1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright (C) 2018 Macronix International Co., Ltd. 4 // 5 // Authors: 6 // Mason Yang <masonccyang@mxic.com.tw> 7 // zhengxunli <zhengxunli@mxic.com.tw> 8 // Boris Brezillon <boris.brezillon@bootlin.com> 9 // 10 11 #include <linux/clk.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/nand.h> 16 #include <linux/mtd/nand-ecc-mxic.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 22 #define HC_CFG 0x0 23 #define HC_CFG_IF_CFG(x) ((x) << 27) 24 #define HC_CFG_DUAL_SLAVE BIT(31) 25 #define HC_CFG_INDIVIDUAL BIT(30) 26 #define HC_CFG_NIO(x) (((x) / 4) << 27) 27 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) 28 #define HC_CFG_TYPE_SPI_NOR 0 29 #define HC_CFG_TYPE_SPI_NAND 1 30 #define HC_CFG_TYPE_SPI_RAM 2 31 #define HC_CFG_TYPE_RAW_NAND 3 32 #define HC_CFG_SLV_ACT(x) ((x) << 21) 33 #define HC_CFG_CLK_PH_EN BIT(20) 34 #define HC_CFG_CLK_POL_INV BIT(19) 35 #define HC_CFG_BIG_ENDIAN BIT(18) 36 #define HC_CFG_DATA_PASS BIT(17) 37 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) 38 #define HC_CFG_MAN_START_EN BIT(3) 39 #define HC_CFG_MAN_START BIT(2) 40 #define HC_CFG_MAN_CS_EN BIT(1) 41 #define HC_CFG_MAN_CS_ASSERT BIT(0) 42 43 #define INT_STS 0x4 44 #define INT_STS_EN 0x8 45 #define INT_SIG_EN 0xc 46 #define INT_STS_ALL GENMASK(31, 0) 47 #define INT_RDY_PIN BIT(26) 48 #define INT_RDY_SR BIT(25) 49 #define INT_LNR_SUSP BIT(24) 50 #define INT_ECC_ERR BIT(17) 51 #define INT_CRC_ERR BIT(16) 52 #define INT_LWR_DIS BIT(12) 53 #define INT_LRD_DIS BIT(11) 54 #define INT_SDMA_INT BIT(10) 55 #define INT_DMA_FINISH BIT(9) 56 #define INT_RX_NOT_FULL BIT(3) 57 #define INT_RX_NOT_EMPTY BIT(2) 58 #define INT_TX_NOT_FULL BIT(1) 59 #define INT_TX_EMPTY BIT(0) 60 61 #define HC_EN 0x10 62 #define HC_EN_BIT BIT(0) 63 64 #define TXD(x) (0x14 + ((x) * 4)) 65 #define RXD 0x24 66 67 #define SS_CTRL(s) (0x30 + ((s) * 4)) 68 #define LRD_CFG 0x44 69 #define LWR_CFG 0x80 70 #define RWW_CFG 0x70 71 #define OP_READ BIT(23) 72 #define OP_DUMMY_CYC(x) ((x) << 17) 73 #define OP_ADDR_BYTES(x) ((x) << 14) 74 #define OP_CMD_BYTES(x) (((x) - 1) << 13) 75 #define OP_OCTA_CRC_EN BIT(12) 76 #define OP_DQS_EN BIT(11) 77 #define OP_ENHC_EN BIT(10) 78 #define OP_PREAMBLE_EN BIT(9) 79 #define OP_DATA_DDR BIT(8) 80 #define OP_DATA_BUSW(x) ((x) << 6) 81 #define OP_ADDR_DDR BIT(5) 82 #define OP_ADDR_BUSW(x) ((x) << 3) 83 #define OP_CMD_DDR BIT(2) 84 #define OP_CMD_BUSW(x) (x) 85 #define OP_BUSW_1 0 86 #define OP_BUSW_2 1 87 #define OP_BUSW_4 2 88 #define OP_BUSW_8 3 89 90 #define OCTA_CRC 0x38 91 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) 92 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) 93 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) 94 95 #define ONFI_DIN_CNT(s) (0x3c + (s)) 96 97 #define LRD_CTRL 0x48 98 #define RWW_CTRL 0x74 99 #define LWR_CTRL 0x84 100 #define LMODE_EN BIT(31) 101 #define LMODE_SLV_ACT(x) ((x) << 21) 102 #define LMODE_CMD1(x) ((x) << 8) 103 #define LMODE_CMD0(x) (x) 104 105 #define LRD_ADDR 0x4c 106 #define LWR_ADDR 0x88 107 #define LRD_RANGE 0x50 108 #define LWR_RANGE 0x8c 109 110 #define AXI_SLV_ADDR 0x54 111 112 #define DMAC_RD_CFG 0x58 113 #define DMAC_WR_CFG 0x94 114 #define DMAC_CFG_PERIPH_EN BIT(31) 115 #define DMAC_CFG_ALLFLUSH_EN BIT(30) 116 #define DMAC_CFG_LASTFLUSH_EN BIT(29) 