1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Copyright (C) 2018 Macronix International Co., Ltd. 4 // 5 // Authors: 6 // Mason Yang <masonccyang@mxic.com.tw> 7 // zhengxunli <zhengxunli@mxic.com.tw> 8 // Boris Brezillon <boris.brezillon@bootlin.com> 9 // 10 11 #include <linux/clk.h> 12 #include <linux/io.h> 13 #include <linux/iopoll.h> 14 #include <linux/module.h> 15 #include <linux/mtd/nand.h> 16 #include <linux/mtd/nand-ecc-mxic.h> 17 #include <linux/platform_device.h> 18 #include <linux/pm_runtime.h> 19 #include <linux/spi/spi.h> 20 #include <linux/spi/spi-mem.h> 21 22 #define HC_CFG 0x0 23 #define HC_CFG_IF_CFG(x) ((x) << 27) 24 #define HC_CFG_DUAL_SLAVE BIT(31) 25 #define HC_CFG_INDIVIDUAL BIT(30) 26 #define HC_CFG_NIO(x) (((x) / 4) << 27) 27 #define HC_CFG_TYPE(s, t) ((t) << (23 + ((s) * 2))) 28 #define HC_CFG_TYPE_SPI_NOR 0 29 #define HC_CFG_TYPE_SPI_NAND 1 30 #define HC_CFG_TYPE_SPI_RAM 2 31 #define HC_CFG_TYPE_RAW_NAND 3 32 #define HC_CFG_SLV_ACT(x) ((x) << 21) 33 #define HC_CFG_CLK_PH_EN BIT(20) 34 #define HC_CFG_CLK_POL_INV BIT(19) 35 #define HC_CFG_BIG_ENDIAN BIT(18) 36 #define HC_CFG_DATA_PASS BIT(17) 37 #define HC_CFG_IDLE_SIO_LVL(x) ((x) << 16) 38 #define HC_CFG_MAN_START_EN BIT(3) 39 #define HC_CFG_MAN_START BIT(2) 40 #define HC_CFG_MAN_CS_EN BIT(1) 41 #define HC_CFG_MAN_CS_ASSERT BIT(0) 42 43 #define INT_STS 0x4 44 #define INT_STS_EN 0x8 45 #define INT_SIG_EN 0xc 46 #define INT_STS_ALL GENMASK(31, 0) 47 #define INT_RDY_PIN BIT(26) 48 #define INT_RDY_SR BIT(25) 49 #define INT_LNR_SUSP BIT(24) 50 #define INT_ECC_ERR BIT(17) 51 #define INT_CRC_ERR BIT(16) 52 #define INT_LWR_DIS BIT(12) 53 #define INT_LRD_DIS BIT(11) 54 #define INT_SDMA_INT BIT(10) 55 #define INT_DMA_FINISH BIT(9) 56 #define INT_RX_NOT_FULL BIT(3) 57 #define INT_RX_NOT_EMPTY BIT(2) 58 #define INT_TX_NOT_FULL BIT(1) 59 #define INT_TX_EMPTY BIT(0) 60 61 #define HC_EN 0x10 62 #define HC_EN_BIT BIT(0) 63 64 #define TXD(x) (0x14 + ((x) * 4)) 65 #define RXD 0x24 66 67 #define SS_CTRL(s) (0x30 + ((s) * 4)) 68 #define LRD_CFG 0x44 69 #define LWR_CFG 0x80 70 #define RWW_CFG 0x70 71 #define OP_READ BIT(23) 72 #define OP_DUMMY_CYC(x) ((x) << 17) 73 #define OP_ADDR_BYTES(x) ((x) << 14) 74 #define OP_CMD_BYTES(x) (((x) - 1) << 13) 75 #define OP_OCTA_CRC_EN BIT(12) 76 #define OP_DQS_EN BIT(11) 77 #define OP_ENHC_EN BIT(10) 78 #define OP_PREAMBLE_EN BIT(9) 79 #define OP_DATA_DDR BIT(8) 80 #define OP_DATA_BUSW(x) ((x) << 6) 81 #define OP_ADDR_DDR BIT(5) 82 #define OP_ADDR_BUSW(x) ((x) << 3) 83 #define OP_CMD_DDR BIT(2) 84 #define OP_CMD_BUSW(x) (x) 85 #define OP_BUSW_1 0 86 #define OP_BUSW_2 1 87 #define OP_BUSW_4 2 88 #define OP_BUSW_8 3 89 90 #define OCTA_CRC 0x38 91 #define OCTA_CRC_IN_EN(s) BIT(3 + ((s) * 16)) 92 #define OCTA_CRC_CHUNK(s, x) ((fls((x) / 32)) << (1 + ((s) * 16))) 93 #define OCTA_CRC_OUT_EN(s) BIT(0 + ((s) * 16)) 94 95 #define ONFI_DIN_CNT(s) (0x3c + (s)) 96 97 #define LRD_CTRL 0x48 