xref: /linux/drivers/spi/spi-mxic.c (revision e814f3fd16acfb7f9966773953de8f740a1e3202)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Copyright (C) 2018 Macronix International Co., Ltd.
4 //
5 // Authors:
6 //	Mason Yang <masonccyang@mxic.com.tw>
7 //	zhengxunli <zhengxunli@mxic.com.tw>
8 //	Boris Brezillon <boris.brezillon@bootlin.com>
9 //
10 
11 #include <linux/clk.h>
12 #include <linux/io.h>
13 #include <linux/iopoll.h>
14 #include <linux/module.h>
15 #include <linux/mtd/nand.h>
16 #include <linux/mtd/nand-ecc-mxic.h>
17 #include <linux/platform_device.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20 #include <linux/spi/spi-mem.h>
21 
22 #define HC_CFG			0x0
23 #define HC_CFG_IF_CFG(x)	((x) << 27)
24 #define HC_CFG_DUAL_SLAVE	BIT(31)
25 #define HC_CFG_INDIVIDUAL	BIT(30)
26 #define HC_CFG_NIO(x)		(((x) / 4) << 27)
27 #define HC_CFG_TYPE(s, t)	((t) << (23 + ((s) * 2)))
28 #define HC_CFG_TYPE_SPI_NOR	0
29 #define HC_CFG_TYPE_SPI_NAND	1
30 #define HC_CFG_TYPE_SPI_RAM	2
31 #define HC_CFG_TYPE_RAW_NAND	3
32 #define HC_CFG_SLV_ACT(x)	((x) << 21)
33 #define HC_CFG_CLK_PH_EN	BIT(20)
34 #define HC_CFG_CLK_POL_INV	BIT(19)
35 #define HC_CFG_BIG_ENDIAN	BIT(18)
36 #define HC_CFG_DATA_PASS	BIT(17)
37 #define HC_CFG_IDLE_SIO_LVL(x)	((x) << 16)
38 #define HC_CFG_MAN_START_EN	BIT(3)
39 #define HC_CFG_MAN_START	BIT(2)
40 #define HC_CFG_MAN_CS_EN	BIT(1)
41 #define HC_CFG_MAN_CS_ASSERT	BIT(0)
42 
43 #define INT_STS			0x4
44 #define INT_STS_EN		0x8
45 #define INT_SIG_EN		0xc
46 #define INT_STS_ALL		GENMASK(31, 0)
47 #define INT_RDY_PIN		BIT(26)
48 #define INT_RDY_SR		BIT(25)
49 #define INT_LNR_SUSP		BIT(24)
50 #define INT_ECC_ERR		BIT(17)
51 #define INT_CRC_ERR		BIT(16)
52 #define INT_LWR_DIS		BIT(12)
53 #define INT_LRD_DIS		BIT(11)
54 #define INT_SDMA_INT		BIT(10)
55 #define INT_DMA_FINISH		BIT(9)
56 #define INT_RX_NOT_FULL		BIT(3)
57 #define INT_RX_NOT_EMPTY	BIT(2)
58 #define INT_TX_NOT_FULL		BIT(1)
59 #define INT_TX_EMPTY		BIT(0)
60 
61 #define HC_EN			0x10
62 #define HC_EN_BIT		BIT(0)
63 
64 #define TXD(x)			(0x14 + ((x) * 4))
65 #define RXD			0x24
66 
67 #define SS_CTRL(s)		(0x30 + ((s) * 4))
68 #define LRD_CFG			0x44
69 #define LWR_CFG			0x80
70 #define RWW_CFG			0x70
71 #define OP_READ			BIT(23)
72 #define OP_DUMMY_CYC(x)		((x) << 17)
73 #define OP_ADDR_BYTES(x)	((x) << 14)
74 #define OP_CMD_BYTES(x)		(((x) - 1) << 13)
75 #define OP_OCTA_CRC_EN		BIT(12)
76 #define OP_DQS_EN		BIT(11)
77 #define OP_ENHC_EN		BIT(10)
78 #define OP_PREAMBLE_EN		BIT(9)
79 #define OP_DATA_DDR		BIT(8)
80 #define OP_DATA_BUSW(x)		((x) << 6)
81 #define OP_ADDR_DDR		BIT(5)
82 #define OP_ADDR_BUSW(x)		((x) << 3)
83 #define OP_CMD_DDR		BIT(2)
84 #define OP_CMD_BUSW(x)		(x)
85 #define OP_BUSW_1		0
86 #define OP_BUSW_2		1
87 #define OP_BUSW_4		2
88 #define OP_BUSW_8		3
89 
90 #define OCTA_CRC		0x38
91 #define OCTA_CRC_IN_EN(s)	BIT(3 + ((s) * 16))
92 #define OCTA_CRC_CHUNK(s, x)	((fls((x) / 32)) << (1 + ((s) * 16)))
93 #define OCTA_CRC_OUT_EN(s)	BIT(0 + ((s) * 16))
94 
95 #define ONFI_DIN_CNT(s)		(0x3c + (s))
96 
97 #define LRD_CTRL		0x48
98 #define RWW_CTRL		0x74
99 #define LWR_CTRL		0x84
100 #define LMODE_EN		BIT(31)
101 #define LMODE_SLV_ACT(x)	((x) << 21)
102 #define LMODE_CMD1(x)		((x) << 8)
103 #define LMODE_CMD0(x)		(x)
104 
105 #define LRD_ADDR		0x4c
106 #define LWR_ADDR		0x88
107 #define LRD_RANGE		0x50
108 #define LWR_RANGE		0x8c
109 
110 #define AXI_SLV_ADDR		0x54
111 
112 #define DMAC_RD_CFG		0x58
113 #define DMAC_WR_CFG		0x94
114 #define DMAC_CFG_PERIPH_EN	BIT(31)
115 #define DMAC_CFG_ALLFLUSH_EN	BIT(30)