117 #define DMAC_CFG_QE(x) (((x) + 1) << 16) 118 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) 119 #define DMAC_CFG_BURST_SZ(x) ((x) << 8) 120 #define DMAC_CFG_DIR_READ BIT(1) 121 #define DMAC_CFG_START BIT(0) 122 123 #define DMAC_RD_CNT 0x5c 124 #define DMAC_WR_CNT 0x98 125 126 #define SDMA_ADDR 0x60 127 128 #define DMAM_CFG 0x64 129 #define DMAM_CFG_START BIT(31) 130 #define DMAM_CFG_CONT BIT(30) 131 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) 132 #define DMAM_CFG_DIR_READ BIT(1) 133 #define DMAM_CFG_EN BIT(0) 134 135 #define DMAM_CNT 0x68 136 137 #define LNR_TIMER_TH 0x6c 138 139 #define RDM_CFG0 0x78 140 #define RDM_CFG0_POLY(x) (x) 141 142 #define RDM_CFG1 0x7c 143 #define RDM_CFG1_RDM_EN BIT(31) 144 #define RDM_CFG1_SEED(x) (x) 145 146 #define LWR_SUSP_CTRL 0x90 147 #define LWR_SUSP_CTRL_EN BIT(31) 148 149 #define DMAS_CTRL 0x9c 150 #define DMAS_CTRL_EN BIT(31) 151 #define DMAS_CTRL_DIR_READ BIT(30) 152 153 #define DATA_STROB 0xa0 154 #define DATA_STROB_EDO_EN BIT(2) 155 #define DATA_STROB_INV_POL BIT(1) 156 #define DATA_STROB_DELAY_2CYC BIT(0) 157 158 #define IDLY_CODE(x) (0xa4 + ((x) * 4)) 159 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) 160 161 #define GPIO 0xc4 162 #define GPIO_PT(x) BIT(3 + ((x) * 16)) 163 #define GPIO_RESET(x) BIT(2 + ((x) * 16)) 164 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) 165 #define GPIO_WPB(x) BIT((x) * 16) 166 167 #define HC_VER 0xd0 168 169 #define HW_TEST(x) (0xe0 + ((x) * 4)) 170 171 struct mxic_spi { 172 struct device *dev; 173 struct clk *ps_clk; 174 struct clk *send_clk; 175 struct clk *send_dly_clk; 176 void __iomem *regs; 177 u32 cur_speed_hz; 178 struct { 179 void __iomem *map; 180 dma_addr_t dma; 181 size_t size; 182 } linear; 183 184 struct { 185 bool use_pipelined_conf; 186 struct nand_ecc_engine *pipelined_engine; 187 void *ctx; 188 } ecc; 189 }; 190 191 static int mxic_spi_clk_enable(struct mxic_spi *mxic) 192 { 193 int ret; 194 195 ret = clk_prepare_enable(mxic->send_clk); 196 if (ret) 197 return ret; 198 199 ret = clk_prepare_enable(mxic->send_dly_clk); 200 if (ret) 201 goto err_send_dly_clk; 202 203 return ret; 204 205 err_send_dly_clk: 206 clk_disable_unprepare(mxic->send_clk); 207 208 return ret; 209 } 210 211 static void mxic_spi_clk_disable(struct mxic_spi *mxic) 212 { 213 clk_disable_unprepare(mxic->send_clk); 214 clk_disable_unprepare(mxic->send_dly_clk); 215 } 216 217 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) 218 { 219 writel(IDLY_CODE_VAL(0, idly_code) | 220 IDLY_CODE_VAL(1, idly_code) | 221 IDLY_CODE_VAL(2, idly_code) | 222 IDLY_CODE_VAL(3, idly_code), 223 mxic->regs + IDLY_CODE(0)); 224 writel(IDLY_CODE_VAL(4, idly_code) | 225 IDLY_CODE_VAL(5, idly_code) | 226 IDLY_CODE_VAL(6, idly_code) | 227 IDLY_CODE_VAL(7, idly_code), 228 mxic->regs + IDLY_CODE(1)); 229 } 230 231 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) 232 { 233 int ret; 234 235 ret = clk_set_rate(mxic->send_clk, freq); 236 if (ret) 237 return ret; 238 239 ret = clk_set_rate(mxic->send_dly_clk, freq); 240 if (ret) 241 return ret; 242 243 /* 244 * A constant delay range from 0x0 ~ 0x1F for input delay, 245 * the unit is 78 ps, the max input delay is 2.418 ns. 246 */ 247 mxic_spi_set_input_delay_dqs(mxic, 0xf); 248 249 /* 250 * Phase degree = 360 * freq * output-delay 