ?
709 				len : NXP_FSPI_MIN_IOMAP;
710 
711 		f->ahb_addr = ioremap_wc(f->memmap_phy + f->memmap_start,
712 					 f->memmap_len);
713 
714 		if (!f->ahb_addr) {
715 			dev_err(f->dev, "failed to alloc memory\n");
716 			return -ENOMEM;
717 		}
718 	}
719 
720 	/* Read out the data directly from the AHB buffer. */
721 	memcpy_fromio(op->data.buf.in,
722 		      f->ahb_addr + start - f->memmap_start, len);
723 
724 	return 0;
725 }
726 
727 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
728 				 const struct spi_mem_op *op)
729 {
730 	void __iomem *base = f->iobase;
731 	int i, ret;
732 	u8 *buf = (u8 *) op->data.buf.out;
733 
734 	/* clear the TX FIFO. */
735 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
736 
737 	/*
738 	 * Default value of water mark level is 8 bytes, hence in single
739 	 * write request controller can write max 8 bytes of data.
740 	 */
741 
742 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
743 		/* Wait for TXFIFO empty */
744 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
745 					   FSPI_INTR_IPTXWE, 0,
746 					   POLL_TOUT, true);
747 		WARN_ON(ret);
748 
749 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
750 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
751 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
752 	}
753 
754 	if (i < op->data.nbytes) {
755 		u32 data = 0;
756 		int j;
757 		/* Wait for TXFIFO empty */
758 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
759 					   FSPI_INTR_IPTXWE, 0,
760 					   POLL_TOUT, true);
761 		WARN_ON(ret);
762 
763 		for (j = 0; j < ALIGN(op->data.nbytes - i, 4); j += 4) {
764 			memcpy(&data, buf + i + j, 4);
765 			fspi_writel(f, data, base + FSPI_TFDR + j);
766 		}
767 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
768 	}
769 }
770 
771 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
772 			  const struct spi_mem_op *op)
773 {
774 	void __iomem *base = f->iobase;
775 	int i, ret;
776 	int len = op->data.nbytes;
777 	u8 *buf = (u8 *) op->data.buf.in;
778 
779 	/*
780 	 * Default value of water mark level is 8 bytes, hence in single
781 	 * read request controller can read max 8 bytes of data.
782 	 */
783 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
784 		/* Wait for RXFIFO available */
785 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
786 					   FSPI_INTR_IPRXWA, 0,
787 					   POLL_TOUT, true);
788 		WARN_ON(ret);
789 
790 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
791 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
792 		/* move the FIFO pointer */
793 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
794 	}
795 
796 	if (i < len) {
797 		u32 tmp;
798 		int size, j;
799 
800 		buf = op->data.buf.in + i;
801 		/* Wait for RXFIFO available */
802 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
803 					   FSPI_INTR_IPRXWA, 0,
804 					   POLL_TOUT, true);
805 		WARN_ON(ret);
806 
807 		len = op->data.nbytes - i;
808 		for (j = 0; j < op->data.nbytes - i; j += 4) {
809 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
810 			size = min(len, 4);
811 			memcpy(buf + j, &tmp, size);
812 			len -= size;
813 		}
814 	}
815 
816 	/* invalid the RXFIFO */
817 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
818 	/* move the FIFO pointer */
819 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
820 }
821 
822 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
823 {
824 	void __iomem *base = f->iobase;
825 	int seqnum = 0;
826 	int err = 0;
827 	u32 reg;
828 
829 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
830 	/* invalid RXFIFO first */
831 	reg &= ~FSPI_IPRXFCR_DMA_EN;
832 	reg = reg | FSPI_IPRXFCR_CLR;
833 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
834 
835 	init_completion(&f->c);
836 
837 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
838 	/*
839 	 * Always start the sequence at the same index since we update
840 	 * the LUT at each exec_op() call. And also specify the DATA
841 	 * length, since it's has not been specified in the LUT.