116 #define DMAC_CFG_LASTFLUSH_EN	BIT(29)
117 #define DMAC_CFG_QE(x)		(((x) + 1) << 16)
118 #define DMAC_CFG_BURST_LEN(x)	(((x) + 1) << 12)
119 #define DMAC_CFG_BURST_SZ(x)	((x) << 8)
120 #define DMAC_CFG_DIR_READ	BIT(1)
121 #define DMAC_CFG_START		BIT(0)
122 
123 #define DMAC_RD_CNT		0x5c
124 #define DMAC_WR_CNT		0x98
125 
126 #define SDMA_ADDR		0x60
127 
128 #define DMAM_CFG		0x64
129 #define DMAM_CFG_START		BIT(31)
130 #define DMAM_CFG_CONT		BIT(30)
131 #define DMAM_CFG_SDMA_GAP(x)	(fls((x) / 8192) << 2)
132 #define DMAM_CFG_DIR_READ	BIT(1)
133 #define DMAM_CFG_EN		BIT(0)
134 
135 #define DMAM_CNT		0x68
136 
137 #define LNR_TIMER_TH		0x6c
138 
139 #define RDM_CFG0		0x78
140 #define RDM_CFG0_POLY(x)	(x)
141 
142 #define RDM_CFG1		0x7c
143 #define RDM_CFG1_RDM_EN		BIT(31)
144 #define RDM_CFG1_SEED(x)	(x)
145 
146 #define LWR_SUSP_CTRL		0x90
147 #define LWR_SUSP_CTRL_EN	BIT(31)
148 
149 #define DMAS_CTRL		0x9c
150 #define DMAS_CTRL_EN		BIT(31)
151 #define DMAS_CTRL_DIR_READ	BIT(30)
152 
153 #define DATA_STROB		0xa0
154 #define DATA_STROB_EDO_EN	BIT(2)
155 #define DATA_STROB_INV_POL	BIT(1)
156 #define DATA_STROB_DELAY_2CYC	BIT(0)
157 
158 #define IDLY_CODE(x)		(0xa4 + ((x) * 4))
159 #define IDLY_CODE_VAL(x, v)	((v) << (((x) % 4) * 8))
160 
161 #define GPIO			0xc4
162 #define GPIO_PT(x)		BIT(3 + ((x) * 16))
163 #define GPIO_RESET(x)		BIT(2 + ((x) * 16))
164 #define GPIO_HOLDB(x)		BIT(1 + ((x) * 16))
165 #define GPIO_WPB(x)		BIT((x) * 16)
166 
167 #define HC_VER			0xd0
168 
169 #define HW_TEST(x)		(0xe0 + ((x) * 4))
170 
171 struct mxic_spi {
172 	struct device *dev;
173 	struct clk *ps_clk;
174 	struct clk *send_clk;
175 	struct clk *send_dly_clk;
176 	void __iomem *regs;
177 	u32 cur_speed_hz;
178 	struct {
179 		void __iomem *map;
180 		dma_addr_t dma;
181 		size_t size;
182 	} linear;
183 
184 	struct {
185 		bool use_pipelined_conf;
186 		struct nand_ecc_engine *pipelined_engine;
187 		void *ctx;
188 	} ecc;
189 };
190 
191 static int mxic_spi_clk_enable(struct mxic_spi *mxic)
192 {
193 	int ret;
194 
195 	ret = clk_prepare_enable(mxic->send_clk);
196 	if (ret)
197 		return ret;
198 
199 	ret = clk_prepare_enable(mxic->send_dly_clk);
200 	if (ret)
201 		goto err_send_dly_clk;
202 
203 	return ret;
204 
205 err_send_dly_clk:
206 	clk_disable_unprepare(mxic->send_clk);
207 
208 	return ret;
209 }
210 
211 static void mxic_spi_clk_disable(struct mxic_spi *mxic)
212 {
213 	clk_disable_unprepare(mxic->send_clk);
214 	clk_disable_unprepare(mxic->send_dly_clk);
215 }
216 
217 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code)
218 {
219 	writel(IDLY_CODE_VAL(0, idly_code) |
220 	       IDLY_CODE_VAL(1, idly_code) |
221 	       IDLY_CODE_VAL(2, idly_code) |
222 	       IDLY_CODE_VAL(3, idly_code),
223 	       mxic->regs + IDLY_CODE(0));
224 	writel(IDLY_CODE_VAL(4, idly_code) |
225 	       IDLY_CODE_VAL(5, idly_code) |
226 	       IDLY_CODE_VAL(6, idly_code) |
227 	       IDLY_CODE_VAL(7, idly_code),
228 	       mxic->regs + IDLY_CODE(1));
229 }
230 
231 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq)
232 {
233 	int ret;
234 
235 	ret = clk_set_rate(mxic->send_clk, freq);
236 	if (ret)
237 		return ret;
238 
239 	ret = clk_set_rate(mxic->send_dly_clk, freq);
240 	if (ret)
241 		return ret;
242 
243 	/*
244 	 * A constant delay range from 0x0 ~ 0x1F for input delay,
245 	 * the unit is 78 ps, the max input delay is 2.418 ns.
246 	 */
247 	mxic_spi_set_input_delay_dqs(mxic, 0xf);
248 
249 	/*
250 	 * Phase degree = 360 * freq * output-delay
251 	 * where output-delay is a constant value 1 ns in FPGA.
252 	 *
