xref: /linux/drivers/spi/spi-mxs.c (revision ff5599816711d2e67da2d7561fd36ac48debd433)
1 /*
2  * Freescale MXS SPI master driver
3  *
4  * Copyright 2012 DENX Software Engineering, GmbH.
5  * Copyright 2012 Freescale Semiconductor, Inc.
6  * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved.
7  *
8  * Rework and transition to new API by:
9  * Marek Vasut <marex@denx.de>
10  *
11  * Based on previous attempt by:
12  * Fabio Estevam <fabio.estevam@freescale.com>
13  *
14  * Based on code from U-Boot bootloader by:
15  * Marek Vasut <marex@denx.de>
16  *
17  * Based on spi-stmp.c, which is:
18  * Author: Dmitry Pervushin <dimka@embeddedalley.com>
19  *
20  * This program is free software; you can redistribute it and/or modify
21  * it under the terms of the GNU General Public License as published by
22  * the Free Software Foundation; either version 2 of the License, or
23  * (at your option) any later version.
24  *
25  * This program is distributed in the hope that it will be useful,
26  * but WITHOUT ANY WARRANTY; without even the implied warranty of
27  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
28  * GNU General Public License for more details.
29  */
30 
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/ioport.h>
34 #include <linux/of.h>
35 #include <linux/of_device.h>
36 #include <linux/of_gpio.h>
37 #include <linux/platform_device.h>
38 #include <linux/delay.h>
39 #include <linux/interrupt.h>
40 #include <linux/dma-mapping.h>
41 #include <linux/dmaengine.h>
42 #include <linux/highmem.h>
43 #include <linux/clk.h>
44 #include <linux/err.h>
45 #include <linux/completion.h>
46 #include <linux/gpio.h>
47 #include <linux/regulator/consumer.h>
48 #include <linux/module.h>
49 #include <linux/stmp_device.h>
50 #include <linux/spi/spi.h>
51 #include <linux/spi/mxs-spi.h>
52 
53 #define DRIVER_NAME		"mxs-spi"
54 
55 /* Use 10S timeout for very long transfers, it should suffice. */
56 #define SSP_TIMEOUT		10000
57 
58 #define SG_MAXLEN		0xff00
59 
60 struct mxs_spi {
61 	struct mxs_ssp		ssp;
62 	struct completion	c;
63 };
64 
65 static int mxs_spi_setup_transfer(struct spi_device *dev,
66 				struct spi_transfer *t)
67 {
68 	struct mxs_spi *spi = spi_master_get_devdata(dev->master);
69 	struct mxs_ssp *ssp = &spi->ssp;
70 	uint8_t bits_per_word;
71 	uint32_t hz = 0;
72 
73 	bits_per_word = dev->bits_per_word;
74 	if (t && t->bits_per_word)
75 		bits_per_word = t->bits_per_word;
76 
77 	hz = dev->max_speed_hz;
78 	if (t && t->speed_hz)
79 		hz = min(hz, t->speed_hz);
80 	if (hz == 0) {
81 		dev_err(&dev->dev, "Cannot continue with zero clock\n");
82 		return -EINVAL;
83 	}
84 
85 	mxs_ssp_set_clk_rate(ssp, hz);
86 
87 	writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) |
88 		     BF_SSP_CTRL1_WORD_LENGTH
89 		     (BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) |
90 		     ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) |
91 		     ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0),
92 		     ssp->base + HW_SSP_CTRL1(ssp));
93 
94 	writel(0x0, ssp->base + HW_SSP_CMD0);
95 	writel(0x0, ssp->base + HW_SSP_CMD1);
96 
97 	return 0;
98 }
99 
100 static int mxs_spi_setup(struct spi_device *dev)
101 {
102 	int err = 0;
103 
104 	if (!dev->bits_per_word)
105 		dev->bits_per_word = 8;
106 
107 	if (dev->mode & ~(SPI_CPOL | SPI_CPHA))
108 		return -EINVAL;
109 
110 	err = mxs_spi_setup_transfer(dev, NULL);
111 	if (err) {
112 		dev_err(&dev->dev,
113 			"Failed to setup transfer, error = %d\n", err);
114 	}
115 
116 	return err;
117 }
118 
119 static uint32_t mxs_spi_cs_to_reg(unsigned cs)
120 {
121 	uint32_t select = 0;
122 
123 	/*
124 	 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0
125 	 *
126 	 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ
127 	 * in HW_SSP_CTRL0 register do have multiple usage, please refer to
128 	 * the datasheet for further details. In SPI mode, they are used to
129 	 * toggle the chip-select lines (nCS pins).
