xref: /linux/drivers/spi/spi-nxp-fspi.c (revision 07fdad3a93756b872da7b53647715c48d0f4a2d0)
1 // SPDX-License-Identifier: GPL-2.0+
2 
3 /*
4  * NXP FlexSPI(FSPI) controller driver.
5  *
6  * Copyright 2019-2020 NXP
7  * Copyright 2020 Puresoftware Ltd.
8  *
9  * FlexSPI is a flexsible SPI host controller which supports two SPI
10  * channels and up to 4 external devices. Each channel supports
11  * Single/Dual/Quad/Octal mode data transfer (1/2/4/8 bidirectional
12  * data lines).
13  *
14  * FlexSPI controller is driven by the LUT(Look-up Table) registers
15  * LUT registers are a look-up-table for sequences of instructions.
16  * A valid sequence consists of four LUT registers.
17  * Maximum 32 LUT sequences can be programmed simultaneously.
18  *
19  * LUTs are being created at run-time based on the commands passed
20  * from the spi-mem framework, thus using single LUT index.
21  *
22  * Software triggered Flash read/write access by IP Bus.
23  *
24  * Memory mapped read access by AHB Bus.
25  *
26  * Based on SPI MEM interface and spi-fsl-qspi.c driver.
27  *
28  * Author:
29  *     Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>
30  *     Boris Brezillon <bbrezillon@kernel.org>
31  *     Frieder Schrempf <frieder.schrempf@kontron.de>
32  */
33 
34 #include <linux/acpi.h>
35 #include <linux/bitops.h>
36 #include <linux/bitfield.h>
37 #include <linux/clk.h>
38 #include <linux/completion.h>
39 #include <linux/delay.h>
40 #include <linux/err.h>
41 #include <linux/errno.h>
42 #include <linux/interrupt.h>
43 #include <linux/io.h>
44 #include <linux/iopoll.h>
45 #include <linux/jiffies.h>
46 #include <linux/kernel.h>
47 #include <linux/module.h>
48 #include <linux/mutex.h>
49 #include <linux/of.h>
50 #include <linux/platform_device.h>
51 #include <linux/pinctrl/consumer.h>
52 #include <linux/pm_runtime.h>
53 #include <linux/pm_qos.h>
54 #include <linux/regmap.h>
55 #include <linux/sizes.h>
56 #include <linux/sys_soc.h>
57 
58 #include <linux/mfd/syscon.h>
59 #include <linux/spi/spi.h>
60 #include <linux/spi/spi-mem.h>
61 
62 /* runtime pm timeout */
63 #define FSPI_RPM_TIMEOUT 50	/* 50ms */
64 
65 /* Registers used by the driver */
66 #define FSPI_MCR0			0x00
67 #define FSPI_MCR0_AHB_TIMEOUT(x)	((x) << 24)
68 #define FSPI_MCR0_IP_TIMEOUT(x)		((x) << 16)
69 #define FSPI_MCR0_LEARN_EN		BIT(15)
70 #define FSPI_MCR0_SCRFRUN_EN		BIT(14)
71 #define FSPI_MCR0_OCTCOMB_EN		BIT(13)
72 #define FSPI_MCR0_DOZE_EN		BIT(12)
73 #define FSPI_MCR0_HSEN			BIT(11)
74 #define FSPI_MCR0_SERCLKDIV		BIT(8)
75 #define FSPI_MCR0_ATDF_EN		BIT(7)
76 #define FSPI_MCR0_ARDF_EN		BIT(6)
77 #define FSPI_MCR0_RXCLKSRC(x)		((x) << 4)
78 #define FSPI_MCR0_END_CFG(x)		((x) << 2)
79 #define FSPI_MCR0_MDIS			BIT(1)
80 #define FSPI_MCR0_SWRST			BIT(0)
81 
82 #define FSPI_MCR1			0x04
83 #define FSPI_MCR1_SEQ_TIMEOUT(x)	((x) << 16)
84 #define FSPI_MCR1_AHB_TIMEOUT(x)	(x)
85 
86 #define FSPI_MCR2			0x08
87 #define FSPI_MCR2_IDLE_WAIT(x)		((x) << 24)
88 #define FSPI_MCR2_SAMEDEVICEEN		BIT(15)
89 #define FSPI_MCR2_CLRLRPHS		BIT(14)
90 #define FSPI_MCR2_ABRDATSZ		BIT(8)
91 #define FSPI_MCR2_ABRLEARN		BIT(7)
92 #define FSPI_MCR2_ABR_READ		BIT(6)
93 #define FSPI_MCR2_ABRWRITE		BIT(5)
94 #define FSPI_MCR2_ABRDUMMY		BIT(4)
95 #define FSPI_MCR2_ABR_MODE		BIT(3)
96 #define FSPI_MCR2_ABRCADDR		BIT(2)
97 #define FSPI_MCR2_ABRRADDR		BIT(1)
98 #define FSPI_MCR2_ABR_CMD		BIT(0)
99 
100 #define FSPI_AHBCR			0x0c
101 #define FSPI_AHBCR_RDADDROPT		BIT(6)
102 #define FSPI_AHBCR_PREF_EN		BIT(5)
103 #define FSPI_AHBCR_BUFF_EN		BIT(4)
104 #define FSPI_AHBCR_CACH_EN		BIT(3)
105 #define FSPI_AHBCR_CLRTXBUF		BIT(2)
106 #define FSPI_AHBCR_CLRRXBUF		BIT(1)
107 #define FSPI_AHBCR_PAR_EN		BIT(0)
108 
109 #define FSPI_INTEN			0x10
110 #define FSPI_INTEN_SCLKSBWR		BIT(9)
111 #define FSPI_INTEN_SCLKSBRD		BIT(8)
112 #define FSPI_INTEN_DATALRNFL		BIT(7)
113 #define FSPI_INTEN_IPTXWE		BIT(6)
114 #define FSPI_INTEN_IPRXWA		BIT(5)
115 #define FSPI_INTEN_AHBCMDERR		BIT(4)
116 #define FSPI_INTEN_IPCMDERR		BIT(3)
117 #define FSPI_INTEN_AHBCMDGE		BIT(2)
118 #define FSPI_INTEN_IPCMDGE		BIT(1)
119 #define FSPI_INTEN_IPCMDDONE		BIT(0)
120 
121 #define FSPI_INTR			0x14
122 #define FSPI_INTR_SCLKSBWR		BIT(9)
123 #define FSPI_INTR_SCLKSBRD		BIT(8)
124 #define FSPI_INTR_DATALRNFL		BIT(7)
125 #define FSPI_INTR_IPTXWE		BIT(6)
126 #define FSPI_INTR_IPRXWA		BIT(5)
127 #define FSPI_INTR_AHBCMDERR		BIT(4)
128 #define FSPI_INTR_IPCMDERR		BIT(3)
129 #define FSPI_INTR_AHBCMDGE		BIT(2)
130 #define FSPI_INTR_IPCMDGE		BIT(1)
131 #define FSPI_INTR_IPCMDDONE		BIT(0)
132 
133 #define FSPI_LUTKEY			0x18
134 #define FSPI_LUTKEY_VALUE		0x5AF05AF0
135 
136 #define FSPI_LCKCR			0x1C
137 
138 #define FSPI_LCKER_LOCK			0x1
139 #define FSPI_LCKER_UNLOCK		0x2
140 
141 #define FSPI_BUFXCR_INVALID_MSTRID	0xE
142 #define FSPI_AHBRX_BUF0CR0		0x20
143 #define FSPI_AHBRX_BUF1CR0		0x24
144 #define FSPI_AHBRX_BUF2CR0		0x28
145 #define FSPI_AHBRX_BUF3CR0		0x2C
146 #define FSPI_AHBRX_BUF4CR0		0x30
