1 /* 2 * Freescale MXS SPI master driver 3 * 4 * Copyright 2012 DENX Software Engineering, GmbH. 5 * Copyright 2012 Freescale Semiconductor, Inc. 6 * Copyright 2008 Embedded Alley Solutions, Inc All Rights Reserved. 7 * 8 * Rework and transition to new API by: 9 * Marek Vasut <marex@denx.de> 10 * 11 * Based on previous attempt by: 12 * Fabio Estevam <fabio.estevam@freescale.com> 13 * 14 * Based on code from U-Boot bootloader by: 15 * Marek Vasut <marex@denx.de> 16 * 17 * Based on spi-stmp.c, which is: 18 * Author: Dmitry Pervushin <dimka@embeddedalley.com> 19 * 20 * This program is free software; you can redistribute it and/or modify 21 * it under the terms of the GNU General Public License as published by 22 * the Free Software Foundation; either version 2 of the License, or 23 * (at your option) any later version. 24 * 25 * This program is distributed in the hope that it will be useful, 26 * but WITHOUT ANY WARRANTY; without even the implied warranty of 27 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 28 * GNU General Public License for more details. 29 */ 30 31 #include <linux/kernel.h> 32 #include <linux/ioport.h> 33 #include <linux/of.h> 34 #include <linux/of_device.h> 35 #include <linux/of_gpio.h> 36 #include <linux/platform_device.h> 37 #include <linux/delay.h> 38 #include <linux/interrupt.h> 39 #include <linux/dma-mapping.h> 40 #include <linux/dmaengine.h> 41 #include <linux/highmem.h> 42 #include <linux/clk.h> 43 #include <linux/err.h> 44 #include <linux/completion.h> 45 #include <linux/gpio.h> 46 #include <linux/regulator/consumer.h> 47 #include <linux/module.h> 48 #include <linux/stmp_device.h> 49 #include <linux/spi/spi.h> 50 #include <linux/spi/mxs-spi.h> 51 52 #define DRIVER_NAME "mxs-spi" 53 54 /* Use 10S timeout for very long transfers, it should suffice. */ 55 #define SSP_TIMEOUT 10000 56 57 #define SG_MAXLEN 0xff00 58 59 /* 60 * Flags for txrx functions. More efficient that using an argument register for 61 * each one. 62 */ 63 #define TXRX_WRITE (1<<0) /* This is a write */ 64 #define TXRX_DEASSERT_CS (1<<1) /* De-assert CS at end of txrx */ 65 66 struct mxs_spi { 67 struct mxs_ssp ssp; 68 struct completion c; 69 unsigned int sck; /* Rate requested (vs actual) */ 70 }; 71 72 static int mxs_spi_setup_transfer(struct spi_device *dev, 73 const struct spi_transfer *t) 74 { 75 struct mxs_spi *spi = spi_master_get_devdata(dev->master); 76 struct mxs_ssp *ssp = &spi->ssp; 77 const unsigned int hz = min(dev->max_speed_hz, t->speed_hz); 78 79 if (hz == 0) { 80 dev_err(&dev->dev, "SPI clock rate of zero not allowed\n"); 81 return -EINVAL; 82 } 83 84 if (hz != spi->sck) { 85 mxs_ssp_set_clk_rate(ssp, hz); 86 /* 87 * Save requested rate, hz, rather than the actual rate, 88 * ssp->clk_rate. Otherwise we would set the rate every trasfer 89 * when the actual rate is not quite the same as requested rate. 90 */ 91 spi->sck = hz; 92 /* 93 * Perhaps we should return an error if the actual clock is 94 * nowhere close to what was requested? 