130 	 */
131 	if (cs & 1)
132 		select |= BM_SSP_CTRL0_WAIT_FOR_CMD;
133 	if (cs & 2)
134 		select |= BM_SSP_CTRL0_WAIT_FOR_IRQ;
135 
136 	return select;
137 }
138 
139 static void mxs_spi_set_cs(struct mxs_spi *spi, unsigned cs)
140 {
141 	const uint32_t mask =
142 		BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ;
143 	uint32_t select;
144 	struct mxs_ssp *ssp = &spi->ssp;
145 
146 	writel(mask, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
147 	select = mxs_spi_cs_to_reg(cs);
148 	writel(select, ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
149 }
150 
151 static inline void mxs_spi_enable(struct mxs_spi *spi)
152 {
153 	struct mxs_ssp *ssp = &spi->ssp;
154 
155 	writel(BM_SSP_CTRL0_LOCK_CS,
156 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
157 	writel(BM_SSP_CTRL0_IGNORE_CRC,
158 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
159 }
160 
161 static inline void mxs_spi_disable(struct mxs_spi *spi)
162 {
163 	struct mxs_ssp *ssp = &spi->ssp;
164 
165 	writel(BM_SSP_CTRL0_LOCK_CS,
166 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
167 	writel(BM_SSP_CTRL0_IGNORE_CRC,
168 		ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
169 }
170 
171 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set)
172 {
173 	const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT);
174 	struct mxs_ssp *ssp = &spi->ssp;
175 	uint32_t reg;
176 
177 	do {
178 		reg = readl_relaxed(ssp->base + offset);
179 
180 		if (!set)
181 			reg = ~reg;
182 
183 		reg &= mask;
184 
185 		if (reg == mask)
186 			return 0;
187 	} while (time_before(jiffies, timeout));
188 
189 	return -ETIMEDOUT;
190 }
191 
192 static void mxs_ssp_dma_irq_callback(void *param)
193 {
194 	struct mxs_spi *spi = param;
195 	complete(&spi->c);
196 }
197 
198 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id)
199 {
200 	struct mxs_ssp *ssp = dev_id;
201 	dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n",
202 		__func__, __LINE__,
203 		readl(ssp->base + HW_SSP_CTRL1(ssp)),
204 		readl(ssp->base + HW_SSP_STATUS(ssp)));
205 	return IRQ_HANDLED;
206 }
207 
208 static int mxs_spi_txrx_dma(struct mxs_spi *spi, int cs,
209 			    unsigned char *buf, int len,
210 			    int *first, int *last, int write)
211 {
212 	struct mxs_ssp *ssp = &spi->ssp;
213 	struct dma_async_tx_descriptor *desc = NULL;
214 	const bool vmalloced_buf = is_vmalloc_addr(buf);
215 	const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN;
216 	const int sgs = DIV_ROUND_UP(len, desc_len);
217 	int sg_count;
218 	int min, ret;
219 	uint32_t ctrl0;
220 	struct page *vm_page;
221 	void *sg_buf;
222 	struct {
223 		uint32_t		pio[4];
224 		struct scatterlist	sg;
225 	} *dma_xfer;
226 
227 	if (!len)
228 		return -EINVAL;
229 
230 	dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL);
231 	if (!dma_xfer)
232 		return -ENOMEM;
233 
234 	INIT_COMPLETION(spi->c);
235 
236 	ctrl0 = readl(ssp->base + HW_SSP_CTRL0);
237 	ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
238 	ctrl0 |= BM_SSP_CTRL0_DATA_XFER | mxs_spi_cs_to_reg(cs);
239 
240 	if (*first)
241 		ctrl0 |= BM_SSP_CTRL0_LOCK_CS;
242 	if (!write)
243 		ctrl0 |= BM_SSP_CTRL0_READ;
244 
245 	/* Queue the DMA data transfer. */
246 	for (sg_count = 0; sg_count < sgs; sg_count++) {
247 		min = min(len, desc_len);
248 
249 		/* Prepare the transfer descriptor. */
250 		if ((sg_count + 1 == sgs) && *last)
251 			ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC;
252 
253 		if (ssp->devid == IMX23_SSP) {