147 #define FSPI_AHBRX_BUF5CR0		0x34
148 #define FSPI_AHBRX_BUF6CR0		0x38
149 #define FSPI_AHBRX_BUF7CR0		0x3C
150 #define FSPI_AHBRXBUF0CR7_PREF		BIT(31)
151 
152 #define FSPI_AHBRX_BUF0CR1		0x40
153 #define FSPI_AHBRX_BUF1CR1		0x44
154 #define FSPI_AHBRX_BUF2CR1		0x48
155 #define FSPI_AHBRX_BUF3CR1		0x4C
156 #define FSPI_AHBRX_BUF4CR1		0x50
157 #define FSPI_AHBRX_BUF5CR1		0x54
158 #define FSPI_AHBRX_BUF6CR1		0x58
159 #define FSPI_AHBRX_BUF7CR1		0x5C
160 
161 #define FSPI_FLSHA1CR0			0x60
162 #define FSPI_FLSHA2CR0			0x64
163 #define FSPI_FLSHB1CR0			0x68
164 #define FSPI_FLSHB2CR0			0x6C
165 #define FSPI_FLSHXCR0_SZ_KB		10
166 #define FSPI_FLSHXCR0_SZ(x)		((x) >> FSPI_FLSHXCR0_SZ_KB)
167 
168 #define FSPI_FLSHA1CR1			0x70
169 #define FSPI_FLSHA2CR1			0x74
170 #define FSPI_FLSHB1CR1			0x78
171 #define FSPI_FLSHB2CR1			0x7C
172 #define FSPI_FLSHXCR1_CSINTR(x)		((x) << 16)
173 #define FSPI_FLSHXCR1_CAS(x)		((x) << 11)
174 #define FSPI_FLSHXCR1_WA		BIT(10)
175 #define FSPI_FLSHXCR1_TCSH(x)		((x) << 5)
176 #define FSPI_FLSHXCR1_TCSS(x)		(x)
177 
178 #define FSPI_FLSHA1CR2			0x80
179 #define FSPI_FLSHA2CR2			0x84
180 #define FSPI_FLSHB1CR2			0x88
181 #define FSPI_FLSHB2CR2			0x8C
182 #define FSPI_FLSHXCR2_CLRINSP		BIT(24)
183 #define FSPI_FLSHXCR2_AWRWAIT		BIT(16)
184 #define FSPI_FLSHXCR2_AWRSEQN_SHIFT	13
185 #define FSPI_FLSHXCR2_AWRSEQI_SHIFT	8
186 #define FSPI_FLSHXCR2_ARDSEQN_SHIFT	5
187 #define FSPI_FLSHXCR2_ARDSEQI_SHIFT	0
188 
189 #define FSPI_IPCR0			0xA0
190 
191 #define FSPI_IPCR1			0xA4
192 #define FSPI_IPCR1_IPAREN		BIT(31)
193 #define FSPI_IPCR1_SEQNUM_SHIFT		24
194 #define FSPI_IPCR1_SEQID_SHIFT		16
195 #define FSPI_IPCR1_IDATSZ(x)		(x)
196 
197 #define FSPI_IPCMD			0xB0
198 #define FSPI_IPCMD_TRG			BIT(0)
199 
200 #define FSPI_DLPR			0xB4
201 
202 #define FSPI_IPRXFCR			0xB8
203 #define FSPI_IPRXFCR_CLR		BIT(0)
204 #define FSPI_IPRXFCR_DMA_EN		BIT(1)
205 #define FSPI_IPRXFCR_WMRK(x)		((x) << 2)
206 
207 #define FSPI_IPTXFCR			0xBC
208 #define FSPI_IPTXFCR_CLR		BIT(0)
209 #define FSPI_IPTXFCR_DMA_EN		BIT(1)
210 #define FSPI_IPTXFCR_WMRK(x)		((x) << 2)
211 
212 #define FSPI_DLLACR			0xC0
213 #define FSPI_DLLACR_OVRDEN		BIT(8)
214 #define FSPI_DLLACR_SLVDLY(x)		((x) << 3)
215 #define FSPI_DLLACR_DLLRESET		BIT(1)
216 #define FSPI_DLLACR_DLLEN		BIT(0)
217 
218 #define FSPI_DLLBCR			0xC4
219 #define FSPI_DLLBCR_OVRDEN		BIT(8)
220 #define FSPI_DLLBCR_SLVDLY(x)		((x) << 3)
221 #define FSPI_DLLBCR_DLLRESET		BIT(1)
222 #define FSPI_DLLBCR_DLLEN		BIT(0)
223 
224 #define FSPI_STS0			0xE0
225 #define FSPI_STS0_DLPHB(x)		((x) << 8)
226 #define FSPI_STS0_DLPHA(x)		((x) << 4)
227 #define FSPI_STS0_CMD_SRC(x)		((x) << 2)
228 #define FSPI_STS0_ARB_IDLE		BIT(1)
229 #define FSPI_STS0_SEQ_IDLE		BIT(0)
230 
231 #define FSPI_STS1			0xE4
232 #define FSPI_STS1_IP_ERRCD(x)		((x) << 24)
233 #define FSPI_STS1_IP_ERRID(x)		((x) << 16)
234 #define FSPI_STS1_AHB_ERRCD(x)		((x) << 8)
235 #define FSPI_STS1_AHB_ERRID(x)		(x)
236 
237 #define FSPI_STS2			0xE8
238 #define FSPI_STS2_BREFLOCK		BIT(17)
239 #define FSPI_STS2_BSLVLOCK		BIT(16)
240 #define FSPI_STS2_AREFLOCK		BIT(1)
241 #define FSPI_STS2_ASLVLOCK		BIT(0)
242 #define FSPI_STS2_AB_LOCK		(FSPI_STS2_BREFLOCK | \
243 					 FSPI_STS2_BSLVLOCK | \
244 					 FSPI_STS2_AREFLOCK | \
245 					 FSPI_STS2_ASLVLOCK)
246 
247 #define FSPI_AHBSPNST			0xEC
248 #define FSPI_AHBSPNST_DATLFT(x)		((x) << 16)
249 #define FSPI_AHBSPNST_BUFID(x)		((x) << 1)
250 #define FSPI_AHBSPNST_ACTIVE		BIT(0)
251 
252 #define FSPI_IPRXFSTS			0xF0
253 #define FSPI_IPRXFSTS_RDCNTR(x)		((x) << 16)
254 #define FSPI_IPRXFSTS_FILL(x)		(x)
255 
256 #define FSPI_IPTXFSTS			0xF4
257 #define FSPI_IPTXFSTS_WRCNTR(x)		((x) << 16)
258 #define FSPI_IPTXFSTS_FILL(x)		(x)
259 
260 #define FSPI_RFDR			0x100
261 #define FSPI_TFDR			0x180
262 
263 #define FSPI_LUT_BASE			0x200
264 
265 /* register map end */
266 
267 /* Instruction set for the LUT register. */
268 #define LUT_STOP			0x00
269 #define LUT_CMD				0x01
270 #define LUT_ADDR			0x02
271 #define LUT_CADDR_SDR			0x03
272 #define LUT_MODE			0x04
273 #define LUT_MODE2			0x05
274 #define LUT_MODE4			0x06
275 #define LUT_MODE8			0x07
276 #define LUT_NXP_WRITE			0x08
277 #define LUT_NXP_READ			0x09
278 #define LUT_LEARN_SDR			0x0A
279 #define LUT_DATSZ_SDR			0x0B
280 #define LUT_DUMMY			0x0C
281 #define LUT_DUMMY_RWDS_SDR		0x0D
282 #define LUT_JMP_ON_CS			0x1F
283 #define LUT_CMD_DDR			0x21
284 #define LUT_ADDR_DDR			0x22
285 #define LUT_CADDR_DDR			0x23
286 #define LUT_MODE_DDR			0x24
287 #define LUT_MODE2_DDR			0x25
288 #define LUT_MODE4_DDR			0x26
289 #define LUT_MODE8_DDR			0x27
290 #define LUT_WRITE_DDR			0x28
291 #define LUT_READ_DDR			0x29
292 #define LUT_LEARN_DDR			0x2A
293 #define LUT_DATSZ_DDR			0x2B
294 #define LUT_DUMMY_DDR			0x2C
295 #define LUT_DUMMY_RWDS_DDR		0x2D
296 
297 /*
298  * Calculate number of required PAD bits for LUT register.
299  *
300  * The pad stands for the number of IO lines [0:7].