253 	 * Get Phase degree = 360 * freq * 1 ns
254 	 *                  = 360 * freq * 1 sec / 1000000000
255 	 *                  = 9 * freq / 25000000
256 	 */
257 	ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000);
258 	if (ret)
259 		return ret;
260 
261 	return 0;
262 }
263 
264 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq)
265 {
266 	int ret;
267 
268 	if (mxic->cur_speed_hz == freq)
269 		return 0;
270 
271 	mxic_spi_clk_disable(mxic);
272 	ret = mxic_spi_clk_setup(mxic, freq);
273 	if (ret)
274 		return ret;
275 
276 	ret = mxic_spi_clk_enable(mxic);
277 	if (ret)
278 		return ret;
279 
280 	mxic->cur_speed_hz = freq;
281 
282 	return 0;
283 }
284 
285 static void mxic_spi_hw_init(struct mxic_spi *mxic)
286 {
287 	writel(0, mxic->regs + DATA_STROB);
288 	writel(INT_STS_ALL, mxic->regs + INT_STS_EN);
289 	writel(0, mxic->regs + HC_EN);
290 	writel(0, mxic->regs + LRD_CFG);
291 	writel(0, mxic->regs + LRD_CTRL);
292 	writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) |
293 	       HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1),
294 	       mxic->regs + HC_CFG);
295 }
296 
297 static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags,
298 				bool swap16)
299 {
300 	int nio = 1;
301 
302 	if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL))
303 		nio = 8;
304 	else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD))
305 		nio = 4;
306 	else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL))
307 		nio = 2;
308 
309 	if (swap16)
310 		flags &= ~HC_CFG_DATA_PASS;
311 	else
312 		flags |= HC_CFG_DATA_PASS;
313 
314 	return flags | HC_CFG_NIO(nio) |
315 	       HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) |
316 	       HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1);
317 }
318 
319 static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op,
320 				    unsigned int data_len)
321 {
322 	u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) |
323 		  OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) |
324 		  (op->cmd.dtr ? OP_CMD_DDR : 0);
325 
326 	if (op->addr.nbytes)
327 		cfg |= OP_ADDR_BYTES(op->addr.nbytes) |
328 		       OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) |
329 		       (op->addr.dtr ? OP_ADDR_DDR : 0);
330 
331 	if (op->dummy.nbytes)
332 		cfg |= OP_DUMMY_CYC(op->dummy.nbytes);
333 
334 	/* Direct mapping data.nbytes field is not populated */
335 	if (data_len) {
336 		cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) |
337 		       (op->data.dtr ? OP_DATA_DDR : 0);
338 		if (op->data.dir == SPI_MEM_DATA_IN) {
339 			cfg |= OP_READ;
340 			if (op->data.dtr)
341 				cfg |= OP_DQS_EN;
342 		}
343 	}
344 
345 	return cfg;
346 }
347 
348 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf,
349 			      void *rxbuf, unsigned int len)
350 {
351 	unsigned int pos = 0;
352 
353 	while (pos < len) {
354 		unsigned int nbytes = len - pos;
355 		u32 data = 0xffffffff;
356 		u32 sts;
357 		int ret;
358 
359 		if (nbytes > 4)
360 			nbytes = 4;
361 
362 		if (txbuf)
363 			memcpy(&data, txbuf + pos, nbytes);
364 
365 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
366 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
367 		if (ret)
368 			return ret;
369 
370 		writel(data, mxic->regs + TXD(nbytes % 4));
371 
372 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
373 					 sts & INT_TX_EMPTY, 0, USEC_PER_SEC);
374 		if (ret)
375 			return ret;
376 
377 		ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
378 					 sts & INT_RX_NOT_EMPTY, 0,
379 					 USEC_PER_SEC);
380 		if (ret)