98 #define RWW_CTRL 0x74 99 #define LWR_CTRL 0x84 100 #define LMODE_EN BIT(31) 101 #define LMODE_SLV_ACT(x) ((x) << 21) 102 #define LMODE_CMD1(x) ((x) << 8) 103 #define LMODE_CMD0(x) (x) 104 105 #define LRD_ADDR 0x4c 106 #define LWR_ADDR 0x88 107 #define LRD_RANGE 0x50 108 #define LWR_RANGE 0x8c 109 110 #define AXI_SLV_ADDR 0x54 111 112 #define DMAC_RD_CFG 0x58 113 #define DMAC_WR_CFG 0x94 114 #define DMAC_CFG_PERIPH_EN BIT(31) 115 #define DMAC_CFG_ALLFLUSH_EN BIT(30) 116 #define DMAC_CFG_LASTFLUSH_EN BIT(29) 117 #define DMAC_CFG_QE(x) (((x) + 1) << 16) 118 #define DMAC_CFG_BURST_LEN(x) (((x) + 1) << 12) 119 #define DMAC_CFG_BURST_SZ(x) ((x) << 8) 120 #define DMAC_CFG_DIR_READ BIT(1) 121 #define DMAC_CFG_START BIT(0) 122 123 #define DMAC_RD_CNT 0x5c 124 #define DMAC_WR_CNT 0x98 125 126 #define SDMA_ADDR 0x60 127 128 #define DMAM_CFG 0x64 129 #define DMAM_CFG_START BIT(31) 130 #define DMAM_CFG_CONT BIT(30) 131 #define DMAM_CFG_SDMA_GAP(x) (fls((x) / 8192) << 2) 132 #define DMAM_CFG_DIR_READ BIT(1) 133 #define DMAM_CFG_EN BIT(0) 134 135 #define DMAM_CNT 0x68 136 137 #define LNR_TIMER_TH 0x6c 138 139 #define RDM_CFG0 0x78 140 #define RDM_CFG0_POLY(x) (x) 141 142 #define RDM_CFG1 0x7c 143 #define RDM_CFG1_RDM_EN BIT(31) 144 #define RDM_CFG1_SEED(x) (x) 145 146 #define LWR_SUSP_CTRL 0x90 147 #define LWR_SUSP_CTRL_EN BIT(31) 148 149 #define DMAS_CTRL 0x9c 150 #define DMAS_CTRL_EN BIT(31) 151 #define DMAS_CTRL_DIR_READ BIT(30) 152 153 #define DATA_STROB 0xa0 154 #define DATA_STROB_EDO_EN BIT(2) 155 #define DATA_STROB_INV_POL BIT(1) 156 #define DATA_STROB_DELAY_2CYC BIT(0) 157 158 #define IDLY_CODE(x) (0xa4 + ((x) * 4)) 159 #define IDLY_CODE_VAL(x, v) ((v) << (((x) % 4) * 8)) 160 161 #define GPIO 0xc4 162 #define GPIO_PT(x) BIT(3 + ((x) * 16)) 163 #define GPIO_RESET(x) BIT(2 + ((x) * 16)) 164 #define GPIO_HOLDB(x) BIT(1 + ((x) * 16)) 165 #define GPIO_WPB(x) BIT((x) * 16) 166 167 #define HC_VER 0xd0 168 169 #define HW_TEST(x) (0xe0 + ((x) * 4)) 170 171 struct mxic_spi { 172 struct device *dev; 173 struct clk *ps_clk; 174 struct clk *send_clk; 175 struct clk *send_dly_clk; 176 void __iomem *regs; 177 u32 cur_speed_hz; 178 struct { 179 void __iomem *map; 180 dma_addr_t dma; 181 size_t size; 182 } linear; 183 184 struct { 185 bool use_pipelined_conf; 186 struct nand_ecc_engine *pipelined_engine; 187 void *ctx; 188 } ecc; 189 }; 190 191 static int mxic_spi_clk_enable(struct mxic_spi *mxic) 192 { 193 int ret; 194 195 ret = clk_prepare_enable(mxic->send_clk); 196 if (ret) 197 return ret; 198 199 ret = clk_prepare_enable(mxic->send_dly_clk); 200 if (ret) 201 goto err_send_dly_clk; 202 203 return ret; 204 205 err_send_dly_clk: 206 clk_disable_unprepare(mxic->send_clk); 207 208 return ret; 209 } 210 211 static void mxic_spi_clk_disable(struct mxic_spi *mxic) 212 { 213 clk_disable_unprepare(mxic->send_clk); 214 clk_disable_unprepare(mxic->send_dly_clk); 215 } 216 217 static void