301  * For example, the octal read needs eight IO lines,
302  * so you should use LUT_PAD(8). This macro
303  * returns 3 i.e. use eight (2^3) IP lines for read.
304  */
305 #define LUT_PAD(x) (fls(x) - 1)
306 
307 /*
308  * Macro for constructing the LUT entries with the following
309  * register layout:
310  *
311  *  ---------------------------------------------------
312  *  | INSTR1 | PAD1 | OPRND1 | INSTR0 | PAD0 | OPRND0 |
313  *  ---------------------------------------------------
314  */
315 #define PAD_SHIFT		8
316 #define INSTR_SHIFT		10
317 #define OPRND_SHIFT		16
318 
319 /* Macros for constructing the LUT register. */
320 #define LUT_DEF(idx, ins, pad, opr)			  \
321 	((((ins) << INSTR_SHIFT) | ((pad) << PAD_SHIFT) | \
322 	(opr)) << (((idx) % 2) * OPRND_SHIFT))
323 
324 #define POLL_TOUT		5000
325 #define NXP_FSPI_MAX_CHIPSELECT		4
326 #define NXP_FSPI_MIN_IOMAP	SZ_4M
327 
328 #define DCFG_RCWSR1		0x100
329 #define SYS_PLL_RAT		GENMASK(6, 2)
330 
331 /* Access flash memory using IP bus only */
332 #define FSPI_QUIRK_USE_IP_ONLY	BIT(0)
333 /* Disable DTR */
334 #define FSPI_QUIRK_DISABLE_DTR	BIT(1)
335 
336 struct nxp_fspi_devtype_data {
337 	unsigned int rxfifo;
338 	unsigned int txfifo;
339 	unsigned int ahb_buf_size;
340 	unsigned int quirks;
341 	unsigned int lut_num;
342 	bool little_endian;
343 };
344 
345 static struct nxp_fspi_devtype_data lx2160a_data = {
346 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
347 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
348 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
349 	.quirks = FSPI_QUIRK_DISABLE_DTR,
350 	.lut_num = 32,
351 	.little_endian = true,  /* little-endian    */
352 };
353 
354 static struct nxp_fspi_devtype_data imx8mm_data = {
355 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
356 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
357 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
358 	.quirks = 0,
359 	.lut_num = 32,
360 	.little_endian = true,  /* little-endian    */
361 };
362 
363 static struct nxp_fspi_devtype_data imx8qxp_data = {
364 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
365 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
366 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
367 	.quirks = 0,
368 	.lut_num = 32,
369 	.little_endian = true,  /* little-endian    */
370 };
371 
372 static struct nxp_fspi_devtype_data imx8dxl_data = {
373 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
374 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
375 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
376 	.quirks = FSPI_QUIRK_USE_IP_ONLY,
377 	.lut_num = 32,
378 	.little_endian = true,  /* little-endian    */
379 };
380 
381 static struct nxp_fspi_devtype_data imx8ulp_data = {
382 	.rxfifo = SZ_512,       /* (64  * 64 bits)  */
383 	.txfifo = SZ_1K,        /* (128 * 64 bits)  */
384 	.ahb_buf_size = SZ_2K,  /* (256 * 64 bits)  */
385 	.quirks = 0,
386 	.lut_num = 16,
387 	.little_endian = true,  /* little-endian    */
388 };
389 
390 struct nxp_fspi {
391 	void __iomem *iobase;
392 	void __iomem *ahb_addr;
393 	u32 memmap_phy;
394 	u32 memmap_phy_size;
395 	u32 memmap_start;
396 	u32 memmap_len;
397 	struct clk *clk, *clk_en;
398 	struct device *dev;
399 	struct completion c;
400 	struct nxp_fspi_devtype_data *devtype_data;
401 	struct mutex lock;
402 	struct pm_qos_request pm_qos_req;
403 	int selected;
404 #define FSPI_NEED_INIT		BIT(0)
405 #define FSPI_DTR_MODE		BIT(1)
406 	int flags;
407 };
408 
409 static inline int needs_ip_only(struct nxp_fspi *f)
410 {
411 	return f->devtype_data->quirks & FSPI_QUIRK_USE_IP_ONLY;
412 }
413 
414 /*
415  * R/W functions for big- or little-endian registers:
416  * The FSPI controller's endianness is independent of
417  * the CPU core's endianness. So far, although the CPU
418  * core is little-endian the FSPI controller can use
419  * big-endian or little-endian.
420  */
421 static void fspi_writel(struct nxp_fspi *f, u32 val, void __iomem *addr)
422 {
423 	if (f->devtype_data->little_endian)
424 		iowrite32(val, addr);
425 	else
426 		iowrite32be(val, addr);
427 }
428 
429 static u32 fspi_readl(struct nxp_fspi *f, void __iomem *addr)
430 {
431 	if (f->devtype_data->little_endian)
432 		return ioread32(addr);
433 	else
434 		return ioread32be(addr);
435 }
436 
437 static irqreturn_t nxp_fspi_irq_handler(int irq, void *dev_id)
438 {
439 	struct nxp_fspi *f = dev_id;
440 	u32 reg;
441 
442 	/* clear interrupt */
443 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
444 	fspi_writel(f, FSPI_INTR_IPCMDDONE, f->iobase + FSPI_INTR);
445 
446 	if (reg & FSPI_INTR_IPCMDDONE)
447 		complete(&f->c);
448 
449 	return IRQ_HANDLED;
450 }
451 
452 static int nxp_fspi_check_buswidth(struct nxp_fspi *f, u8 width)
453 {
454 	switch (width) {
455 	case 1:
456 	case 2:
457 	case 4:
458 	case 8:
459 		return 0;
460 	}
461 
462 	return -ENOTSUPP;
463 }
464 
465 static bool nxp_fspi_supports_op(struct spi_mem *mem,
466 				 const struct spi_mem_op *op)
467 {
468 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
469 	int ret;
470 
471 	ret = nxp_fspi_check_buswidth(f, op->cmd.buswidth);
472 
473 	if (op->addr.nbytes)
474 		ret |= nxp_fspi_check_buswidth(f, op->addr.buswidth);
475 
476 	if (op->dummy.nbytes)
477 		ret |= nxp_fspi_check_buswidth(f, op->dummy.buswidth);
478 
479 	if (op->data.nbytes)
480 		ret |= nxp_fspi_check_buswidth(f, op->data.buswidth);
481 
482 	if (ret)
483 		return false;
484 
485 	/*
486 	 * The number of address bytes should be equal to or less than 4 bytes.
487 	 */
488 	if (op->addr.nbytes > 4)
489 		return false;
490 
491 	/*
492 	 * If requested address value is greater than controller assigned
493 	 * memory mapped space, return error as it didn't fit in the range
494 	 * of assigned address space.
495 	 */
496 	if (op->addr.val >= f->memmap_phy_size)
497 		return false;
498 
499 	/* Max 64 dummy clock cycles supported */
500 	if (op->dummy.buswidth &&
501 	    (op->dummy.nbytes * 8 / op->dummy.buswidth > 64))
502 		return false;
503 
504 	/* Max data length, check controller limits and alignment */
505 	if (op->data.dir == SPI_MEM_DATA_IN &&
506 	    (op->data.nbytes > f->devtype_data->ahb_buf_size ||
507 	     (op->data.nbytes > f->devtype_data->rxfifo - 4 &&
508 	      !IS_ALIGNED(op->data.nbytes, 8))))
509 		return false;
510 
511 	if (op->data.dir == SPI_MEM_DATA_OUT &&
512 	    op->data.nbytes > f->devtype_data->txfifo)
513 		return false;
514 
515 	return spi_mem_default_supports_op(mem, op);
516 }
517 
518 /* Instead of busy looping invoke readl_poll_timeout functionality. */
519 static int fspi_readl_poll_tout(struct nxp_fspi *f, void __iomem *base,
520 				u32 mask, u32 delay_us,
521 				u32 timeout_us, bool c)
522 {
523 	u32 reg;
524 
525 	if (!f->devtype_data->little_endian)
526 		mask = (u32)cpu_to_be32(mask);
527 
528 	if (c)
529 		return readl_poll_timeout(base, reg, (reg & mask),
530 					  delay_us, timeout_us);
531 	else
532 		return readl_poll_timeout(base, reg, !(reg & mask),
533 					  delay_us, timeout_us);
534 }
535 
536 /*
537  * If the target device content being changed by Write/Erase, need to
538  * invalidate the AHB buffer. This can be achieved by doing the reset
539  * of controller after setting MCR0[SWRESET] bit.