381 			return ret;
382 
383 		data = readl(mxic->regs + RXD);
384 		if (rxbuf) {
385 			data >>= (8 * (4 - nbytes));
386 			memcpy(rxbuf + pos, &data, nbytes);
387 		}
388 		WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY);
389 
390 		pos += nbytes;
391 	}
392 
393 	return 0;
394 }
395 
396 static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc,
397 					u64 offs, size_t len, void *buf)
398 {
399 	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
400 	int ret;
401 	u32 sts;
402 
403 	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
404 		return -EINVAL;
405 
406 	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
407 	       mxic->regs + HC_CFG);
408 
409 	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
410 	       mxic->regs + LRD_CFG);
411 	writel(desc->info.offset + offs, mxic->regs + LRD_ADDR);
412 	len = min_t(size_t, len, mxic->linear.size);
413 	writel(len, mxic->regs + LRD_RANGE);
414 	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
415 	       LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
416 	       LMODE_EN,
417 	       mxic->regs + LRD_CTRL);
418 
419 	if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
420 		ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
421 						      NAND_PAGE_READ,
422 						      mxic->linear.dma + offs);
423 		if (ret)
424 			return ret;
425 	} else {
426 		memcpy_fromio(buf, mxic->linear.map, len);
427 	}
428 
429 	writel(INT_LRD_DIS, mxic->regs + INT_STS);
430 	writel(0, mxic->regs + LRD_CTRL);
431 
432 	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
433 				 sts & INT_LRD_DIS, 0, USEC_PER_SEC);
434 	if (ret)
435 		return ret;
436 
437 	return len;
438 }
439 
440 static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc,
441 					 u64 offs, size_t len,
442 					 const void *buf)
443 {
444 	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
445 	u32 sts;
446 	int ret;
447 
448 	if (WARN_ON(offs + desc->info.offset + len > U32_MAX))
449 		return -EINVAL;
450 
451 	writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16),
452 	       mxic->regs + HC_CFG);
453 
454 	writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len),
455 	       mxic->regs + LWR_CFG);
456 	writel(desc->info.offset + offs, mxic->regs + LWR_ADDR);
457 	len = min_t(size_t, len, mxic->linear.size);
458 	writel(len, mxic->regs + LWR_RANGE);
459 	writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) |
460 	       LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) |
461 	       LMODE_EN,
462 	       mxic->regs + LWR_CTRL);
463 
464 	if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) {
465 		ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine,
466 						      NAND_PAGE_WRITE,
467 						      mxic->linear.dma + offs);
468 		if (ret)
469 			return ret;
470 	} else {
471 		memcpy_toio(mxic->linear.map, buf, len);
472 	}
473 
474 	writel(INT_LWR_DIS, mxic->regs + INT_STS);
475 	writel(0, mxic->regs + LWR_CTRL);
476 
477 	ret = readl_poll_timeout(mxic->regs + INT_STS, sts,
478 				 sts & INT_LWR_DIS, 0, USEC_PER_SEC);
479 	if (ret)
480 		return ret;
481 
482 	return len;
483 }
484 
485 static bool mxic_spi_mem_supports_op(struct spi_mem *mem,
486 				     const struct spi_mem_op *op)
487 {
488 	if (op->data.buswidth > 8 || op->addr.buswidth > 8 ||
489 	    op->dummy.buswidth > 8 || op->cmd.buswidth > 8)
490 		return false;
491 
492 	if (op->data.nbytes && op->dummy.nbytes &&
493 	    op->data.buswidth != op->dummy.buswidth)
494 		return false;
495 
496 	if (op->addr.nbytes > 7)
497 		return false;
498 