842 	 */
843 	fspi_writel(f, op->data.nbytes |
844 		 (SEQID_LUT << FSPI_IPCR1_SEQID_SHIFT) |
845 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
846 		 base + FSPI_IPCR1);
847 
848 	/* Trigger the LUT now. */
849 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
850 
851 	/* Wait for the interrupt. */
852 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
853 		err = -ETIMEDOUT;
854 
855 	/* Invoke IP data read, if request is of data read. */
856 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
857 		nxp_fspi_read_rxfifo(f, op);
858 
859 	return err;
860 }
861 
862 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
863 {
864 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
865 	int err = 0;
866 
867 	mutex_lock(&f->lock);
868 
869 	/* Wait for controller being ready. */
870 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
871 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
872 	WARN_ON(err);
873 
874 	nxp_fspi_select_mem(f, mem->spi);
875 
876 	nxp_fspi_prepare_lut(f, op);
877 	/*
878 	 * If we have large chunks of data, we read them through the AHB bus by
879 	 * accessing the mapped memory. In all other cases we use IP commands
880 	 * to access the flash. Read via AHB bus may be corrupted due to
881 	 * existence of an errata and therefore discard AHB read in such cases.
882 	 */
883 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
884 	    op->data.dir == SPI_MEM_DATA_IN &&
885 	    !needs_ip_only(f)) {
886 		err = nxp_fspi_read_ahb(f, op);
887 	} else {
888 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
889 			nxp_fspi_fill_txfifo(f, op);
890 
891 		err = nxp_fspi_do_op(f, op);
892 	}
893 
894 	/* Invalidate the data in the AHB buffer. */
895 	nxp_fspi_invalid(f);
896 
897 	mutex_unlock(&f->lock);
898 
899 	return err;
900 }
901 
902 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
903 {
904 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
905 
906 	if (op->data.dir == SPI_MEM_DATA_OUT) {
907 		if (op->data.nbytes > f->devtype_data->txfifo)
908 			op->data.nbytes = f->devtype_data->txfifo;
909 	} else {
910 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
911 			op->data.nbytes = f->devtype_data->ahb_buf_size;
912 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
913 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
914 	}
915 
916 	/* Limit data bytes to RX FIFO in case of IP read only */
917 	if (op->data.dir == SPI_MEM_DATA_IN &&
918 	    needs_ip_only(f) &&
919 	    op->data.nbytes > f->devtype_data->rxfifo)
920 		op->data.nbytes = f->devtype_data->rxfifo;
921 
922 	return 0;
923 }
924 
925 static void erratum_err050568(struct nxp_fspi *f)
926 {
927 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
928 		{ .family = "QorIQ LS1028A" },
929 		{ /* sentinel */ }
930 	};
931 	struct regmap *map;
932 	u32 val, sys_pll_ratio;
933 	int ret;
934 
935 	/* Check for LS1028A family */
936 	if (!soc_device_match(ls1028a_soc_attr)) {
937 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
938 		return;
939 	}
940 
941 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
942 	if (IS_ERR(map)) {
943 		dev_err(f->dev, "No syscon regmap\n");
944 		goto err;
945 	}
946 
947 	ret = regmap_read(map, DCFG_RCWSR1, &val);
948 	if (ret < 0)
949 		goto err;
950 
951 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
952 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
953 
954 	/* Use IP bus only if platform clock is 300MHz */
955 	if (sys_pll_ratio == 3)
956 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
957 
958 	return;
959 
960 err:
961 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
962 }
963 
964 static int nxp_fspi_default_setup(struct nxp_fspi *f)
965 {
966 	void __iomem *base = f->iobase;
967 	int ret, i;
968 	u32 reg;
969 
970 	/* disable and unprepare clock to avoid glitch pass to controller */
971 	nxp_fspi_clk_disable_unprep(f);
972 
973 	/* the default frequency, we will change it later if necessary. */
974 	ret = clk_set_rate(f->clk, 20000000);
975 	if (ret)
976 		return ret;
977 
978 	ret = nxp_fspi_clk_prep_enable(f);
979 	if (ret)
980 		return ret;
981 
982 	/*
983 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
984 	 * platform frequency equal to 300 MHz on LS1028A.
985 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
986 	 * Layerscape LS1028A platform.