540  */
541 static inline void nxp_fspi_invalid(struct nxp_fspi *f)
542 {
543 	u32 reg;
544 	int ret;
545 
546 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
547 	fspi_writel(f, reg | FSPI_MCR0_SWRST, f->iobase + FSPI_MCR0);
548 
549 	/* w1c register, wait unit clear */
550 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
551 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
552 	WARN_ON(ret);
553 }
554 
555 static void nxp_fspi_prepare_lut(struct nxp_fspi *f,
556 				 const struct spi_mem_op *op)
557 {
558 	void __iomem *base = f->iobase;
559 	u32 lutval[4] = {};
560 	int lutidx = 1, i;
561 	u32 lut_offset = (f->devtype_data->lut_num - 1) * 4 * 4;
562 	u32 target_lut_reg;
563 
564 	/* cmd */
565 	if (op->cmd.dtr) {
566 		lutval[0] |= LUT_DEF(0, LUT_CMD_DDR, LUT_PAD(op->cmd.buswidth),
567 				     op->cmd.opcode >> 8);
568 		lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_CMD_DDR,
569 					      LUT_PAD(op->cmd.buswidth),
570 					      op->cmd.opcode & 0xFF);
571 		lutidx++;
572 	} else {
573 		lutval[0] |= LUT_DEF(0, LUT_CMD, LUT_PAD(op->cmd.buswidth),
574 				     op->cmd.opcode);
575 	}
576 
577 	/* addr bytes */
578 	if (op->addr.nbytes) {
579 		lutval[lutidx / 2] |= LUT_DEF(lutidx, op->addr.dtr ? LUT_ADDR_DDR : LUT_ADDR,
580 					      LUT_PAD(op->addr.buswidth),
581 					      op->addr.nbytes * 8);
582 		lutidx++;
583 	}
584 
585 	/* dummy bytes, if needed */
586 	if (op->dummy.nbytes) {
587 		lutval[lutidx / 2] |= LUT_DEF(lutidx, op->dummy.dtr ? LUT_DUMMY_DDR : LUT_DUMMY,
588 		/*
589 		 * Due to FlexSPI controller limitation number of PAD for dummy
590 		 * buswidth needs to be programmed as equal to data buswidth.
591 		 */
592 					      LUT_PAD(op->data.buswidth),
593 					      op->dummy.nbytes * 8 /
594 					      op->dummy.buswidth);
595 		lutidx++;
596 	}
597 
598 	/* read/write data bytes */
599 	if (op->data.nbytes) {
600 		lutval[lutidx / 2] |= LUT_DEF(lutidx,
601 					      op->data.dir == SPI_MEM_DATA_IN ?
602 					      (op->data.dtr ? LUT_READ_DDR : LUT_NXP_READ) :
603 					      (op->data.dtr ? LUT_WRITE_DDR : LUT_NXP_WRITE),
604 					      LUT_PAD(op->data.buswidth),
605 					      0);
606 		lutidx++;
607 	}
608 
609 	/* stop condition. */
610 	lutval[lutidx / 2] |= LUT_DEF(lutidx, LUT_STOP, 0, 0);
611 
612 	/* unlock LUT */
613 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
614 	fspi_writel(f, FSPI_LCKER_UNLOCK, f->iobase + FSPI_LCKCR);
615 
616 	/* fill LUT */
617 	for (i = 0; i < ARRAY_SIZE(lutval); i++) {
618 		target_lut_reg = FSPI_LUT_BASE + lut_offset + i * 4;
619 		fspi_writel(f, lutval[i], base + target_lut_reg);
620 	}
621 
622 	dev_dbg(f->dev, "CMD[%02x] lutval[0:%08x 1:%08x 2:%08x 3:%08x], size: 0x%08x\n",
623 		op->cmd.opcode, lutval[0], lutval[1], lutval[2], lutval[3], op->data.nbytes);
624 
625 	/* lock LUT */
626 	fspi_writel(f, FSPI_LUTKEY_VALUE, f->iobase + FSPI_LUTKEY);
627 	fspi_writel(f, FSPI_LCKER_LOCK, f->iobase + FSPI_LCKCR);
628 }
629 
630 static int nxp_fspi_clk_prep_enable(struct nxp_fspi *f)
631 {
632 	int ret;
633 
634 	if (is_acpi_node(dev_fwnode(f->dev)))
635 		return 0;
636 
637 	ret = clk_prepare_enable(f->clk_en);
638 	if (ret)
639 		return ret;
640 
641 	ret = clk_prepare_enable(f->clk);
642 	if (ret) {
643 		clk_disable_unprepare(f->clk_en);
644 		return ret;
645 	}
646 
647 	return 0;
648 }
649 
650 static void nxp_fspi_clk_disable_unprep(struct nxp_fspi *f)
651 {
652 	if (is_acpi_node(dev_fwnode(f->dev)))
653 		return;
654 
655 	clk_disable_unprepare(f->clk);
656 	clk_disable_unprepare(f->clk_en);
657 
658 	return;
659 }
660 
661 /*
662  * Sample Clock source selection for Flash Reading
663  * Four modes defined by fspi:
664  * mode 0: Dummy Read strobe generated by FlexSPI Controller
665  *         and loopback internally
666  * mode 1: Dummy Read strobe generated by FlexSPI Controller
667  *         and loopback from DQS pad
668  * mode 2: Reserved
669  * mode 3: Flash provided Read strobe and input from DQS pad
670  *
671  * fspi default use mode 0 after reset
672  */
673 static void nxp_fspi_select_rx_sample_clk_source(struct nxp_fspi *f,
674 						 bool op_is_dtr)
675 {
676 	u32 reg;
677 
678 	/*
679 	 * For 8D-8D-8D mode, need to use mode 3 (Flash provided Read
680 	 * strobe and input from DQS pad), otherwise read operaton may
681 	 * meet issue.
682 	 * This mode require flash device connect the DQS pad on board.
683 	 * For other modes, still use mode 0, keep align with before.
684 	 * spi_nor_suspend will disable 8D-8D-8D mode, also need to
685 	 * change the mode back to mode 0.
686 	 */
687 	reg = fspi_readl(f, f->iobase + FSPI_MCR0);
688 	if (op_is_dtr)
689 		reg |= FSPI_MCR0_RXCLKSRC(3);
690 	else	/*select mode 0 */
691 		reg &= ~FSPI_MCR0_RXCLKSRC(3);
692 	fspi_writel(f, reg, f->iobase + FSPI_MCR0);
693 }
694 
695 static void nxp_fspi_dll_calibration(struct nxp_fspi *f)
696 {
697 	int ret;
698 
699 	/* Reset the DLL, set the DLLRESET to 1 and then set to 0 */
700 	fspi_writel(f, FSPI_DLLACR_DLLRESET, f->iobase + FSPI_DLLACR);
701 	fspi_writel(f, FSPI_DLLBCR_DLLRESET, f->iobase + FSPI_DLLBCR);
702 	fspi_writel(f, 0, f->iobase + FSPI_DLLACR);
703 	fspi_writel(f, 0, f->iobase + FSPI_DLLBCR);
704 
705 	/*
706 	 * Enable the DLL calibration mode.
707 	 * The delay target for slave delay line is:
708 	 *   ((SLVDLYTARGET+1) * 1/32 * clock cycle of reference clock.
709 	 * When clock rate > 100MHz, recommend SLVDLYTARGET is 0xF, which
710 	 * means half of clock cycle of reference clock.