251 * where output-delay is a constant value 1 ns in FPGA. 252 * 253 * Get Phase degree = 360 * freq * 1 ns 254 * = 360 * freq * 1 sec / 1000000000 255 * = 9 * freq / 25000000 256 */ 257 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); 258 if (ret) 259 return ret; 260 261 return 0; 262 } 263 264 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) 265 { 266 int ret; 267 268 if (mxic->cur_speed_hz == freq) 269 return 0; 270 271 mxic_spi_clk_disable(mxic); 272 ret = mxic_spi_clk_setup(mxic, freq); 273 if (ret) 274 return ret; 275 276 ret = mxic_spi_clk_enable(mxic); 277 if (ret) 278 return ret; 279 280 mxic->cur_speed_hz = freq; 281 282 return 0; 283 } 284 285 static void mxic_spi_hw_init(struct mxic_spi *mxic) 286 { 287 writel(0, mxic->regs + DATA_STROB); 288 writel(INT_STS_ALL, mxic->regs + INT_STS_EN); 289 writel(0, mxic->regs + HC_EN); 290 writel(0, mxic->regs + LRD_CFG); 291 writel(0, mxic->regs + LRD_CTRL); 292 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | 293 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), 294 mxic->regs + HC_CFG); 295 } 296 297 static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags) 298 { 299 int nio = 1; 300 301 if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL)) 302 nio = 8; 303 else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) 304 nio = 4; 305 else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) 306 nio = 2; 307 308 return flags | HC_CFG_NIO(nio) | 309 HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) | 310 HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1); 311 } 312 313 static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op, 314 unsigned int data_len) 315 { 316 u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) | 317 OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) | 318 (op->cmd.dtr ? OP_CMD_DDR : 0); 319 320 if (op->addr.nbytes) 321 cfg |= OP_ADDR_BYTES(op->addr.nbytes) | 322 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) | 323 (op->addr.dtr ? OP_ADDR_DDR : 0); 324 325 if (op->dummy.nbytes) 326 cfg |= OP_DUMMY_CYC(op->dummy.nbytes); 327 328 /* Direct mapping data.nbytes field is not populated */ 329 if (data_len) { 330 cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) | 331 (op->data.dtr ? OP_DATA_DDR : 0); 332 if (op->data.dir == SPI_MEM_DATA_IN) { 333 cfg |= OP_READ; 334 if (op->data.dtr) 335 cfg |= OP_DQS_EN; 336 } 337 } 338 339 return cfg; 340 } 341 342 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, 343 void *rxbuf, unsigned int len) 344 { 345 unsigned int pos = 0; 346 347 while (pos < len) { 348 unsigned int nbytes = len - pos; 349 u32 data = 0xffffffff; 350 u32 sts; 351 int ret; 352 353 if (nbytes > 4) 354 nbytes = 4; 355 356 if (txbuf) 357 memcpy(&data, txbuf + pos, nbytes); 358 359 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 360 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 361 if (ret) 362 return ret; 363 364 writel(data, mxic->regs + TXD(nbytes % 4)); 365 366 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 367 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 368 if (ret) 369 return ret; 370 371 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 372 sts & INT_RX_NOT_EMPTY, 0, 373 USEC_PER_SEC); 374 if (ret) 375 return ret; 376 377 data = readl(mxic->regs + RXD); 378 if (rxbuf) { 