499 	return spi_mem_default_supports_op(mem, op);
500 }
501 
502 static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc)
503 {
504 	struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller);
505 
506 	if (!mxic->linear.map)
507 		return -EOPNOTSUPP;
508 
509 	if (desc->info.offset + desc->info.length > U32_MAX)
510 		return -EINVAL;
511 
512 	if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl))
513 		return -EOPNOTSUPP;
514 
515 	return 0;
516 }
517 
518 static int mxic_spi_mem_exec_op(struct spi_mem *mem,
519 				const struct spi_mem_op *op)
520 {
521 	struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller);
522 	int i, ret;
523 	u8 addr[8], cmd[2];
524 
525 	ret = mxic_spi_set_freq(mxic, op->max_freq);
526 	if (ret)
527 		return ret;
528 
529 	writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN, op->data.swap16),
530 	       mxic->regs + HC_CFG);
531 
532 	writel(HC_EN_BIT, mxic->regs + HC_EN);
533 
534 	writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes),
535 	       mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0)));
536 
537 	writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
538 	       mxic->regs + HC_CFG);
539 
540 	for (i = 0; i < op->cmd.nbytes; i++)
541 		cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1));
542 
543 	ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes);
544 	if (ret)
545 		goto out;
546 
547 	for (i = 0; i < op->addr.nbytes; i++)
548 		addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1));
549 
550 	ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes);
551 	if (ret)
552 		goto out;
553 
554 	ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes);
555 	if (ret)
556 		goto out;
557 
558 	ret = mxic_spi_data_xfer(mxic,
559 				 op->data.dir == SPI_MEM_DATA_OUT ?
560 				 op->data.buf.out : NULL,
561 				 op->data.dir == SPI_MEM_DATA_IN ?
562 				 op->data.buf.in : NULL,
563 				 op->data.nbytes);
564 
565 out:
566 	writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
567 	       mxic->regs + HC_CFG);
568 	writel(0, mxic->regs + HC_EN);
569 
570 	return ret;
571 }
572 
573 static const struct spi_controller_mem_ops mxic_spi_mem_ops = {
574 	.supports_op = mxic_spi_mem_supports_op,
575 	.exec_op = mxic_spi_mem_exec_op,
576 	.dirmap_create = mxic_spi_mem_dirmap_create,
577 	.dirmap_read = mxic_spi_mem_dirmap_read,
578 	.dirmap_write = mxic_spi_mem_dirmap_write,
579 };
580 
581 static const struct spi_controller_mem_caps mxic_spi_mem_caps = {
582 	.dtr = true,
583 	.ecc = true,
584 	.swap16 = true,
585 	.per_op_freq = true,
586 };
587 
588 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl)
589 {
590 	struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller);
591 
592 	if (!lvl) {
593 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN,
594 		       mxic->regs + HC_CFG);
595 		writel(HC_EN_BIT, mxic->regs + HC_EN);
596 		writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT,
597 		       mxic->regs + HC_CFG);
598 	} else {
599 		writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT,
600 		       mxic->regs + HC_CFG);
601 		writel(0, mxic->regs + HC_EN);
602 	}
603 }
604 
605 static int mxic_spi_transfer_one(struct spi_controller *host,
606 				 struct spi_device *spi,
607 				 struct spi_transfer *t)
608 {
609 	struct mxic_spi *mxic = spi_controller_get_devdata(host);
610 	unsigned int busw = OP_BUSW_1;
611 	int ret;
612 
613 	if (t->rx_buf && t->tx_buf) {
614 		if (((spi->mode & SPI_TX_QUAD) &&
615 		     !(spi->mode & SPI_RX_QUAD)) ||
616 		    ((spi->mode & SPI_TX_DUAL) &&
617 		     !(spi->mode & SPI_RX_DUAL)))