254 			ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT;
255 			ctrl0 |= min;
256 		}
257 
258 		dma_xfer[sg_count].pio[0] = ctrl0;
259 		dma_xfer[sg_count].pio[3] = min;
260 
261 		if (vmalloced_buf) {
262 			vm_page = vmalloc_to_page(buf);
263 			if (!vm_page) {
264 				ret = -ENOMEM;
265 				goto err_vmalloc;
266 			}
267 			sg_buf = page_address(vm_page) +
268 				((size_t)buf & ~PAGE_MASK);
269 		} else {
270 			sg_buf = buf;
271 		}
272 
273 		sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min);
274 		ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
275 			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
276 
277 		len -= min;
278 		buf += min;
279 
280 		/* Queue the PIO register write transfer. */
281 		desc = dmaengine_prep_slave_sg(ssp->dmach,
282 				(struct scatterlist *)dma_xfer[sg_count].pio,
283 				(ssp->devid == IMX23_SSP) ? 1 : 4,
284 				DMA_TRANS_NONE,
285 				sg_count ? DMA_PREP_INTERRUPT : 0);
286 		if (!desc) {
287 			dev_err(ssp->dev,
288 				"Failed to get PIO reg. write descriptor.\n");
289 			ret = -EINVAL;
290 			goto err_mapped;
291 		}
292 
293 		desc = dmaengine_prep_slave_sg(ssp->dmach,
294 				&dma_xfer[sg_count].sg, 1,
295 				write ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM,
296 				DMA_PREP_INTERRUPT | DMA_CTRL_ACK);
297 
298 		if (!desc) {
299 			dev_err(ssp->dev,
300 				"Failed to get DMA data write descriptor.\n");
301 			ret = -EINVAL;
302 			goto err_mapped;
303 		}
304 	}
305 
306 	/*
307 	 * The last descriptor must have this callback,
308 	 * to finish the DMA transaction.
309 	 */
310 	desc->callback = mxs_ssp_dma_irq_callback;
311 	desc->callback_param = spi;
312 
313 	/* Start the transfer. */
314 	dmaengine_submit(desc);
315 	dma_async_issue_pending(ssp->dmach);
316 
317 	ret = wait_for_completion_timeout(&spi->c,
318 				msecs_to_jiffies(SSP_TIMEOUT));
319 	if (!ret) {
320 		dev_err(ssp->dev, "DMA transfer timeout\n");
321 		ret = -ETIMEDOUT;
322 		dmaengine_terminate_all(ssp->dmach);
323 		goto err_vmalloc;
324 	}
325 
326 	ret = 0;
327 
328 err_vmalloc:
329 	while (--sg_count >= 0) {
330 err_mapped:
331 		dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1,
332 			write ? DMA_TO_DEVICE : DMA_FROM_DEVICE);
333 	}
334 
335 	kfree(dma_xfer);
336 
337 	return ret;
338 }
339 
340 static int mxs_spi_txrx_pio(struct mxs_spi *spi, int cs,
341 			    unsigned char *buf, int len,
342 			    int *first, int *last, int write)
343 {
344 	struct mxs_ssp *ssp = &spi->ssp;
345 
346 	if (*first)
347 		mxs_spi_enable(spi);
348 
349 	mxs_spi_set_cs(spi, cs);
350 
351 	while (len--) {
352 		if (*last && len == 0)
353 			mxs_spi_disable(spi);
354 
355 		if (ssp->devid == IMX23_SSP) {
356 			writel(BM_SSP_CTRL0_XFER_COUNT,
357 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
358 			writel(1,
359 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
360 		} else {
361 			writel(1, ssp->base + HW_SSP_XFER_SIZE);
362 		}
363 
364 		if (write)
365 			writel(BM_SSP_CTRL0_READ,
366 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR);
367 		else
368 			writel(BM_SSP_CTRL0_READ,
369 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
370 
371 		writel(BM_SSP_CTRL0_RUN,
372 				ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
373 
374 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1))
375 			return -ETIMEDOUT;
376 
377 		if (write)
378 			writel(*buf, ssp->base + HW_SSP_DATA(ssp));
379 
380 		writel(BM_SSP_CTRL0_DATA_XFER,
381 			     ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET);
382 