987 	 */
988 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
989 		erratum_err050568(f);
990 
991 	/* Reset the module */
992 	/* w1c register, wait unit clear */
993 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
994 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
995 	WARN_ON(ret);
996 
997 	/* Disable the module */
998 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
999 
1000 	/* Reset the DLL register to default value */
1001 	fspi_writel(f, FSPI_DLLACR_OVRDEN, base + FSPI_DLLACR);
1002 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, base + FSPI_DLLBCR);
1003 
1004 	/* enable module */
1005 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1006 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1007 		    base + FSPI_MCR0);
1008 
1009 	/*
1010 	 * Disable same device enable bit and configure all slave devices
1011 	 * independently.
1012 	 */
1013 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1014 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1015 	fspi_writel(f, reg, base + FSPI_MCR2);
1016 
1017 	/* AHB configuration for access buffer 0~7. */
1018 	for (i = 0; i < 7; i++)
1019 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1020 
1021 	/*
1022 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1023 	 * performance.
1024 	 */
1025 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1026 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1027 
1028 	/* prefetch and no start address alignment limitation */
1029 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1030 		 base + FSPI_AHBCR);
1031 
1032 	/* AHB Read - Set lut sequence ID for all CS. */
1033 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA1CR2);
1034 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHA2CR2);
1035 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB1CR2);
1036 	fspi_writel(f, SEQID_LUT, base + FSPI_FLSHB2CR2);
1037 
1038 	f->selected = -1;
1039 
1040 	/* enable the interrupt */
1041 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1042 
1043 	return 0;
1044 }
1045 
1046 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1047 {
1048 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->master);
1049 	struct device *dev = &mem->spi->dev;
1050 	const char *name;
1051 
1052 	// Set custom name derived from the platform_device of the controller.
1053 	if (of_get_available_child_count(f->dev->of_node) == 1)
1054 		return dev_name(f->dev);
1055 
1056 	name = devm_kasprintf(dev, GFP_KERNEL,
1057 			      "%s-%d", dev_name(f->dev),
1058 			      mem->spi->chip_select);
1059 
1060 	if (!name) {
1061 		dev_err(dev, "failed to get memory for custom flash name\n");
1062 		return ERR_PTR(-ENOMEM);
1063 	}
1064 
1065 	return name;
1066 }
1067 
1068 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1069 	.adjust_op_size = nxp_fspi_adjust_op_size,
1070 	.supports_op = nxp_fspi_supports_op,
1071 	.exec_op = nxp_fspi_exec_op,
1072 	.get_name = nxp_fspi_get_name,
1073 };
1074 
1075 static int nxp_fspi_probe(struct platform_device *pdev)
1076 {
1077 	struct spi_controller *ctlr;
1078 	struct device *dev = &pdev->dev;
1079 	struct device_node *np = dev->of_node;
1080 	struct resource *res;
1081 	struct nxp_fspi *f;
1082 	int ret;
1083 	u32 reg;
1084 
1085 	ctlr = spi_alloc_master(&pdev->dev, sizeof(*f));
1086 	if (!ctlr)
1087 		return -ENOMEM;
1088 
1089 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1090 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1091 
1092 	f = spi_controller_get_devdata(ctlr);
1093 	f->dev = dev;
1094 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1095 	if (!f->devtype_data) {
1096 		ret = -ENODEV;
1097 		goto err_put_ctrl;
1098 	}
1099 
1100 	platform_set_drvdata(pdev, f);
1101 
1102 	/* find the resources - configuration register address space */
1103 	if (is_acpi_node(dev_fwnode(f->dev)))
1104 		res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1105 	else
1106 		res = platform_get_resource_byname(pdev,
1107 				IORESOURCE_MEM, "fspi_base");
1108 
1109 	f->iobase = devm_ioremap_resource(dev, res);
1110 	if (IS_ERR(f->iobase)) {
1111 		ret = PTR_ERR(f->iobase);
1112 		goto err_put_ctrl;
1113 	}
1114 
1115 	/* find the resources - controller memory mapped space */
1116 	if (is_acpi_node(dev_fwnode(f->dev)))