618 			return -ENOTSUPP;
619 	}
620 
621 	ret = mxic_spi_set_freq(mxic, t->speed_hz);
622 	if (ret)
623 		return ret;
624 
625 	if (t->tx_buf) {
626 		if (spi->mode & SPI_TX_QUAD)
627 			busw = OP_BUSW_4;
628 		else if (spi->mode & SPI_TX_DUAL)
629 			busw = OP_BUSW_2;
630 	} else if (t->rx_buf) {
631 		if (spi->mode & SPI_RX_QUAD)
632 			busw = OP_BUSW_4;
633 		else if (spi->mode & SPI_RX_DUAL)
634 			busw = OP_BUSW_2;
635 	}
636 
637 	writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) |
638 	       OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0),
639 	       mxic->regs + SS_CTRL(0));
640 
641 	ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len);
642 	if (ret)
643 		return ret;
644 
645 	spi_finalize_current_transfer(host);
646 
647 	return 0;
648 }
649 
650 /* ECC wrapper */
651 static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand)
652 {
653 	const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
654 	struct mxic_spi *mxic = nand->ecc.engine->priv;
655 
656 	mxic->ecc.use_pipelined_conf = true;
657 
658 	return ops->init_ctx(nand);
659 }
660 
661 static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand)
662 {
663 	const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
664 	struct mxic_spi *mxic = nand->ecc.engine->priv;
665 
666 	mxic->ecc.use_pipelined_conf = false;
667 
668 	ops->cleanup_ctx(nand);
669 }
670 
671 static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand,
672 					   struct nand_page_io_req *req)
673 {
674 	const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
675 
676 	return ops->prepare_io_req(nand, req);
677 }
678 
679 static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand,
680 					  struct nand_page_io_req *req)
681 {
682 	const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops();
683 
684 	return ops->finish_io_req(nand, req);
685 }
686 
687 static const struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = {
688 	.init_ctx = mxic_spi_mem_ecc_init_ctx,
689 	.cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx,
690 	.prepare_io_req = mxic_spi_mem_ecc_prepare_io_req,
691 	.finish_io_req = mxic_spi_mem_ecc_finish_io_req,
692 };
693 
694 static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic)
695 {
696 	if (mxic->ecc.pipelined_engine) {
697 		mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine);
698 		nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine);
699 	}
700 }
701 
702 static int mxic_spi_mem_ecc_probe(struct platform_device *pdev,
703 				  struct mxic_spi *mxic)
704 {
705 	struct nand_ecc_engine *eng;
706 
707 	if (!mxic_ecc_get_pipelined_ops())
708 		return -EOPNOTSUPP;
709 
710 	eng = mxic_ecc_get_pipelined_engine(pdev);
711 	if (IS_ERR(eng))
712 		return PTR_ERR(eng);
713 
714 	eng->dev = &pdev->dev;
715 	eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
716 	eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops;
717 	eng->priv = mxic;
718 	mxic->ecc.pipelined_engine = eng;
719 	nand_ecc_register_on_host_hw_engine(eng);
720 
721 	return 0;
722 }
723 
724 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev)
725 {
726 	struct spi_controller *host = dev_get_drvdata(dev);
727 	struct mxic_spi *mxic = spi_controller_get_devdata(host);
728 
729 	mxic_spi_clk_disable(mxic);
730 	clk_disable_unprepare(mxic->ps_clk);
731 
732 	return 0;
733 }
734 
735 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev)
736 {
737 	struct spi_controller *host = dev_get_drvdata(dev);
738 	struct mxic_spi *mxic = spi_controller_get_devdata(host);
739 	int ret;
740 