383 		if (!write) {
384 			if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp),
385 						BM_SSP_STATUS_FIFO_EMPTY, 0))
386 				return -ETIMEDOUT;
387 
388 			*buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff);
389 		}
390 
391 		if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0))
392 			return -ETIMEDOUT;
393 
394 		buf++;
395 	}
396 
397 	if (len <= 0)
398 		return 0;
399 
400 	return -ETIMEDOUT;
401 }
402 
403 static int mxs_spi_transfer_one(struct spi_master *master,
404 				struct spi_message *m)
405 {
406 	struct mxs_spi *spi = spi_master_get_devdata(master);
407 	struct mxs_ssp *ssp = &spi->ssp;
408 	int first, last;
409 	struct spi_transfer *t, *tmp_t;
410 	int status = 0;
411 	int cs;
412 
413 	first = last = 0;
414 
415 	cs = m->spi->chip_select;
416 
417 	list_for_each_entry_safe(t, tmp_t, &m->transfers, transfer_list) {
418 
419 		status = mxs_spi_setup_transfer(m->spi, t);
420 		if (status)
421 			break;
422 
423 		if (&t->transfer_list == m->transfers.next)
424 			first = 1;
425 		if (&t->transfer_list == m->transfers.prev)
426 			last = 1;
427 		if ((t->rx_buf && t->tx_buf) || (t->rx_dma && t->tx_dma)) {
428 			dev_err(ssp->dev,
429 				"Cannot send and receive simultaneously\n");
430 			status = -EINVAL;
431 			break;
432 		}
433 
434 		/*
435 		 * Small blocks can be transfered via PIO.
436 		 * Measured by empiric means:
437 		 *
438 		 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1
439 		 *
440 		 * DMA only: 2.164808 seconds, 473.0KB/s
441 		 * Combined: 1.676276 seconds, 610.9KB/s
442 		 */
443 		if (t->len < 32) {
444 			writel(BM_SSP_CTRL1_DMA_ENABLE,
445 				ssp->base + HW_SSP_CTRL1(ssp) +
446 				STMP_OFFSET_REG_CLR);
447 
448 			if (t->tx_buf)
449 				status = mxs_spi_txrx_pio(spi, cs,
450 						(void *)t->tx_buf,
451 						t->len, &first, &last, 1);
452 			if (t->rx_buf)
453 				status = mxs_spi_txrx_pio(spi, cs,
454 						t->rx_buf, t->len,
455 						&first, &last, 0);
456 		} else {
457 			writel(BM_SSP_CTRL1_DMA_ENABLE,
458 				ssp->base + HW_SSP_CTRL1(ssp) +
459 				STMP_OFFSET_REG_SET);
460 
461 			if (t->tx_buf)
462 				status = mxs_spi_txrx_dma(spi, cs,
463 						(void *)t->tx_buf, t->len,
464 						&first, &last, 1);
465 			if (t->rx_buf)
466 				status = mxs_spi_txrx_dma(spi, cs,
467 						t->rx_buf, t->len,
468 						&first, &last, 0);
469 		}
470 
471 		if (status) {
472 			stmp_reset_block(ssp->base);
473 			break;
474 		}
475 
476 		m->actual_length += t->len;
477 		first = last = 0;
478 	}
479 
480 	m->status = status;
481 	spi_finalize_current_message(master);
482 
483 	return status;
484 }
485 
486 static const struct of_device_id mxs_spi_dt_ids[] = {
487 	{ .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, },
488 	{ .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, },
489 	{ /* sentinel */ }
490 };
491 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids);
492 
493 static int mxs_spi_probe(struct platform_device *pdev)
494 {
495 	const struct of_device_id *of_id =
496 			of_match_device(mxs_spi_dt_ids, &pdev->dev);
497 	struct device_node *np = pdev->dev.of_node;
498 	struct spi_master *master;
499 	struct mxs_spi *spi;
500 	struct mxs_ssp *ssp;
501 	struct resource *iores;
502 	struct clk *clk;
503 	void __iomem *base;
504 	int devid, clk_freq;
505 	int ret = 0, irq_err;
506 
507 	/*
508 	 * Default clock speed for the SPI core. 160MHz seems to
509 	 * work reasonably well with most SPI flashes, so use this
510 	 * as a default. Override with "clock-frequency" DT prop.