mxic_spi_set_input_delay_dqs(struct mxic_spi *mxic, u8 idly_code) 218 { 219 writel(IDLY_CODE_VAL(0, idly_code) | 220 IDLY_CODE_VAL(1, idly_code) | 221 IDLY_CODE_VAL(2, idly_code) | 222 IDLY_CODE_VAL(3, idly_code), 223 mxic->regs + IDLY_CODE(0)); 224 writel(IDLY_CODE_VAL(4, idly_code) | 225 IDLY_CODE_VAL(5, idly_code) | 226 IDLY_CODE_VAL(6, idly_code) | 227 IDLY_CODE_VAL(7, idly_code), 228 mxic->regs + IDLY_CODE(1)); 229 } 230 231 static int mxic_spi_clk_setup(struct mxic_spi *mxic, unsigned long freq) 232 { 233 int ret; 234 235 ret = clk_set_rate(mxic->send_clk, freq); 236 if (ret) 237 return ret; 238 239 ret = clk_set_rate(mxic->send_dly_clk, freq); 240 if (ret) 241 return ret; 242 243 /* 244 * A constant delay range from 0x0 ~ 0x1F for input delay, 245 * the unit is 78 ps, the max input delay is 2.418 ns. 246 */ 247 mxic_spi_set_input_delay_dqs(mxic, 0xf); 248 249 /* 250 * Phase degree = 360 * freq * output-delay 251 * where output-delay is a constant value 1 ns in FPGA. 252 * 253 * Get Phase degree = 360 * freq * 1 ns 254 * = 360 * freq * 1 sec / 1000000000 255 * = 9 * freq / 25000000 256 */ 257 ret = clk_set_phase(mxic->send_dly_clk, 9 * freq / 25000000); 258 if (ret) 259 return ret; 260 261 return 0; 262 } 263 264 static int mxic_spi_set_freq(struct mxic_spi *mxic, unsigned long freq) 265 { 266 int ret; 267 268 if (mxic->cur_speed_hz == freq) 269 return 0; 270 271 mxic_spi_clk_disable(mxic); 272 ret = mxic_spi_clk_setup(mxic, freq); 273 if (ret) 274 return ret; 275 276 ret = mxic_spi_clk_enable(mxic); 277 if (ret) 278 return ret; 279 280 mxic->cur_speed_hz = freq; 281 282 return 0; 283 } 284 285 static void mxic_spi_hw_init(struct mxic_spi *mxic) 286 { 287 writel(0, mxic->regs + DATA_STROB); 288 writel(INT_STS_ALL, mxic->regs + INT_STS_EN); 289 writel(0, mxic->regs + HC_EN); 290 writel(0, mxic->regs + LRD_CFG); 291 writel(0, mxic->regs + LRD_CTRL); 292 writel(HC_CFG_NIO(1) | HC_CFG_TYPE(0, HC_CFG_TYPE_SPI_NOR) | 293 HC_CFG_SLV_ACT(0) | HC_CFG_MAN_CS_EN | HC_CFG_IDLE_SIO_LVL(1), 294 mxic->regs + HC_CFG); 295 } 296 297 static u32 mxic_spi_prep_hc_cfg(struct spi_device *spi, u32 flags, 298 bool swap16) 299 { 300 int nio = 1; 301 302 if (spi->mode & (SPI_TX_OCTAL | SPI_RX_OCTAL)) 303 nio = 8; 304 else if (spi->mode & (SPI_TX_QUAD | SPI_RX_QUAD)) 305 nio = 4; 306 else if (spi->mode & (SPI_TX_DUAL | SPI_RX_DUAL)) 307 nio = 2; 308 309 if (swap16) 310 flags &= ~HC_CFG_DATA_PASS; 311 else 312 flags |= HC_CFG_DATA_PASS; 313 314 return flags | HC_CFG_NIO(nio) | 315 HC_CFG_TYPE(spi_get_chipselect(spi, 0), HC_CFG_TYPE_SPI_NOR) | 316 HC_CFG_SLV_ACT(spi_get_chipselect(spi, 0)) | HC_CFG_IDLE_SIO_LVL(1); 317 } 318 319 static u32 mxic_spi_mem_prep_op_cfg(const struct spi_mem_op *op, 320 unsigned int data_len) 321 { 322 u32 cfg = OP_CMD_BYTES(op->cmd.nbytes) | 323 OP_CMD_BUSW(fls(op->cmd.buswidth) - 1) | 324 (op->cmd.dtr ? OP_CMD_DDR : 0); 325 326 if (op->addr.nbytes) 327 cfg |= OP_ADDR_BYTES(op->addr.nbytes) | 