379 data >>= (8 * (4 - nbytes)); 380 memcpy(rxbuf + pos, &data, nbytes); 381 } 382 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 383 384 pos += nbytes; 385 } 386 387 return 0; 388 } 389 390 static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 391 u64 offs, size_t len, void *buf) 392 { 393 struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); 394 int ret; 395 u32 sts; 396 397 if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) 398 return -EINVAL; 399 400 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); 401 402 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), 403 mxic->regs + LRD_CFG); 404 writel(desc->info.offset + offs, mxic->regs + LRD_ADDR); 405 len = min_t(size_t, len, mxic->linear.size); 406 writel(len, mxic->regs + LRD_RANGE); 407 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | 408 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | 409 LMODE_EN, 410 mxic->regs + LRD_CTRL); 411 412 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { 413 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, 414 NAND_PAGE_READ, 415 mxic->linear.dma + offs); 416 if (ret) 417 return ret; 418 } else { 419 memcpy_fromio(buf, mxic->linear.map, len); 420 } 421 422 writel(INT_LRD_DIS, mxic->regs + INT_STS); 423 writel(0, mxic->regs + LRD_CTRL); 424 425 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 426 sts & INT_LRD_DIS, 0, USEC_PER_SEC); 427 if (ret) 428 return ret; 429 430 return len; 431 } 432 433 static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 434 u64 offs, size_t len, 435 const void *buf) 436 { 437 struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); 438 u32 sts; 439 int ret; 440 441 if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) 442 return -EINVAL; 443 444 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0), mxic->regs + HC_CFG); 445 446 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), 447 mxic->regs + LWR_CFG); 448 writel(desc->info.offset + offs, mxic->regs + LWR_ADDR); 449 len = min_t(size_t, len, mxic->linear.size); 450 writel(len, mxic->regs + LWR_RANGE); 451 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | 452 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | 453 LMODE_EN, 454 mxic->regs + LWR_CTRL); 455 456 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { 457 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, 458 NAND_PAGE_WRITE, 459 mxic->linear.dma + offs); 460 if (ret) 461 return ret; 462 } else { 463 memcpy_toio(mxic->linear.map, buf, len); 464 } 465 466 writel(INT_LWR_DIS, mxic->regs + INT_STS); 467 writel(0, mxic->regs + LWR_CTRL); 468 469 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 470 sts & INT_LWR_DIS, 0, USEC_PER_SEC); 471 if (ret) 472 return ret; 473 474 return len; 475 } 476 477 static bool mxic_spi_mem_supports_op(struct spi_mem *mem, 478 const struct spi_mem_op *op) 479 { 480 if (op->data.buswidth > 8 || op->addr.buswidth > 8 || 481 op->dummy.buswidth > 8 || op->cmd.buswidth > 8) 482 return false; 483 484 if (op->data.nbytes && op->dummy.nbytes && 485 op->data.buswidth != op->dummy.buswidth) 486 return false; 487 488 if (op->addr.nbytes > 7) 489 return false; 490 491 return spi_mem_default_supports_op(mem, op); 492 } 493 494 static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc) 495 { 496 struct mxic_spi *mxic = spi_master_get_devdata(desc->mem->spi->master); 497 498 if (!mxic->linear.map) 499 return -EINVAL; 500 501 if (desc->info.offset + desc->info.length > U32_MAX) 502 return -EINVAL; 503 504 if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 505 return -EOPNOTSUPP; 506 507 return 0; 508 } 509 510 static int mxic_spi_mem_exec_op(struct spi_mem *mem, 511 const struct spi_mem_op *op) 512 { 513 struct mxic_spi *mxic = spi_master_get_devdata(mem->spi->master); 514 int i, ret; 515 u8 addr[8], cmd[2]; 516 517 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); 518 if (ret) 519 return ret; 520 521 writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN), 522 mxic->regs + HC_CFG); 523 524 writel(HC_EN_BIT, mxic->regs + HC_EN); 525 526 writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes), 527 mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0))); 528 529 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 530 mxic->regs + HC_CFG); 531 532 for (i = 0; i < op->cmd.nbytes; i++) 533 cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); 534 535 ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes); 536 if (ret) 537 goto out; 538 539 for (i = 0; i < op->addr.nbytes; i++) 540 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); 541 542 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); 543 if (ret) 544 goto out; 545 546 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); 547 if (ret) 548 goto out; 549 550 ret = mxic_spi_data_xfer(mxic, 551 op->data.dir == SPI_MEM_DATA_OUT ? 552 op->data.buf.out : NULL, 553 op->data.dir == SPI_MEM_DATA_IN ? 554 op->data.buf.in : NULL, 555 op->data.nbytes); 556 557 out: 558 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 559 mxic->regs + HC_CFG); 560 writel(0, mxic->regs + HC_EN); 561 562 return ret; 563 } 564 565 static const struct spi_controller_mem_ops mxic_spi_mem_ops = { 566 .supports_op = mxic_spi_mem_supports_op, 567 .exec_op = mxic_spi_mem_exec_op, 568 .dirmap_create = mxic_spi_mem_dirmap_create, 569 .dirmap_read = mxic_spi_mem_dirmap_read, 570 .dirmap_write = mxic_spi_mem_dirmap_write, 571 }; 572 573 static const struct spi_controller_mem_caps mxic_spi_mem_caps = { 574 .dtr = true, 575 .ecc = true, 576 }; 577 578 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) 579 { 580 struct mxic_spi *mxic = spi_master_get_devdata(spi->master); 581 582 if (!lvl) { 583 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, 584 mxic->regs + HC_CFG); 585 writel(HC_EN_BIT, mxic->regs + HC_EN); 586 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 587 mxic->regs + HC_CFG); 588 } else { 589 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 590 mxic->regs + HC_CFG); 591 writel(0, mxic->regs + HC_EN); 592 } 593 } 594 595 static int mxic_spi_transfer_one(struct spi_master *master, 596 struct spi_device *spi, 597 struct spi_transfer *t) 598 { 599 struct mxic_spi *mxic = spi_master_get_devdata(master); 600 unsigned int busw = OP_BUSW_1; 601 int ret; 602 603 if (t->rx_buf && t->tx_buf) { 604 if (((spi->mode & SPI_TX_QUAD) && 605 !(spi->mode & SPI_RX_QUAD)) || 606 ((spi->mode & SPI_TX_DUAL) && 607 !