95 */ 96 } 97 98 writel(BM_SSP_CTRL0_LOCK_CS, 99 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 100 101 writel(BF_SSP_CTRL1_SSP_MODE(BV_SSP_CTRL1_SSP_MODE__SPI) | 102 BF_SSP_CTRL1_WORD_LENGTH(BV_SSP_CTRL1_WORD_LENGTH__EIGHT_BITS) | 103 ((dev->mode & SPI_CPOL) ? BM_SSP_CTRL1_POLARITY : 0) | 104 ((dev->mode & SPI_CPHA) ? BM_SSP_CTRL1_PHASE : 0), 105 ssp->base + HW_SSP_CTRL1(ssp)); 106 107 writel(0x0, ssp->base + HW_SSP_CMD0); 108 writel(0x0, ssp->base + HW_SSP_CMD1); 109 110 return 0; 111 } 112 113 static u32 mxs_spi_cs_to_reg(unsigned cs) 114 { 115 u32 select = 0; 116 117 /* 118 * i.MX28 Datasheet: 17.10.1: HW_SSP_CTRL0 119 * 120 * The bits BM_SSP_CTRL0_WAIT_FOR_CMD and BM_SSP_CTRL0_WAIT_FOR_IRQ 121 * in HW_SSP_CTRL0 register do have multiple usage, please refer to 122 * the datasheet for further details. In SPI mode, they are used to 123 * toggle the chip-select lines (nCS pins). 124 */ 125 if (cs & 1) 126 select |= BM_SSP_CTRL0_WAIT_FOR_CMD; 127 if (cs & 2) 128 select |= BM_SSP_CTRL0_WAIT_FOR_IRQ; 129 130 return select; 131 } 132 133 static int mxs_ssp_wait(struct mxs_spi *spi, int offset, int mask, bool set) 134 { 135 const unsigned long timeout = jiffies + msecs_to_jiffies(SSP_TIMEOUT); 136 struct mxs_ssp *ssp = &spi->ssp; 137 u32 reg; 138 139 do { 140 reg = readl_relaxed(ssp->base + offset); 141 142 if (!set) 143 reg = ~reg; 144 145 reg &= mask; 146 147 if (reg == mask) 148 return 0; 149 } while (time_before(jiffies, timeout)); 150 151 return -ETIMEDOUT; 152 } 153 154 static void mxs_ssp_dma_irq_callback(void *param) 155 { 156 struct mxs_spi *spi = param; 157 complete(&spi->c); 158 } 159 160 static irqreturn_t mxs_ssp_irq_handler(int irq, void *dev_id) 161 { 162 struct mxs_ssp *ssp = dev_id; 163 dev_err(ssp->dev, "%s[%i] CTRL1=%08x STATUS=%08x\n", 164 __func__, __LINE__, 165 readl(ssp->base + HW_SSP_CTRL1(ssp)), 166 readl(ssp->base + HW_SSP_STATUS(ssp))); 167 return IRQ_HANDLED; 168 } 169 170 static int mxs_spi_txrx_dma(struct mxs_spi *spi, 171 unsigned char *buf, int len, 172 unsigned int flags) 173 { 174 struct mxs_ssp *ssp = &spi->ssp; 175 struct dma_async_tx_descriptor *desc = NULL; 176 const bool vmalloced_buf = is_vmalloc_addr(buf); 177 const int desc_len = vmalloced_buf ? PAGE_SIZE : SG_MAXLEN; 178 const int sgs = DIV_ROUND_UP(len, desc_len); 179 int sg_count; 180 int min, ret; 181 u32 ctrl0; 182 struct page *vm_page; 183 void *sg_buf; 184 struct { 185 u32 pio[4]; 186 struct scatterlist sg; 187 } *dma_xfer; 188 189 if (!len) 190 return -EINVAL; 191 192 dma_xfer = kzalloc(sizeof(*dma_xfer) * sgs, GFP_KERNEL); 193 if (!dma_xfer) 194 return -ENOMEM; 195 196 reinit_completion(&spi->c); 197 198 /* Chip select was already programmed into CTRL0 */ 199 ctrl0 = readl(ssp->base + HW_SSP_CTRL0); 200 ctrl0 &= ~(BM_SSP_CTRL0_XFER_COUNT | BM_SSP_CTRL0_IGNORE_CRC | 201 BM_SSP_CTRL0_READ); 202 ctrl0 |= BM_SSP_CTRL0_DATA_XFER; 203 204 if (!