511 	 */
512 	const int clk_freq_default = 160000000;
513 
514 	iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
515 	irq_err = platform_get_irq(pdev, 0);
516 	if (!iores || irq_err < 0)
517 		return -EINVAL;
518 
519 	base = devm_ioremap_resource(&pdev->dev, iores);
520 	if (IS_ERR(base))
521 		return PTR_ERR(base);
522 
523 	clk = devm_clk_get(&pdev->dev, NULL);
524 	if (IS_ERR(clk))
525 		return PTR_ERR(clk);
526 
527 	devid = (enum mxs_ssp_id) of_id->data;
528 	ret = of_property_read_u32(np, "clock-frequency",
529 				   &clk_freq);
530 	if (ret)
531 		clk_freq = clk_freq_default;
532 
533 	master = spi_alloc_master(&pdev->dev, sizeof(*spi));
534 	if (!master)
535 		return -ENOMEM;
536 
537 	master->transfer_one_message = mxs_spi_transfer_one;
538 	master->setup = mxs_spi_setup;
539 	master->bits_per_word_mask = SPI_BPW_MASK(8);
540 	master->mode_bits = SPI_CPOL | SPI_CPHA;
541 	master->num_chipselect = 3;
542 	master->dev.of_node = np;
543 	master->flags = SPI_MASTER_HALF_DUPLEX;
544 
545 	spi = spi_master_get_devdata(master);
546 	ssp = &spi->ssp;
547 	ssp->dev = &pdev->dev;
548 	ssp->clk = clk;
549 	ssp->base = base;
550 	ssp->devid = devid;
551 
552 	init_completion(&spi->c);
553 
554 	ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0,
555 			       DRIVER_NAME, ssp);
556 	if (ret)
557 		goto out_master_free;
558 
559 	ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx");
560 	if (!ssp->dmach) {
561 		dev_err(ssp->dev, "Failed to request DMA\n");
562 		ret = -ENODEV;
563 		goto out_master_free;
564 	}
565 
566 	clk_prepare_enable(ssp->clk);
567 	clk_set_rate(ssp->clk, clk_freq);
568 	ssp->clk_rate = clk_get_rate(ssp->clk) / 1000;
569 
570 	stmp_reset_block(ssp->base);
571 
572 	platform_set_drvdata(pdev, master);
573 
574 	ret = spi_register_master(master);
575 	if (ret) {
576 		dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret);
577 		goto out_free_dma;
578 	}
579 
580 	return 0;
581 
582 out_free_dma:
583 	dma_release_channel(ssp->dmach);
584 	clk_disable_unprepare(ssp->clk);
585 out_master_free:
586 	spi_master_put(master);
587 	return ret;
588 }
589 
590 static int mxs_spi_remove(struct platform_device *pdev)
591 {
592 	struct spi_master *master;
593 	struct mxs_spi *spi;
594 	struct mxs_ssp *ssp;
595 
596 	master = spi_master_get(platform_get_drvdata(pdev));
597 	spi = spi_master_get_devdata(master);
598 	ssp = &spi->ssp;
599 
600 	spi_unregister_master(master);
601 
602 	dma_release_channel(ssp->dmach);
603 
604 	clk_disable_unprepare(ssp->clk);
605 
606 	spi_master_put(master);
607 
608 	return 0;
609 }
610 
611 static struct platform_driver mxs_spi_driver = {
612 	.probe	= mxs_spi_probe,
613 	.remove	= mxs_spi_remove,
614 	.driver	= {
615 		.name	= DRIVER_NAME,
616 		.owner	= THIS_MODULE,
617 		.of_match_table = mxs_spi_dt_ids,
618 	},
619 };
620 
621 module_platform_driver(mxs_spi_driver);
622 
623 MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
624 MODULE_DESCRIPTION("MXS SPI master driver");
625 MODULE_LICENSE("GPL");
626 MODULE_ALIAS("platform:mxs-spi");
627