711 	 */
712 	fspi_writel(f, FSPI_DLLACR_DLLEN | FSPI_DLLACR_SLVDLY(0xF),
713 		    f->iobase + FSPI_DLLACR);
714 	fspi_writel(f, FSPI_DLLBCR_DLLEN | FSPI_DLLBCR_SLVDLY(0xF),
715 		    f->iobase + FSPI_DLLBCR);
716 
717 	/* Wait to get REF/SLV lock */
718 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_STS2, FSPI_STS2_AB_LOCK,
719 				   0, POLL_TOUT, true);
720 	if (ret)
721 		dev_warn(f->dev, "DLL lock failed, please fix it!\n");
722 }
723 
724 /*
725  * Config the DLL register to default value, enable the target clock delay
726  * line delay cell override mode, and use 1 fixed delay cell in DLL delay
727  * chain, this is the suggested setting when clock rate < 100MHz.
728  */
729 static void nxp_fspi_dll_override(struct nxp_fspi *f)
730 {
731 	fspi_writel(f, FSPI_DLLACR_OVRDEN, f->iobase + FSPI_DLLACR);
732 	fspi_writel(f, FSPI_DLLBCR_OVRDEN, f->iobase + FSPI_DLLBCR);
733 }
734 
735 /*
736  * In FlexSPI controller, flash access is based on value of FSPI_FLSHXXCR0
737  * register and start base address of the target device.
738  *
739  *							    (Higher address)
740  *				--------    <-- FLSHB2CR0
741  *				|  B2  |
742  *				|      |
743  *	B2 start address -->	--------    <-- FLSHB1CR0
744  *				|  B1  |
745  *				|      |
746  *	B1 start address -->	--------    <-- FLSHA2CR0
747  *				|  A2  |
748  *				|      |
749  *	A2 start address -->	--------    <-- FLSHA1CR0
750  *				|  A1  |
751  *				|      |
752  *	A1 start address -->	--------		    (Lower address)
753  *
754  *
755  * Start base address defines the starting address range for given CS and
756  * FSPI_FLSHXXCR0 defines the size of the target device connected at given CS.
757  *
758  * But, different targets are having different combinations of number of CS,
759  * some targets only have single CS or two CS covering controller's full
760  * memory mapped space area.
761  * Thus, implementation is being done as independent of the size and number
762  * of the connected target device.
763  * Assign controller memory mapped space size as the size to the connected
764  * target device.
765  * Mark FLSHxxCR0 as zero initially and then assign value only to the selected
766  * chip-select Flash configuration register.
767  *
768  * For e.g. to access CS2 (B1), FLSHB1CR0 register would be equal to the
769  * memory mapped size of the controller.
770  * Value for rest of the CS FLSHxxCR0 register would be zero.
771  *
772  */
773 static void nxp_fspi_select_mem(struct nxp_fspi *f, struct spi_device *spi,
774 				const struct spi_mem_op *op)
775 {
776 	/* flexspi only support one DTR mode: 8D-8D-8D */
777 	bool op_is_dtr = op->cmd.dtr && op->addr.dtr && op->dummy.dtr && op->data.dtr;
778 	unsigned long rate = op->max_freq;
779 	int ret;
780 	uint64_t size_kb;
781 
782 	/*
783 	 * Return, if previously selected target device is same as current
784 	 * requested target device. Also the DTR or STR mode do not change.
785 	 */
786 	if ((f->selected == spi_get_chipselect(spi, 0)) &&
787 	    (!!(f->flags & FSPI_DTR_MODE) == op_is_dtr))
788 		return;
789 
790 	/* Reset FLSHxxCR0 registers */
791 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA1CR0);
792 	fspi_writel(f, 0, f->iobase + FSPI_FLSHA2CR0);
793 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB1CR0);
794 	fspi_writel(f, 0, f->iobase + FSPI_FLSHB2CR0);
795 
796 	/* Assign controller memory mapped space as size, KBytes, of flash. */
797 	size_kb = FSPI_FLSHXCR0_SZ(f->memmap_phy_size);
798 
799 	fspi_writel(f, size_kb, f->iobase + FSPI_FLSHA1CR0 +
800 		    4 * spi_get_chipselect(spi, 0));
801 
802 	dev_dbg(f->dev, "Target device [CS:%x] selected\n", spi_get_chipselect(spi, 0));
803 
804 	nxp_fspi_select_rx_sample_clk_source(f, op_is_dtr);
805 
806 	if (op_is_dtr) {
807 		f->flags |= FSPI_DTR_MODE;
808 		/* For DTR mode, flexspi will default div 2 and output to device.
809 		 * so here to config the root clock to 2 * device rate.
810 		 */
811 		rate = rate * 2;
812 	} else {
813 		f->flags &= ~FSPI_DTR_MODE;
814 	}
815 
816 	nxp_fspi_clk_disable_unprep(f);
817 
818 	ret = clk_set_rate(f->clk, rate);
819 	if (ret)
820 		return;
821 
822 	ret = nxp_fspi_clk_prep_enable(f);
823 	if (ret)
824 		return;
825 
826 	/*
827 	 * If clock rate > 100MHz, then switch from DLL override mode to
828 	 * DLL calibration mode.
829 	 */
830 	if (rate > 100000000)
831 		nxp_fspi_dll_calibration(f);
832 	else
833 		nxp_fspi_dll_override(f);
834 
835 	f->selected = spi_get_chipselect(spi, 0);
836 }
837 
838 static int nxp_fspi_read_ahb(struct nxp_fspi *f, const struct spi_mem_op *op)
839 {
840 	u32 start = op->addr.val;
841 	u32 len = op->data.nbytes;
842 
843 	/* if necessary, ioremap before AHB read */
844 	if ((!f->ahb_addr) || start < f->memmap_start ||
845 	     start + len > f->memmap_start + f->memmap_len) {
846 		if (f->ahb_addr)
847 			iounmap(f->ahb_addr);
848 
849 		f->memmap_start = start;
850 		f->memmap_len = max_t(u32, len, NXP_FSPI_MIN_IOMAP);
851 
852 		f->ahb_addr = ioremap(f->memmap_phy + f->memmap_start,
853 					 f->memmap_len);
854 
855 		if (!f->ahb_addr) {
856 			dev_err(f->dev, "failed to alloc memory\n");
857 			return -ENOMEM;
858 		}
859 	}
860 
861 	/* Read out the data directly from the AHB buffer. */
862 	memcpy_fromio(op->data.buf.in,
863 		      f->ahb_addr + start - f->memmap_start, len);
864 
865 	return 0;
866 }
867 
868 static void nxp_fspi_fill_txfifo(struct nxp_fspi *f,
869 				 const struct spi_mem_op *op)
870 {
871 	void __iomem *base = f->iobase;
872 	int i, ret;
873 	u8 *buf = (u8 *) op->data.buf.out;
874 
875 	/* clear the TX FIFO. */
876 	fspi_writel(f, FSPI_IPTXFCR_CLR, base + FSPI_IPTXFCR);
877 
878 	/*
879 	 * Default value of water mark level is 8 bytes, hence in single
880 	 * write request controller can write max 8 bytes of data.
881 	 */
882 
883 	for (i = 0; i < ALIGN_DOWN(op->data.nbytes, 8); i += 8) {
884 		/* Wait for TXFIFO empty */
885 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
886 					   FSPI_INTR_IPTXWE, 0,
887 					   POLL_TOUT, true);
888 		WARN_ON(ret);
889 
890 		fspi_writel(f, *(u32 *) (buf + i), base + FSPI_TFDR);
891 		fspi_writel(f, *(u32 *) (buf + i + 4), base + FSPI_TFDR + 4);
892 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
893 	}
894 
895 	if (i < op->data.nbytes) {
896 		u32 data = 0;
897 		int j;
898 		int remaining = op->data.nbytes - i;
899 		/* Wait for TXFIFO empty */
900 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
901 					   FSPI_INTR_IPTXWE, 0,
902 					   POLL_TOUT, true);
903 		WARN_ON(ret);
904 
905 		for (j = 0; j < ALIGN(remaining, 4); j += 4) {
906 			memcpy(&data, buf + i + j, min_t(int, 4, remaining - j));
907 			fspi_writel(f, data, base + FSPI_TFDR + j);
908 		}
909 		fspi_writel(f, FSPI_INTR_IPTXWE, base + FSPI_INTR);
910 	}
911 }
912 
913 static void nxp_fspi_read_rxfifo(struct nxp_fspi *f,
914 			  const struct spi_mem_op *op)
915 {
916 	void __iomem *base = f->iobase;
917 	int i, ret;
918 	int len = op->data.nbytes;
919 	u8 *buf = (u8 *) op->data.buf.in;
920 
921 	/*
922 	 * Default value of water mark level is 8 bytes, hence in single
923 	 * read request controller can read max 8 bytes of data.