(flags & TXRX_WRITE)) 205 ctrl0 |= BM_SSP_CTRL0_READ; 206 207 /* Queue the DMA data transfer. */ 208 for (sg_count = 0; sg_count < sgs; sg_count++) { 209 /* Prepare the transfer descriptor. */ 210 min = min(len, desc_len); 211 212 /* 213 * De-assert CS on last segment if flag is set (i.e., no more 214 * transfers will follow) 215 */ 216 if ((sg_count + 1 == sgs) && (flags & TXRX_DEASSERT_CS)) 217 ctrl0 |= BM_SSP_CTRL0_IGNORE_CRC; 218 219 if (ssp->devid == IMX23_SSP) { 220 ctrl0 &= ~BM_SSP_CTRL0_XFER_COUNT; 221 ctrl0 |= min; 222 } 223 224 dma_xfer[sg_count].pio[0] = ctrl0; 225 dma_xfer[sg_count].pio[3] = min; 226 227 if (vmalloced_buf) { 228 vm_page = vmalloc_to_page(buf); 229 if (!vm_page) { 230 ret = -ENOMEM; 231 goto err_vmalloc; 232 } 233 sg_buf = page_address(vm_page) + 234 ((size_t)buf & ~PAGE_MASK); 235 } else { 236 sg_buf = buf; 237 } 238 239 sg_init_one(&dma_xfer[sg_count].sg, sg_buf, min); 240 ret = dma_map_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, 241 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 242 243 len -= min; 244 buf += min; 245 246 /* Queue the PIO register write transfer. */ 247 desc = dmaengine_prep_slave_sg(ssp->dmach, 248 (struct scatterlist *)dma_xfer[sg_count].pio, 249 (ssp->devid == IMX23_SSP) ? 1 : 4, 250 DMA_TRANS_NONE, 251 sg_count ? DMA_PREP_INTERRUPT : 0); 252 if (!desc) { 253 dev_err(ssp->dev, 254 "Failed to get PIO reg. write descriptor.\n"); 255 ret = -EINVAL; 256 goto err_mapped; 257 } 258 259 desc = dmaengine_prep_slave_sg(ssp->dmach, 260 &dma_xfer[sg_count].sg, 1, 261 (flags & TXRX_WRITE) ? DMA_MEM_TO_DEV : DMA_DEV_TO_MEM, 262 DMA_PREP_INTERRUPT | DMA_CTRL_ACK); 263 264 if (!desc) { 265 dev_err(ssp->dev, 266 "Failed to get DMA data write descriptor.\n"); 267 ret = -EINVAL; 268 goto err_mapped; 269 } 270 } 271 272 /* 273 * The last descriptor must have this callback, 274 * to finish the DMA transaction. 275 */ 276 desc->callback = mxs_ssp_dma_irq_callback; 277 desc->callback_param = spi; 278 279 /* Start the transfer. */ 280 dmaengine_submit(desc); 281 dma_async_issue_pending(ssp->dmach); 282 283 ret = wait_for_completion_timeout(&spi->c, 284 msecs_to_jiffies(SSP_TIMEOUT)); 285 if (!ret) { 286 dev_err(ssp->dev, "DMA transfer timeout\n"); 287 ret = -ETIMEDOUT; 288 dmaengine_terminate_all(ssp->dmach); 289 goto err_vmalloc; 290 } 291 292 ret = 0; 293 294 err_vmalloc: 295 while (--sg_count >= 0) { 296 err_mapped: 297 dma_unmap_sg(ssp->dev, &dma_xfer[sg_count].sg, 1, 298 (flags & TXRX_WRITE) ? DMA_TO_DEVICE : DMA_FROM_DEVICE); 299 } 300 301 kfree(dma_xfer); 302 303 return ret; 304 } 305 306 static int mxs_spi_txrx_pio(struct mxs_spi *spi, 307 unsigned char *buf, int len, 308 unsigned int flags) 309 { 310 struct mxs_ssp *ssp = &spi->ssp; 311 312 writel(BM_SSP_CTRL0_IGNORE_CRC, 313 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 314 315 while (len--) { 316 if (len == 0 && (flags & TXRX_DEASSERT_CS)) 317 writel(BM_SSP_CTRL0_IGNORE_CRC, 318 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 319 320 if (ssp->devid == IMX23_SSP) { 321 writel(BM_SSP_CTRL0_XFER_COUNT, 322 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 323 writel(1, 324 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 325 } else { 326 writel(1, ssp->base + HW_SSP_XFER_SIZE); 327 } 328 329 if (flags & TXRX_WRITE) 330 writel(BM_SSP_CTRL0_READ, 331 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 332 else 333 writel(BM_SSP_CTRL0_READ, 334 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 335 336 writel(BM_SSP_CTRL0_RUN, 337 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 338 339 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 1)) 340 return -ETIMEDOUT; 341 342 if (flags & TXRX_WRITE) 343 writel(*buf, ssp->base + HW_SSP_DATA(ssp)); 344 345 writel(BM_SSP_CTRL0_DATA_XFER, 346 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 347 348 if (!