741 	ret = clk_prepare_enable(mxic->ps_clk);
742 	if (ret) {
743 		dev_err(dev, "Cannot enable ps_clock.\n");
744 		return ret;
745 	}
746 
747 	return mxic_spi_clk_enable(mxic);
748 }
749 
750 static const struct dev_pm_ops mxic_spi_dev_pm_ops = {
751 	SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend,
752 			   mxic_spi_runtime_resume, NULL)
753 };
754 
755 static int mxic_spi_probe(struct platform_device *pdev)
756 {
757 	struct spi_controller *host;
758 	struct resource *res;
759 	struct mxic_spi *mxic;
760 	int ret;
761 
762 	host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi));
763 	if (!host)
764 		return -ENOMEM;
765 
766 	platform_set_drvdata(pdev, host);
767 
768 	mxic = spi_controller_get_devdata(host);
769 	mxic->dev = &pdev->dev;
770 
771 	host->dev.of_node = pdev->dev.of_node;
772 
773 	mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk");
774 	if (IS_ERR(mxic->ps_clk))
775 		return PTR_ERR(mxic->ps_clk);
776 
777 	mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk");
778 	if (IS_ERR(mxic->send_clk))
779 		return PTR_ERR(mxic->send_clk);
780 
781 	mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk");
782 	if (IS_ERR(mxic->send_dly_clk))
783 		return PTR_ERR(mxic->send_dly_clk);
784 
785 	mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs");
786 	if (IS_ERR(mxic->regs))
787 		return PTR_ERR(mxic->regs);
788 
789 	res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap");
790 	mxic->linear.map = devm_ioremap_resource(&pdev->dev, res);
791 	if (!IS_ERR(mxic->linear.map)) {
792 		mxic->linear.dma = res->start;
793 		mxic->linear.size = resource_size(res);
794 	} else {
795 		mxic->linear.map = NULL;
796 	}
797 
798 	pm_runtime_enable(&pdev->dev);
799 	host->auto_runtime_pm = true;
800 
801 	host->num_chipselect = 1;
802 	host->mem_ops = &mxic_spi_mem_ops;
803 	host->mem_caps = &mxic_spi_mem_caps;
804 
805 	host->set_cs = mxic_spi_set_cs;
806 	host->transfer_one = mxic_spi_transfer_one;
807 	host->bits_per_word_mask = SPI_BPW_MASK(8);
808 	host->mode_bits = SPI_CPOL | SPI_CPHA |
809 			  SPI_RX_DUAL | SPI_TX_DUAL |
810 			  SPI_RX_QUAD | SPI_TX_QUAD |
811 			  SPI_RX_OCTAL | SPI_TX_OCTAL;
812 
813 	mxic_spi_hw_init(mxic);
814 
815 	ret = mxic_spi_mem_ecc_probe(pdev, mxic);
816 	if (ret == -EPROBE_DEFER) {
817 		pm_runtime_disable(&pdev->dev);
818 		return ret;
819 	}
820 
821 	ret = spi_register_controller(host);
822 	if (ret) {
823 		dev_err(&pdev->dev, "spi_register_controller failed\n");
824 		pm_runtime_disable(&pdev->dev);
825 		mxic_spi_mem_ecc_remove(mxic);
826 	}
827 
828 	return ret;
829 }
830 
831 static void mxic_spi_remove(struct platform_device *pdev)
832 {
833 	struct spi_controller *host = platform_get_drvdata(pdev);
834 	struct mxic_spi *mxic = spi_controller_get_devdata(host);
835 
836 	pm_runtime_disable(&pdev->dev);
837 	mxic_spi_mem_ecc_remove(mxic);
838 	spi_unregister_controller(host);
839 }
840 
841 static const struct of_device_id mxic_spi_of_ids[] = {
842 	{ .compatible = "mxicy,mx25f0a-spi", },
843 	{ /* sentinel */ }
844 };
845 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids);
846 
847 static struct platform_driver mxic_spi_driver = {
848 	.probe = mxic_spi_probe,
849 	.remove = mxic_spi_remove,
850 	.driver = {
851 		.name = "mxic-spi",
852 		.of_match_table = mxic_spi_of_ids,
853 		.pm = &mxic_spi_dev_pm_ops,
854 	},
855 };
856 module_platform_driver(mxic_spi_driver);
857 
858 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>");
859 MODULE_DESCRIPTION("MX25F0A SPI controller driver");
860 MODULE_LICENSE("GPL v2");
861