924 	 */
925 	for (i = 0; i < ALIGN_DOWN(len, 8); i += 8) {
926 		/* Wait for RXFIFO available */
927 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
928 					   FSPI_INTR_IPRXWA, 0,
929 					   POLL_TOUT, true);
930 		WARN_ON(ret);
931 
932 		*(u32 *)(buf + i) = fspi_readl(f, base + FSPI_RFDR);
933 		*(u32 *)(buf + i + 4) = fspi_readl(f, base + FSPI_RFDR + 4);
934 		/* move the FIFO pointer */
935 		fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
936 	}
937 
938 	if (i < len) {
939 		u32 tmp;
940 		int size, j;
941 
942 		buf = op->data.buf.in + i;
943 		/* Wait for RXFIFO available */
944 		ret = fspi_readl_poll_tout(f, f->iobase + FSPI_INTR,
945 					   FSPI_INTR_IPRXWA, 0,
946 					   POLL_TOUT, true);
947 		WARN_ON(ret);
948 
949 		len = op->data.nbytes - i;
950 		for (j = 0; j < op->data.nbytes - i; j += 4) {
951 			tmp = fspi_readl(f, base + FSPI_RFDR + j);
952 			size = min(len, 4);
953 			memcpy(buf + j, &tmp, size);
954 			len -= size;
955 		}
956 	}
957 
958 	/* invalid the RXFIFO */
959 	fspi_writel(f, FSPI_IPRXFCR_CLR, base + FSPI_IPRXFCR);
960 	/* move the FIFO pointer */
961 	fspi_writel(f, FSPI_INTR_IPRXWA, base + FSPI_INTR);
962 }
963 
964 static int nxp_fspi_do_op(struct nxp_fspi *f, const struct spi_mem_op *op)
965 {
966 	void __iomem *base = f->iobase;
967 	int seqnum = 0;
968 	int err = 0;
969 	u32 reg, seqid_lut;
970 
971 	reg = fspi_readl(f, base + FSPI_IPRXFCR);
972 	/* invalid RXFIFO first */
973 	reg &= ~FSPI_IPRXFCR_DMA_EN;
974 	reg = reg | FSPI_IPRXFCR_CLR;
975 	fspi_writel(f, reg, base + FSPI_IPRXFCR);
976 
977 	init_completion(&f->c);
978 
979 	fspi_writel(f, op->addr.val, base + FSPI_IPCR0);
980 	/*
981 	 * Always start the sequence at the same index since we update
982 	 * the LUT at each exec_op() call. And also specify the DATA
983 	 * length, since it's has not been specified in the LUT.
984 	 */
985 	seqid_lut = f->devtype_data->lut_num - 1;
986 	fspi_writel(f, op->data.nbytes |
987 		 (seqid_lut << FSPI_IPCR1_SEQID_SHIFT) |
988 		 (seqnum << FSPI_IPCR1_SEQNUM_SHIFT),
989 		 base + FSPI_IPCR1);
990 
991 	/* Trigger the LUT now. */
992 	fspi_writel(f, FSPI_IPCMD_TRG, base + FSPI_IPCMD);
993 
994 	/* Wait for the interrupt. */
995 	if (!wait_for_completion_timeout(&f->c, msecs_to_jiffies(1000)))
996 		err = -ETIMEDOUT;
997 
998 	/* Invoke IP data read, if request is of data read. */
999 	if (!err && op->data.nbytes && op->data.dir == SPI_MEM_DATA_IN)
1000 		nxp_fspi_read_rxfifo(f, op);
1001 
1002 	return err;
1003 }
1004 
1005 static int nxp_fspi_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1006 {
1007 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1008 	int err = 0;
1009 
1010 	guard(mutex)(&f->lock);
1011 
1012 	err = pm_runtime_get_sync(f->dev);
1013 	if (err < 0) {
1014 		dev_err(f->dev, "Failed to enable clock %d\n", __LINE__);
1015 		return err;
1016 	}
1017 
1018 	/* Wait for controller being ready. */
1019 	err = fspi_readl_poll_tout(f, f->iobase + FSPI_STS0,
1020 				   FSPI_STS0_ARB_IDLE, 1, POLL_TOUT, true);
1021 	WARN_ON(err);
1022 
1023 	nxp_fspi_select_mem(f, mem->spi, op);
1024 
1025 	nxp_fspi_prepare_lut(f, op);
1026 	/*
1027 	 * If we have large chunks of data, we read them through the AHB bus by
1028 	 * accessing the mapped memory. In all other cases we use IP commands
1029 	 * to access the flash. Read via AHB bus may be corrupted due to
1030 	 * existence of an errata and therefore discard AHB read in such cases.
1031 	 */
1032 	if (op->data.nbytes > (f->devtype_data->rxfifo - 4) &&
1033 	    op->data.dir == SPI_MEM_DATA_IN &&
1034 	    !needs_ip_only(f)) {
1035 		err = nxp_fspi_read_ahb(f, op);
1036 	} else {
1037 		if (op->data.nbytes && op->data.dir == SPI_MEM_DATA_OUT)
1038 			nxp_fspi_fill_txfifo(f, op);
1039 
1040 		err = nxp_fspi_do_op(f, op);
1041 	}
1042 
1043 	/* Invalidate the data in the AHB buffer. */
1044 	nxp_fspi_invalid(f);
1045 
1046 	pm_runtime_put_autosuspend(f->dev);
1047 
1048 	return err;
1049 }
1050 
1051 static int nxp_fspi_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1052 {
1053 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1054 
1055 	if (op->data.dir == SPI_MEM_DATA_OUT) {
1056 		if (op->data.nbytes > f->devtype_data->txfifo)
1057 			op->data.nbytes = f->devtype_data->txfifo;
1058 	} else {
1059 		if (op->data.nbytes > f->devtype_data->ahb_buf_size)
1060 			op->data.nbytes = f->devtype_data->ahb_buf_size;
1061 		else if (op->data.nbytes > (f->devtype_data->rxfifo - 4))
1062 			op->data.nbytes = ALIGN_DOWN(op->data.nbytes, 8);
1063 	}
1064 
1065 	/* Limit data bytes to RX FIFO in case of IP read only */
1066 	if (op->data.dir == SPI_MEM_DATA_IN &&
1067 	    needs_ip_only(f) &&
1068 	    op->data.nbytes > f->devtype_data->rxfifo)
1069 		op->data.nbytes = f->devtype_data->rxfifo;
1070 
1071 	return 0;
1072 }
1073 
1074 static void erratum_err050568(struct nxp_fspi *f)
1075 {
1076 	static const struct soc_device_attribute ls1028a_soc_attr[] = {
1077 		{ .family = "QorIQ LS1028A" },
1078 		{ /* sentinel */ }
1079 	};
1080 	struct regmap *map;
1081 	u32 val, sys_pll_ratio;
1082 	int ret;
1083 
1084 	/* Check for LS1028A family */
1085 	if (!soc_device_match(ls1028a_soc_attr)) {
1086 		dev_dbg(f->dev, "Errata applicable only for LS1028A\n");
1087 		return;
1088 	}
1089 
1090 	map = syscon_regmap_lookup_by_compatible("fsl,ls1028a-dcfg");
1091 	if (IS_ERR(map)) {
1092 		dev_err(f->dev, "No syscon regmap\n");
1093 		goto err;
1094 	}
1095 
1096 	ret = regmap_read(map, DCFG_RCWSR1, &val);
1097 	if (ret < 0)
1098 		goto err;
1099 
1100 	sys_pll_ratio = FIELD_GET(SYS_PLL_RAT, val);
1101 	dev_dbg(f->dev, "val: 0x%08x, sys_pll_ratio: %d\n", val, sys_pll_ratio);
1102 
1103 	/* Use IP bus only if platform clock is 300MHz */
1104 	if (sys_pll_ratio == 3)
1105 		f->devtype_data->quirks |= FSPI_QUIRK_USE_IP_ONLY;
1106 
1107 	return;
1108 
1109 err:
1110 	dev_err(f->dev, "Errata cannot be executed. Read via IP bus may not work\n");
1111 }
1112 
1113 static int nxp_fspi_default_setup(struct nxp_fspi *f)
1114 {
1115 	void __iomem *base = f->iobase;
1116 	int ret, i;
1117 	u32 reg, seqid_lut;
1118 
1119 	/* disable and unprepare clock to avoid glitch pass to controller */
1120 	nxp_fspi_clk_disable_unprep(f);
1121 
1122 	/* the default frequency, we will change it later if necessary. */
1123 	ret = clk_set_rate(f->clk, 20000000);
1124 	if (ret)
1125 		return ret;
1126 
1127 	ret = nxp_fspi_clk_prep_enable(f);
1128 	if (ret)
1129 		return ret;
1130 
1131 	/*
1132 	 * ERR050568: Flash access by FlexSPI AHB command may not work with
1133 	 * platform frequency equal to 300 MHz on LS1028A.