(flags & TXRX_WRITE)) { 349 if (mxs_ssp_wait(spi, HW_SSP_STATUS(ssp), 350 BM_SSP_STATUS_FIFO_EMPTY, 0)) 351 return -ETIMEDOUT; 352 353 *buf = (readl(ssp->base + HW_SSP_DATA(ssp)) & 0xff); 354 } 355 356 if (mxs_ssp_wait(spi, HW_SSP_CTRL0, BM_SSP_CTRL0_RUN, 0)) 357 return -ETIMEDOUT; 358 359 buf++; 360 } 361 362 if (len <= 0) 363 return 0; 364 365 return -ETIMEDOUT; 366 } 367 368 static int mxs_spi_transfer_one(struct spi_master *master, 369 struct spi_message *m) 370 { 371 struct mxs_spi *spi = spi_master_get_devdata(master); 372 struct mxs_ssp *ssp = &spi->ssp; 373 struct spi_transfer *t; 374 unsigned int flag; 375 int status = 0; 376 377 /* Program CS register bits here, it will be used for all transfers. */ 378 writel(BM_SSP_CTRL0_WAIT_FOR_CMD | BM_SSP_CTRL0_WAIT_FOR_IRQ, 379 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_CLR); 380 writel(mxs_spi_cs_to_reg(m->spi->chip_select), 381 ssp->base + HW_SSP_CTRL0 + STMP_OFFSET_REG_SET); 382 383 list_for_each_entry(t, &m->transfers, transfer_list) { 384 385 status = mxs_spi_setup_transfer(m->spi, t); 386 if (status) 387 break; 388 389 /* De-assert on last transfer, inverted by cs_change flag */ 390 flag = (&t->transfer_list == m->transfers.prev) ^ t->cs_change ? 391 TXRX_DEASSERT_CS : 0; 392 393 /* 394 * Small blocks can be transfered via PIO. 395 * Measured by empiric means: 396 * 397 * dd if=/dev/mtdblock0 of=/dev/null bs=1024k count=1 398 * 399 * DMA only: 2.164808 seconds, 473.0KB/s 400 * Combined: 1.676276 seconds, 610.9KB/s 401 */ 402 if (t->len < 32) { 403 writel(BM_SSP_CTRL1_DMA_ENABLE, 404 ssp->base + HW_SSP_CTRL1(ssp) + 405 STMP_OFFSET_REG_CLR); 406 407 if (t->tx_buf) 408 status = mxs_spi_txrx_pio(spi, 409 (void *)t->tx_buf, 410 t->len, flag | TXRX_WRITE); 411 if (t->rx_buf) 412 status = mxs_spi_txrx_pio(spi, 413 t->rx_buf, t->len, 414 flag); 415 } else { 416 writel(BM_SSP_CTRL1_DMA_ENABLE, 417 ssp->base + HW_SSP_CTRL1(ssp) + 418 STMP_OFFSET_REG_SET); 419 420 if (t->tx_buf) 421 status = mxs_spi_txrx_dma(spi, 422 (void *)t->tx_buf, t->len, 423 flag | TXRX_WRITE); 424 if (t->rx_buf) 425 status = mxs_spi_txrx_dma(spi, 426 t->rx_buf, t->len, 427 flag); 428 } 429 430 if (status) { 431 stmp_reset_block(ssp->base); 432 break; 433 } 434 435 m->actual_length += t->len; 436 } 437 438 m->status = status; 439 spi_finalize_current_message(master); 440 441 return status; 442 } 443 444 static const struct of_device_id mxs_spi_dt_ids[] = { 445 { .compatible = "fsl,imx23-spi", .data = (void *) IMX23_SSP, }, 446 { .compatible = "fsl,imx28-spi", .data = (void *) IMX28_SSP, }, 447 { /* sentinel */ } 448 }; 449 MODULE_DEVICE_TABLE(of, mxs_spi_dt_ids); 450 451 static int mxs_spi_probe(struct platform_device *pdev) 452 { 453 const struct of_device_id *of_id = 454 of_match_device(mxs_spi_dt_ids, &pdev->dev); 455 struct device_node *np = pdev->dev.of_node; 456 struct spi_master *master; 457 struct mxs_spi *spi; 458 struct mxs_ssp *ssp; 459 struct resource *iores; 460 