1117 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1118 	else
1119 		res = platform_get_resource_byname(pdev,
1120 				IORESOURCE_MEM, "fspi_mmap");
1121 
1122 	if (!res) {
1123 		ret = -ENODEV;
1124 		goto err_put_ctrl;
1125 	}
1126 
1127 	/* assign memory mapped starting address and mapped size. */
1128 	f->memmap_phy = res->start;
1129 	f->memmap_phy_size = resource_size(res);
1130 
1131 	/* find the clocks */
1132 	if (dev_of_node(&pdev->dev)) {
1133 		f->clk_en = devm_clk_get(dev, "fspi_en");
1134 		if (IS_ERR(f->clk_en)) {
1135 			ret = PTR_ERR(f->clk_en);
1136 			goto err_put_ctrl;
1137 		}
1138 
1139 		f->clk = devm_clk_get(dev, "fspi");
1140 		if (IS_ERR(f->clk)) {
1141 			ret = PTR_ERR(f->clk);
1142 			goto err_put_ctrl;
1143 		}
1144 
1145 		ret = nxp_fspi_clk_prep_enable(f);
1146 		if (ret) {
1147 			dev_err(dev, "can not enable the clock\n");
1148 			goto err_put_ctrl;
1149 		}
1150 	}
1151 
1152 	/* Clear potential interrupts */
1153 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1154 	if (reg)
1155 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1156 
1157 	/* find the irq */
1158 	ret = platform_get_irq(pdev, 0);
1159 	if (ret < 0)
1160 		goto err_disable_clk;
1161 
1162 	ret = devm_request_irq(dev, ret,
1163 			nxp_fspi_irq_handler, 0, pdev->name, f);
1164 	if (ret) {
1165 		dev_err(dev, "failed to request irq: %d\n", ret);
1166 		goto err_disable_clk;
1167 	}
1168 
1169 	mutex_init(&f->lock);
1170 
1171 	ctlr->bus_num = -1;
1172 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1173 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1174 
1175 	nxp_fspi_default_setup(f);
1176 
1177 	ctlr->dev.of_node = np;
1178 
1179 	ret = devm_spi_register_controller(&pdev->dev, ctlr);
1180 	if (ret)
1181 		goto err_destroy_mutex;
1182 
1183 	return 0;
1184 
1185 err_destroy_mutex:
1186 	mutex_destroy(&f->lock);
1187 
1188 err_disable_clk:
1189 	nxp_fspi_clk_disable_unprep(f);
1190 
1191 err_put_ctrl:
1192 	spi_controller_put(ctlr);
1193 
1194 	dev_err(dev, "NXP FSPI probe failed\n");
1195 	return ret;
1196 }
1197 
1198 static int nxp_fspi_remove(struct platform_device *pdev)
1199 {
1200 	struct nxp_fspi *f = platform_get_drvdata(pdev);
1201 
1202 	/* disable the hardware */
1203 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1204 
1205 	nxp_fspi_clk_disable_unprep(f);
1206 
1207 	mutex_destroy(&f->lock);
1208 
1209 	if (f->ahb_addr)
1210 		iounmap(f->ahb_addr);
1211 
1212 	return 0;
1213 }
1214 
1215 static int nxp_fspi_suspend(struct device *dev)
1216 {
1217 	return 0;
1218 }
1219 
1220 static int nxp_fspi_resume(struct device *dev)
1221 {
1222 	struct nxp_fspi *f = dev_get_drvdata(dev);
1223 
1224 	nxp_fspi_default_setup(f);
1225 
1226 	return 0;
1227 }
1228 
1229 static const struct of_device_id nxp_fspi_dt_ids[] = {
1230 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1231 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1232 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1233 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1234 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1235 	{ /* sentinel */ }
1236 };
1237 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1238 
1239 #ifdef CONFIG_ACPI
1240 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1241 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1242 	{}
1243 };
1244 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1245 #endif
1246 
1247 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1248 	.suspend	= nxp_fspi_suspend,
1249 	.resume		= nxp_fspi_resume,
1250 };
1251 
1252 static struct platform_driver nxp_fspi_driver = {
1253 	.driver = {
1254 		.name	= "nxp-fspi",
1255 		.of_match_table = nxp_fspi_dt_ids,
1256 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1257 		.pm =   &nxp_fspi_pm_ops,
1258 	},
1259 	.probe          = nxp_fspi_probe,
1260 	.remove		= nxp_fspi_remove,
1261 };
1262 module_platform_driver(nxp_fspi_driver);
1263 
1264 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1265 MODULE_AUTHOR("NXP Semiconductor");
1266 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1267 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1268 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1269 MODULE_LICENSE("GPL v2");
1270