328 OP_ADDR_BUSW(fls(op->addr.buswidth) - 1) | 329 (op->addr.dtr ? OP_ADDR_DDR : 0); 330 331 if (op->dummy.nbytes) 332 cfg |= OP_DUMMY_CYC(op->dummy.nbytes); 333 334 /* Direct mapping data.nbytes field is not populated */ 335 if (data_len) { 336 cfg |= OP_DATA_BUSW(fls(op->data.buswidth) - 1) | 337 (op->data.dtr ? OP_DATA_DDR : 0); 338 if (op->data.dir == SPI_MEM_DATA_IN) { 339 cfg |= OP_READ; 340 if (op->data.dtr) 341 cfg |= OP_DQS_EN; 342 } 343 } 344 345 return cfg; 346 } 347 348 static int mxic_spi_data_xfer(struct mxic_spi *mxic, const void *txbuf, 349 void *rxbuf, unsigned int len) 350 { 351 unsigned int pos = 0; 352 353 while (pos < len) { 354 unsigned int nbytes = len - pos; 355 u32 data = 0xffffffff; 356 u32 sts; 357 int ret; 358 359 if (nbytes > 4) 360 nbytes = 4; 361 362 if (txbuf) 363 memcpy(&data, txbuf + pos, nbytes); 364 365 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 366 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 367 if (ret) 368 return ret; 369 370 writel(data, mxic->regs + TXD(nbytes % 4)); 371 372 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 373 sts & INT_TX_EMPTY, 0, USEC_PER_SEC); 374 if (ret) 375 return ret; 376 377 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 378 sts & INT_RX_NOT_EMPTY, 0, 379 USEC_PER_SEC); 380 if (ret) 381 return ret; 382 383 data = readl(mxic->regs + RXD); 384 if (rxbuf) { 385 data >>= (8 * (4 - nbytes)); 386 memcpy(rxbuf + pos, &data, nbytes); 387 } 388 WARN_ON(readl(mxic->regs + INT_STS) & INT_RX_NOT_EMPTY); 389 390 pos += nbytes; 391 } 392 393 return 0; 394 } 395 396 static ssize_t mxic_spi_mem_dirmap_read(struct spi_mem_dirmap_desc *desc, 397 u64 offs, size_t len, void *buf) 398 { 399 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); 400 int ret; 401 u32 sts; 402 403 if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) 404 return -EINVAL; 405 406 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16), 407 mxic->regs + HC_CFG); 408 409 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), 410 mxic->regs + LRD_CFG); 411 writel(desc->info.offset + offs, mxic->regs + LRD_ADDR); 412 len = min_t(size_t, len, mxic->linear.size); 413 writel(len, mxic->regs + LRD_RANGE); 414 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | 415 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | 416 LMODE_EN, 417 mxic->regs + LRD_CTRL); 418 419 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { 420 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, 421 NAND_PAGE_READ, 422 mxic->linear.dma + offs); 423 if (ret) 424 return ret; 425 } else { 426 memcpy_fromio(buf, mxic->linear.map, len); 427 } 428 429 writel(INT_LRD_DIS, mxic->regs + INT_STS); 430 writel(0, mxic->regs + LRD_CTRL); 431 432 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 433 sts & INT_LRD_DIS, 0, USEC_PER_SEC); 434 if (ret) 435 return ret; 436 437 return len; 438 } 439 440 static ssize_t