1134 	 * LS1028A reuses LX2160A compatible entry. Make errata applicable for
1135 	 * Layerscape LS1028A platform.
1136 	 */
1137 	if (of_device_is_compatible(f->dev->of_node, "nxp,lx2160a-fspi"))
1138 		erratum_err050568(f);
1139 
1140 	/* Reset the module */
1141 	/* w1c register, wait unit clear */
1142 	ret = fspi_readl_poll_tout(f, f->iobase + FSPI_MCR0,
1143 				   FSPI_MCR0_SWRST, 0, POLL_TOUT, false);
1144 	WARN_ON(ret);
1145 
1146 	/* Disable the module */
1147 	fspi_writel(f, FSPI_MCR0_MDIS, base + FSPI_MCR0);
1148 
1149 	nxp_fspi_dll_override(f);
1150 
1151 	/* enable module */
1152 	fspi_writel(f, FSPI_MCR0_AHB_TIMEOUT(0xFF) |
1153 		    FSPI_MCR0_IP_TIMEOUT(0xFF) | (u32) FSPI_MCR0_OCTCOMB_EN,
1154 		    base + FSPI_MCR0);
1155 
1156 	/*
1157 	 * Disable same device enable bit and configure all target devices
1158 	 * independently.
1159 	 */
1160 	reg = fspi_readl(f, f->iobase + FSPI_MCR2);
1161 	reg = reg & ~(FSPI_MCR2_SAMEDEVICEEN);
1162 	fspi_writel(f, reg, base + FSPI_MCR2);
1163 
1164 	/* AHB configuration for access buffer 0~7. */
1165 	for (i = 0; i < 7; i++)
1166 		fspi_writel(f, 0, base + FSPI_AHBRX_BUF0CR0 + 4 * i);
1167 
1168 	/*
1169 	 * Set ADATSZ with the maximum AHB buffer size to improve the read
1170 	 * performance.
1171 	 */
1172 	fspi_writel(f, (f->devtype_data->ahb_buf_size / 8 |
1173 		  FSPI_AHBRXBUF0CR7_PREF), base + FSPI_AHBRX_BUF7CR0);
1174 
1175 	/* prefetch and no start address alignment limitation */
1176 	fspi_writel(f, FSPI_AHBCR_PREF_EN | FSPI_AHBCR_RDADDROPT,
1177 		 base + FSPI_AHBCR);
1178 
1179 	/* Reset the FLSHxCR1 registers. */
1180 	reg = FSPI_FLSHXCR1_TCSH(0x3) | FSPI_FLSHXCR1_TCSS(0x3);
1181 	fspi_writel(f, reg, base + FSPI_FLSHA1CR1);
1182 	fspi_writel(f, reg, base + FSPI_FLSHA2CR1);
1183 	fspi_writel(f, reg, base + FSPI_FLSHB1CR1);
1184 	fspi_writel(f, reg, base + FSPI_FLSHB2CR1);
1185 
1186 	/*
1187 	 * The driver only uses one single LUT entry, that is updated on
1188 	 * each call of exec_op(). Index 0 is preset at boot with a basic
1189 	 * read operation, so let's use the last entry.
1190 	 */
1191 	seqid_lut = f->devtype_data->lut_num - 1;
1192 	/* AHB Read - Set lut sequence ID for all CS. */
1193 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA1CR2);
1194 	fspi_writel(f, seqid_lut, base + FSPI_FLSHA2CR2);
1195 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB1CR2);
1196 	fspi_writel(f, seqid_lut, base + FSPI_FLSHB2CR2);
1197 
1198 	f->selected = -1;
1199 
1200 	/* enable the interrupt */
1201 	fspi_writel(f, FSPI_INTEN_IPCMDDONE, base + FSPI_INTEN);
1202 
1203 	return 0;
1204 }
1205 
1206 static const char *nxp_fspi_get_name(struct spi_mem *mem)
1207 {
1208 	struct nxp_fspi *f = spi_controller_get_devdata(mem->spi->controller);
1209 	struct device *dev = &mem->spi->dev;
1210 	const char *name;
1211 
1212 	// Set custom name derived from the platform_device of the controller.
1213 	if (of_get_available_child_count(f->dev->of_node) == 1)
1214 		return dev_name(f->dev);
1215 
1216 	name = devm_kasprintf(dev, GFP_KERNEL,
1217 			      "%s-%d", dev_name(f->dev),
1218 			      spi_get_chipselect(mem->spi, 0));
1219 
1220 	if (!name) {
1221 		dev_err(dev, "failed to get memory for custom flash name\n");
1222 		return ERR_PTR(-ENOMEM);
1223 	}
1224 
1225 	return name;
1226 }
1227 
1228 static const struct spi_controller_mem_ops nxp_fspi_mem_ops = {
1229 	.adjust_op_size = nxp_fspi_adjust_op_size,
1230 	.supports_op = nxp_fspi_supports_op,
1231 	.exec_op = nxp_fspi_exec_op,
1232 	.get_name = nxp_fspi_get_name,
1233 };
1234 
1235 static const struct spi_controller_mem_caps nxp_fspi_mem_caps = {
1236 	.dtr = true,
1237 	.swap16 = false,
1238 	.per_op_freq = true,
1239 };
1240 
1241 static const struct spi_controller_mem_caps nxp_fspi_mem_caps_disable_dtr = {
1242 	.dtr = false,
1243 	.per_op_freq = true,
1244 };
1245 
1246 static void nxp_fspi_cleanup(void *data)
1247 {
1248 	struct nxp_fspi *f = data;
1249 
1250 	/* enable clock first since there is register access */
1251 	pm_runtime_get_sync(f->dev);
1252 
1253 	/* disable the hardware */
1254 	fspi_writel(f, FSPI_MCR0_MDIS, f->iobase + FSPI_MCR0);
1255 
1256 	pm_runtime_disable(f->dev);
1257 	pm_runtime_put_noidle(f->dev);
1258 	nxp_fspi_clk_disable_unprep(f);
1259 
1260 	if (f->ahb_addr)
1261 		iounmap(f->ahb_addr);
1262 }
1263 
1264 static int nxp_fspi_probe(struct platform_device *pdev)
1265 {
1266 	struct spi_controller *ctlr;
1267 	struct device *dev = &pdev->dev;
1268 	struct device_node *np = dev->of_node;
1269 	struct resource *res;
1270 	struct nxp_fspi *f;
1271 	int ret, irq;
1272 	u32 reg;
1273 
1274 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*f));
1275 	if (!ctlr)
1276 		return -ENOMEM;
1277 
1278 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_RX_OCTAL |
1279 			  SPI_TX_DUAL | SPI_TX_QUAD | SPI_TX_OCTAL;
1280 
1281 	f = spi_controller_get_devdata(ctlr);
1282 	f->dev = dev;
1283 	f->devtype_data = (struct nxp_fspi_devtype_data *)device_get_match_data(dev);
1284 	if (!f->devtype_data)
1285 		return -ENODEV;
1286 
1287 	platform_set_drvdata(pdev, f);
1288 
1289 	/* find the resources - configuration register address space */
1290 	if (is_acpi_node(dev_fwnode(f->dev)))
1291 		f->iobase = devm_platform_ioremap_resource(pdev, 0);
1292 	else