(spi->mode & SPI_RX_DUAL))) 608 return -ENOTSUPP; 609 } 610 611 ret = mxic_spi_set_freq(mxic, t->speed_hz); 612 if (ret) 613 return ret; 614 615 if (t->tx_buf) { 616 if (spi->mode & SPI_TX_QUAD) 617 busw = OP_BUSW_4; 618 else if (spi->mode & SPI_TX_DUAL) 619 busw = OP_BUSW_2; 620 } else if (t->rx_buf) { 621 if (spi->mode & SPI_RX_QUAD) 622 busw = OP_BUSW_4; 623 else if (spi->mode & SPI_RX_DUAL) 624 busw = OP_BUSW_2; 625 } 626 627 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | 628 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), 629 mxic->regs + SS_CTRL(0)); 630 631 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); 632 if (ret) 633 return ret; 634 635 spi_finalize_current_transfer(master); 636 637 return 0; 638 } 639 640 /* ECC wrapper */ 641 static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand) 642 { 643 struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 644 struct mxic_spi *mxic = nand->ecc.engine->priv; 645 646 mxic->ecc.use_pipelined_conf = true; 647 648 return ops->init_ctx(nand); 649 } 650 651 static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand) 652 { 653 struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 654 struct mxic_spi *mxic = nand->ecc.engine->priv; 655 656 mxic->ecc.use_pipelined_conf = false; 657 658 ops->cleanup_ctx(nand); 659 } 660 661 static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand, 662 struct nand_page_io_req *req) 663 { 664 struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 665 666 return ops->prepare_io_req(nand, req); 667 } 668 669 static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand, 670 struct nand_page_io_req *req) 671 { 672 struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 673 674 return ops->finish_io_req(nand, req); 675 } 676 677 static struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = { 678 .init_ctx = mxic_spi_mem_ecc_init_ctx, 679 .cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx, 680 .prepare_io_req = mxic_spi_mem_ecc_prepare_io_req, 681 .finish_io_req = mxic_spi_mem_ecc_finish_io_req, 682 }; 683 684 static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic) 685 { 686 if (mxic->ecc.pipelined_engine) { 687 mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine); 688 nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine); 689 } 690 } 691 692 static int mxic_spi_mem_ecc_probe(struct platform_device *pdev, 693 struct mxic_spi *mxic) 694 { 695 struct nand_ecc_engine *eng; 696 697 if (!mxic_ecc_get_pipelined_ops()) 698 return -EOPNOTSUPP; 699 700 eng = mxic_ecc_get_pipelined_engine(pdev); 701 if (IS_ERR(eng)) 702 return PTR_ERR(eng); 703 704 eng->dev = &pdev->dev; 705 eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; 706 eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops; 707 eng->priv = mxic; 708 mxic->ecc.pipelined_engine = eng; 709 nand_ecc_register_on_host_hw_engine(eng); 710 711 return 0; 712 } 713 714 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) 715 { 716 struct spi_master *master = dev_get_drvdata(dev); 717 struct mxic_spi *mxic = spi_master_get_devdata(master); 718 719 mxic_spi_clk_disable(mxic); 720 clk_disable_unprepare(mxic->ps_clk); 721 722 return 0; 723 } 724 725 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) 726 { 727 struct spi_master *master = dev_get_drvdata(dev); 728 struct mxic_spi *mxic = spi_master_get_devdata(master); 729 int ret; 730 731 ret = clk_prepare_enable(mxic->ps_clk); 732 if (ret) { 733 dev_err(dev, "Cannot enable ps_clock.