mxic_spi_mem_dirmap_write(struct spi_mem_dirmap_desc *desc, 441 u64 offs, size_t len, 442 const void *buf) 443 { 444 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); 445 u32 sts; 446 int ret; 447 448 if (WARN_ON(offs + desc->info.offset + len > U32_MAX)) 449 return -EINVAL; 450 451 writel(mxic_spi_prep_hc_cfg(desc->mem->spi, 0, desc->info.op_tmpl.data.swap16), 452 mxic->regs + HC_CFG); 453 454 writel(mxic_spi_mem_prep_op_cfg(&desc->info.op_tmpl, len), 455 mxic->regs + LWR_CFG); 456 writel(desc->info.offset + offs, mxic->regs + LWR_ADDR); 457 len = min_t(size_t, len, mxic->linear.size); 458 writel(len, mxic->regs + LWR_RANGE); 459 writel(LMODE_CMD0(desc->info.op_tmpl.cmd.opcode) | 460 LMODE_SLV_ACT(spi_get_chipselect(desc->mem->spi, 0)) | 461 LMODE_EN, 462 mxic->regs + LWR_CTRL); 463 464 if (mxic->ecc.use_pipelined_conf && desc->info.op_tmpl.data.ecc) { 465 ret = mxic_ecc_process_data_pipelined(mxic->ecc.pipelined_engine, 466 NAND_PAGE_WRITE, 467 mxic->linear.dma + offs); 468 if (ret) 469 return ret; 470 } else { 471 memcpy_toio(mxic->linear.map, buf, len); 472 } 473 474 writel(INT_LWR_DIS, mxic->regs + INT_STS); 475 writel(0, mxic->regs + LWR_CTRL); 476 477 ret = readl_poll_timeout(mxic->regs + INT_STS, sts, 478 sts & INT_LWR_DIS, 0, USEC_PER_SEC); 479 if (ret) 480 return ret; 481 482 return len; 483 } 484 485 static bool mxic_spi_mem_supports_op(struct spi_mem *mem, 486 const struct spi_mem_op *op) 487 { 488 if (op->data.buswidth > 8 || op->addr.buswidth > 8 || 489 op->dummy.buswidth > 8 || op->cmd.buswidth > 8) 490 return false; 491 492 if (op->data.nbytes && op->dummy.nbytes && 493 op->data.buswidth != op->dummy.buswidth) 494 return false; 495 496 if (op->addr.nbytes > 7) 497 return false; 498 499 return spi_mem_default_supports_op(mem, op); 500 } 501 502 static int mxic_spi_mem_dirmap_create(struct spi_mem_dirmap_desc *desc) 503 { 504 struct mxic_spi *mxic = spi_controller_get_devdata(desc->mem->spi->controller); 505 506 if (!mxic->linear.map) 507 return -EOPNOTSUPP; 508 509 if (desc->info.offset + desc->info.length > U32_MAX) 510 return -EINVAL; 511 512 if (!mxic_spi_mem_supports_op(desc->mem, &desc->info.op_tmpl)) 513 return -EOPNOTSUPP; 514 515 return 0; 516 } 517 518 static int mxic_spi_mem_exec_op(struct spi_mem *mem, 519 const struct spi_mem_op *op) 520 { 521 struct mxic_spi *mxic = spi_controller_get_devdata(mem->spi->controller); 522 int i, ret; 523 u8 addr[8], cmd[2]; 524 525 ret = mxic_spi_set_freq(mxic, mem->spi->max_speed_hz); 526 if (ret) 527 return ret; 528 529 writel(mxic_spi_prep_hc_cfg(mem->spi, HC_CFG_MAN_CS_EN, op->data.swap16), 530 mxic->regs + HC_CFG); 531 532 writel(HC_EN_BIT, mxic->regs + HC_EN); 533 534 writel(mxic_spi_mem_prep_op_cfg(op, op->data.nbytes), 535 mxic->regs + SS_CTRL(spi_get_chipselect(mem->spi, 0))); 536 537 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 538 mxic->regs + HC_CFG); 539 540 for (i = 0; i < op->cmd.nbytes; i++) 541 