struct clk *clk; 461 void __iomem *base; 462 int devid, clk_freq; 463 int ret = 0, irq_err; 464 465 /* 466 * Default clock speed for the SPI core. 160MHz seems to 467 * work reasonably well with most SPI flashes, so use this 468 * as a default. Override with "clock-frequency" DT prop. 469 */ 470 const int clk_freq_default = 160000000; 471 472 iores = platform_get_resource(pdev, IORESOURCE_MEM, 0); 473 irq_err = platform_get_irq(pdev, 0); 474 if (irq_err < 0) 475 return irq_err; 476 477 base = devm_ioremap_resource(&pdev->dev, iores); 478 if (IS_ERR(base)) 479 return PTR_ERR(base); 480 481 clk = devm_clk_get(&pdev->dev, NULL); 482 if (IS_ERR(clk)) 483 return PTR_ERR(clk); 484 485 devid = (enum mxs_ssp_id) of_id->data; 486 ret = of_property_read_u32(np, "clock-frequency", 487 &clk_freq); 488 if (ret) 489 clk_freq = clk_freq_default; 490 491 master = spi_alloc_master(&pdev->dev, sizeof(*spi)); 492 if (!master) 493 return -ENOMEM; 494 495 master->transfer_one_message = mxs_spi_transfer_one; 496 master->bits_per_word_mask = SPI_BPW_MASK(8); 497 master->mode_bits = SPI_CPOL | SPI_CPHA; 498 master->num_chipselect = 3; 499 master->dev.of_node = np; 500 master->flags = SPI_MASTER_HALF_DUPLEX; 501 502 spi = spi_master_get_devdata(master); 503 ssp = &spi->ssp; 504 ssp->dev = &pdev->dev; 505 ssp->clk = clk; 506 ssp->base = base; 507 ssp->devid = devid; 508 509 init_completion(&spi->c); 510 511 ret = devm_request_irq(&pdev->dev, irq_err, mxs_ssp_irq_handler, 0, 512 DRIVER_NAME, ssp); 513 if (ret) 514 goto out_master_free; 515 516 ssp->dmach = dma_request_slave_channel(&pdev->dev, "rx-tx"); 517 if (!ssp->dmach) { 518 dev_err(ssp->dev, "Failed to request DMA\n"); 519 ret = -ENODEV; 520 goto out_master_free; 521 } 522 523 ret = clk_prepare_enable(ssp->clk); 524 if (ret) 525 goto out_dma_release; 526 527 clk_set_rate(ssp->clk, clk_freq); 528 529 ret = stmp_reset_block(ssp->base); 530 if (ret) 531 goto out_disable_clk; 532 533 platform_set_drvdata(pdev, master); 534 535 ret = devm_spi_register_master(&pdev->dev, master); 536 if (ret) { 537 dev_err(&pdev->dev, "Cannot register SPI master, %d\n", ret); 538 goto out_disable_clk; 539 } 540 541 return 0; 542 543 out_disable_clk: 544 clk_disable_unprepare(ssp->clk); 545 out_dma_release: 546 dma_release_channel(ssp->dmach); 547 out_master_free: 548 spi_master_put(master); 549 return ret; 550 } 551 552 static int mxs_spi_remove(struct platform_device *pdev) 553 { 554 struct spi_master *master; 555 struct mxs_spi *spi; 556 struct mxs_ssp *ssp; 557 558 master = platform_get_drvdata(pdev); 559 spi = spi_master_get_devdata(master); 560 ssp = &spi->ssp; 561 562 clk_disable_unprepare(ssp->clk); 563 dma_release_channel(ssp->dmach); 564 565 return 0; 566 } 567 568 static struct platform_driver mxs_spi_driver = { 569 .probe = mxs_spi_probe, 570 .remove = mxs_spi_remove, 571 .driver = { 572 .name = DRIVER_NAME, 573 .owner = THIS_MODULE, 574 .of_match_table = mxs_spi_dt_ids, 575 }, 576 }; 577 578 module_platform_driver(mxs_spi_driver); 579 580 MODULE_AUTHOR("Marek Vasut <marex@denx.de>"); 581 MODULE_DESCRIPTION("MXS SPI master driver"); 582 MODULE_LICENSE("GPL"); 583 MODULE_ALIAS("platform:mxs-spi"); 584