\n"); 734 return ret; 735 } 736 737 return mxic_spi_clk_enable(mxic); 738 } 739 740 static const struct dev_pm_ops mxic_spi_dev_pm_ops = { 741 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, 742 mxic_spi_runtime_resume, NULL) 743 }; 744 745 static int mxic_spi_probe(struct platform_device *pdev) 746 { 747 struct spi_master *master; 748 struct resource *res; 749 struct mxic_spi *mxic; 750 int ret; 751 752 master = devm_spi_alloc_master(&pdev->dev, sizeof(struct mxic_spi)); 753 if (!master) 754 return -ENOMEM; 755 756 platform_set_drvdata(pdev, master); 757 758 mxic = spi_master_get_devdata(master); 759 mxic->dev = &pdev->dev; 760 761 master->dev.of_node = pdev->dev.of_node; 762 763 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); 764 if (IS_ERR(mxic->ps_clk)) 765 return PTR_ERR(mxic->ps_clk); 766 767 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); 768 if (IS_ERR(mxic->send_clk)) 769 return PTR_ERR(mxic->send_clk); 770 771 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); 772 if (IS_ERR(mxic->send_dly_clk)) 773 return PTR_ERR(mxic->send_dly_clk); 774 775 mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); 776 if (IS_ERR(mxic->regs)) 777 return PTR_ERR(mxic->regs); 778 779 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap"); 780 mxic->linear.map = devm_ioremap_resource(&pdev->dev, res); 781 if (!IS_ERR(mxic->linear.map)) { 782 mxic->linear.dma = res->start; 783 mxic->linear.size = resource_size(res); 784 } else { 785 mxic->linear.map = NULL; 786 } 787 788 pm_runtime_enable(&pdev->dev); 789 master->auto_runtime_pm = true; 790 791 master->num_chipselect = 1; 792 master->mem_ops = &mxic_spi_mem_ops; 793 master->mem_caps = &mxic_spi_mem_caps; 794 795 master->set_cs = mxic_spi_set_cs; 796 master->transfer_one = mxic_spi_transfer_one; 797 master->bits_per_word_mask = SPI_BPW_MASK(8); 798 master->mode_bits = SPI_CPOL | SPI_CPHA | 799 SPI_RX_DUAL | SPI_TX_DUAL | 800 SPI_RX_QUAD | SPI_TX_QUAD | 801 SPI_RX_OCTAL | SPI_TX_OCTAL; 802 803 mxic_spi_hw_init(mxic); 804 805 ret = mxic_spi_mem_ecc_probe(pdev, mxic); 806 if (ret == -EPROBE_DEFER) { 807 pm_runtime_disable(&pdev->dev); 808 return ret; 809 } 810 811 ret = spi_register_master(master); 812 if (ret) { 813 dev_err(&pdev->dev, "spi_register_master failed\n"); 814 pm_runtime_disable(&pdev->dev); 815 mxic_spi_mem_ecc_remove(mxic); 816 } 817 818 return ret; 819 } 820 821 static void mxic_spi_remove(struct platform_device *pdev) 822 { 823 struct spi_master *master = platform_get_drvdata(pdev); 824 struct mxic_spi *mxic = spi_master_get_devdata(master); 825 826 pm_runtime_disable(&pdev->dev); 827 mxic_spi_mem_ecc_remove(mxic); 828 spi_unregister_master(master); 829 } 830 831 static const struct of_device_id mxic_spi_of_ids[] = { 832 { .compatible = "mxicy,mx25f0a-spi", }, 833 { /* sentinel */ } 834 }; 835 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); 836 837 static struct platform_driver mxic_spi_driver = { 838 .probe = mxic_spi_probe, 839 .remove_new = mxic_spi_remove, 840 .driver = { 841 .name = "mxic-spi", 842 .of_match_table = mxic_spi_of_ids, 843 .pm = &mxic_spi_dev_pm_ops, 844 }, 845 }; 846 module_platform_driver(mxic_spi_driver); 847 848 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); 849 MODULE_DESCRIPTION("MX25F0A SPI controller driver"); 850 MODULE_LICENSE("GPL v2"); 851