1293 		f->iobase = devm_platform_ioremap_resource_byname(pdev, "fspi_base");
1294 	if (IS_ERR(f->iobase))
1295 		return PTR_ERR(f->iobase);
1296 
1297 	/* find the resources - controller memory mapped space */
1298 	if (is_acpi_node(dev_fwnode(f->dev)))
1299 		res = platform_get_resource(pdev, IORESOURCE_MEM, 1);
1300 	else
1301 		res = platform_get_resource_byname(pdev,
1302 				IORESOURCE_MEM, "fspi_mmap");
1303 	if (!res)
1304 		return -ENODEV;
1305 
1306 	/* assign memory mapped starting address and mapped size. */
1307 	f->memmap_phy = res->start;
1308 	f->memmap_phy_size = resource_size(res);
1309 
1310 	/* find the clocks */
1311 	if (dev_of_node(&pdev->dev)) {
1312 		f->clk_en = devm_clk_get(dev, "fspi_en");
1313 		if (IS_ERR(f->clk_en))
1314 			return PTR_ERR(f->clk_en);
1315 
1316 		f->clk = devm_clk_get(dev, "fspi");
1317 		if (IS_ERR(f->clk))
1318 			return PTR_ERR(f->clk);
1319 	}
1320 
1321 	/* find the irq */
1322 	irq = platform_get_irq(pdev, 0);
1323 	if (irq < 0)
1324 		return dev_err_probe(dev, irq, "Failed to get irq source");
1325 
1326 	pm_runtime_enable(dev);
1327 	pm_runtime_set_autosuspend_delay(dev, FSPI_RPM_TIMEOUT);
1328 	pm_runtime_use_autosuspend(dev);
1329 
1330 	/* enable clock */
1331 	ret = pm_runtime_get_sync(f->dev);
1332 	if (ret < 0)
1333 		return dev_err_probe(dev, ret, "Failed to enable clock");
1334 
1335 	/* Clear potential interrupts */
1336 	reg = fspi_readl(f, f->iobase + FSPI_INTR);
1337 	if (reg)
1338 		fspi_writel(f, reg, f->iobase + FSPI_INTR);
1339 
1340 	nxp_fspi_default_setup(f);
1341 
1342 	ret = pm_runtime_put_sync(dev);
1343 	if (ret < 0)
1344 		return dev_err_probe(dev, ret, "Failed to disable clock");
1345 
1346 	ret = devm_request_irq(dev, irq,
1347 			nxp_fspi_irq_handler, 0, pdev->name, f);
1348 	if (ret)
1349 		return dev_err_probe(dev, ret, "Failed to request irq\n");
1350 
1351 	ret = devm_mutex_init(dev, &f->lock);
1352 	if (ret)
1353 		return dev_err_probe(dev, ret, "Failed to initialize lock\n");
1354 
1355 	ctlr->bus_num = -1;
1356 	ctlr->num_chipselect = NXP_FSPI_MAX_CHIPSELECT;
1357 	ctlr->mem_ops = &nxp_fspi_mem_ops;
1358 
1359 	if (f->devtype_data->quirks & FSPI_QUIRK_DISABLE_DTR)
1360 		ctlr->mem_caps = &nxp_fspi_mem_caps_disable_dtr;
1361 	else
1362 		ctlr->mem_caps = &nxp_fspi_mem_caps;
1363 
1364 	ctlr->dev.of_node = np;
1365 
1366 	ret = devm_add_action_or_reset(dev, nxp_fspi_cleanup, f);
1367 	if (ret)
1368 		return ret;
1369 
1370 	return devm_spi_register_controller(&pdev->dev, ctlr);
1371 }
1372 
1373 static int nxp_fspi_runtime_suspend(struct device *dev)
1374 {
1375 	struct nxp_fspi *f = dev_get_drvdata(dev);
1376 
1377 	nxp_fspi_clk_disable_unprep(f);
1378 
1379 	return 0;
1380 }
1381 
1382 static int nxp_fspi_runtime_resume(struct device *dev)
1383 {
1384 	struct nxp_fspi *f = dev_get_drvdata(dev);
1385 	int ret;
1386 
1387 	ret = nxp_fspi_clk_prep_enable(f);
1388 	if (ret)
1389 		return ret;
1390 
1391 	if (f->flags & FSPI_NEED_INIT) {
1392 		nxp_fspi_default_setup(f);
1393 		ret = pinctrl_pm_select_default_state(dev);
1394 		if (ret)
1395 			dev_err(dev, "select flexspi default pinctrl failed!\n");
1396 		f->flags &= ~FSPI_NEED_INIT;
1397 	}
1398 
1399 	return ret;
1400 }
1401 
1402 static int nxp_fspi_suspend(struct device *dev)
1403 {
1404 	struct nxp_fspi *f = dev_get_drvdata(dev);
1405 	int ret;
1406 
1407 	ret = pinctrl_pm_select_sleep_state(dev);
1408 	if (ret) {
1409 		dev_err(dev, "select flexspi sleep pinctrl failed!\n");
1410 		return ret;
1411 	}
1412 
1413 	f->flags |= FSPI_NEED_INIT;
1414 
1415 	return pm_runtime_force_suspend(dev);
1416 }
1417 
1418 static const struct dev_pm_ops nxp_fspi_pm_ops = {
1419 	RUNTIME_PM_OPS(nxp_fspi_runtime_suspend, nxp_fspi_runtime_resume, NULL)
1420 	SYSTEM_SLEEP_PM_OPS(nxp_fspi_suspend, pm_runtime_force_resume)
1421 };
1422 
1423 static const struct of_device_id nxp_fspi_dt_ids[] = {
1424 	{ .compatible = "nxp,lx2160a-fspi", .data = (void *)&lx2160a_data, },
1425 	{ .compatible = "nxp,imx8mm-fspi", .data = (void *)&imx8mm_data, },
1426 	{ .compatible = "nxp,imx8mp-fspi", .data = (void *)&imx8mm_data, },
1427 	{ .compatible = "nxp,imx8qxp-fspi", .data = (void *)&imx8qxp_data, },
1428 	{ .compatible = "nxp,imx8dxl-fspi", .data = (void *)&imx8dxl_data, },
1429 	{ .compatible = "nxp,imx8ulp-fspi", .data = (void *)&imx8ulp_data, },
1430 	{ /* sentinel */ }
1431 };
1432 MODULE_DEVICE_TABLE(of, nxp_fspi_dt_ids);
1433 
1434 #ifdef CONFIG_ACPI
1435 static const struct acpi_device_id nxp_fspi_acpi_ids[] = {
1436 	{ "NXP0009", .driver_data = (kernel_ulong_t)&lx2160a_data, },
1437 	{}
1438 };
1439 MODULE_DEVICE_TABLE(acpi, nxp_fspi_acpi_ids);
1440 #endif
1441 
1442 static struct platform_driver nxp_fspi_driver = {
1443 	.driver = {
1444 		.name	= "nxp-fspi",
1445 		.of_match_table = nxp_fspi_dt_ids,
1446 		.acpi_match_table = ACPI_PTR(nxp_fspi_acpi_ids),
1447 		.pm = pm_ptr(&nxp_fspi_pm_ops),
1448 	},
1449 	.probe          = nxp_fspi_probe,
1450 };
1451 module_platform_driver(nxp_fspi_driver);
1452 
1453 MODULE_DESCRIPTION("NXP FSPI Controller Driver");
1454 MODULE_AUTHOR("NXP Semiconductor");
1455 MODULE_AUTHOR("Yogesh Narayan Gaur <yogeshnarayan.gaur@nxp.com>");
1456 MODULE_AUTHOR("Boris Brezillon <bbrezillon@kernel.org>");
1457 MODULE_AUTHOR("Frieder Schrempf <frieder.schrempf@kontron.de>");
1458 MODULE_LICENSE("GPL v2");
1459