cmd[i] = op->cmd.opcode >> (8 * (op->cmd.nbytes - i - 1)); 542 543 ret = mxic_spi_data_xfer(mxic, cmd, NULL, op->cmd.nbytes); 544 if (ret) 545 goto out; 546 547 for (i = 0; i < op->addr.nbytes; i++) 548 addr[i] = op->addr.val >> (8 * (op->addr.nbytes - i - 1)); 549 550 ret = mxic_spi_data_xfer(mxic, addr, NULL, op->addr.nbytes); 551 if (ret) 552 goto out; 553 554 ret = mxic_spi_data_xfer(mxic, NULL, NULL, op->dummy.nbytes); 555 if (ret) 556 goto out; 557 558 ret = mxic_spi_data_xfer(mxic, 559 op->data.dir == SPI_MEM_DATA_OUT ? 560 op->data.buf.out : NULL, 561 op->data.dir == SPI_MEM_DATA_IN ? 562 op->data.buf.in : NULL, 563 op->data.nbytes); 564 565 out: 566 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 567 mxic->regs + HC_CFG); 568 writel(0, mxic->regs + HC_EN); 569 570 return ret; 571 } 572 573 static const struct spi_controller_mem_ops mxic_spi_mem_ops = { 574 .supports_op = mxic_spi_mem_supports_op, 575 .exec_op = mxic_spi_mem_exec_op, 576 .dirmap_create = mxic_spi_mem_dirmap_create, 577 .dirmap_read = mxic_spi_mem_dirmap_read, 578 .dirmap_write = mxic_spi_mem_dirmap_write, 579 }; 580 581 static const struct spi_controller_mem_caps mxic_spi_mem_caps = { 582 .dtr = true, 583 .ecc = true, 584 .swap16 = true, 585 }; 586 587 static void mxic_spi_set_cs(struct spi_device *spi, bool lvl) 588 { 589 struct mxic_spi *mxic = spi_controller_get_devdata(spi->controller); 590 591 if (!lvl) { 592 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_EN, 593 mxic->regs + HC_CFG); 594 writel(HC_EN_BIT, mxic->regs + HC_EN); 595 writel(readl(mxic->regs + HC_CFG) | HC_CFG_MAN_CS_ASSERT, 596 mxic->regs + HC_CFG); 597 } else { 598 writel(readl(mxic->regs + HC_CFG) & ~HC_CFG_MAN_CS_ASSERT, 599 mxic->regs + HC_CFG); 600 writel(0, mxic->regs + HC_EN); 601 } 602 } 603 604 static int mxic_spi_transfer_one(struct spi_controller *host, 605 struct spi_device *spi, 606 struct spi_transfer *t) 607 { 608 struct mxic_spi *mxic = spi_controller_get_devdata(host); 609 unsigned int busw = OP_BUSW_1; 610 int ret; 611 612 if (t->rx_buf && t->tx_buf) { 613 if (((spi->mode & SPI_TX_QUAD) && 614 !(spi->mode & SPI_RX_QUAD)) || 615 ((spi->mode & SPI_TX_DUAL) && 616 !(spi->mode & SPI_RX_DUAL))) 617 return -ENOTSUPP; 618 } 619 620 ret = mxic_spi_set_freq(mxic, t->speed_hz); 621 if (ret) 622 return ret; 623 624 if (t->tx_buf) { 625 if (spi->mode & SPI_TX_QUAD) 626 busw = OP_BUSW_4; 627 else if (spi->mode & SPI_TX_DUAL) 628 busw = OP_BUSW_2; 629 } else if (t->rx_buf) { 630 if (spi->mode & SPI_RX_QUAD) 631 busw = OP_BUSW_4; 632 else if (spi->mode & SPI_RX_DUAL) 633 busw = OP_BUSW_2; 634 } 635 636 writel(OP_CMD_BYTES(1) | OP_CMD_BUSW(busw) | 637 OP_DATA_BUSW(busw) | (t->rx_buf ? OP_READ : 0), 638 mxic->regs + SS_CTRL(0)); 639 640 ret = mxic_spi_data_xfer(mxic, t->tx_buf, t->rx_buf, t->len); 641 if (ret) 642 return ret; 643 644 spi_finalize_current_transfer(host); 645 646 return 0; 647 } 648 649 /* ECC wrapper */ 650 static int mxic_spi_mem_ecc_init_ctx(struct nand_device *nand) 651 { 652 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 653 struct mxic_spi *mxic = nand->ecc.engine->priv; 654 655 mxic->ecc.use_pipelined_conf = true; 656 657 return ops->init_ctx(nand); 658 } 659 660 static void mxic_spi_mem_ecc_cleanup_ctx(struct nand_device *nand) 661 { 662 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 663 struct mxic_spi *mxic = nand->ecc.engine->priv; 664 665 mxic->ecc.use_pipelined_conf = false; 666 667 ops->cleanup_ctx(nand); 668 } 669 670 static int mxic_spi_mem_ecc_prepare_io_req(struct nand_device *nand, 671 struct nand_page_io_req *req) 672 { 673 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 674 675 return ops->prepare_io_req(nand, req); 676 } 677 678 static int mxic_spi_mem_ecc_finish_io_req(struct nand_device *nand, 679 struct nand_page_io_req *req) 680 { 681 const struct nand_ecc_engine_ops *ops = mxic_ecc_get_pipelined_ops(); 682 683 return ops->finish_io_req(nand, req); 684 } 685 686 static const struct nand_ecc_engine_ops mxic_spi_mem_ecc_engine_pipelined_ops = { 687 .init_ctx = mxic_spi_mem_ecc_init_ctx, 688 .cleanup_ctx = mxic_spi_mem_ecc_cleanup_ctx, 689 .prepare_io_req = mxic_spi_mem_ecc_prepare_io_req, 690 .finish_io_req = mxic_spi_mem_ecc_finish_io_req, 691 }; 692 693 static void mxic_spi_mem_ecc_remove(struct mxic_spi *mxic) 694 { 695 if (mxic->ecc.pipelined_engine) { 696 mxic_ecc_put_pipelined_engine(mxic->ecc.pipelined_engine); 697 nand_ecc_unregister_on_host_hw_engine(mxic->ecc.pipelined_engine); 698 } 699 } 700 701 static int mxic_spi_mem_ecc_probe(struct platform_device *pdev, 702 struct mxic_spi *mxic) 703 { 704 struct nand_ecc_engine *eng; 705 706 if (!mxic_ecc_get_pipelined_ops()) 707 return -EOPNOTSUPP; 708 709 eng = mxic_ecc_get_pipelined_engine(pdev); 710 if (IS_ERR(eng)) 711 return PTR_ERR(eng); 712 713 eng->dev = &pdev->dev; 714 eng->integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; 715 eng->ops = &mxic_spi_mem_ecc_engine_pipelined_ops; 716 eng->priv = mxic; 717 mxic->ecc.pipelined_engine = eng; 718 nand_ecc_register_on_host_hw_engine(eng); 719 720 return 0; 721 } 722 723 static int __maybe_unused mxic_spi_runtime_suspend(struct device *dev) 724 { 725 struct spi_controller *host = dev_get_drvdata(dev); 726 struct mxic_spi *mxic = spi_controller_get_devdata(host); 727 728 mxic_spi_clk_disable(mxic); 729 clk_disable_unprepare(mxic->ps_clk); 730 731 return 0; 732 } 733 734 static int __maybe_unused mxic_spi_runtime_resume(struct device *dev) 735 { 736 struct spi_controller *host = dev_get_drvdata(dev); 737 struct mxic_spi *mxic = spi_controller_get_devdata(host); 738 int ret; 739 740 ret = clk_prepare_enable(mxic->ps_clk); 741 if (ret) { 742 dev_err(dev, "Cannot enable ps_clock.\n"); 743 return ret; 744 } 745 746 return mxic_spi_clk_enable(mxic); 747 } 748 749 static const struct dev_pm_ops mxic_spi_dev_pm_ops = { 750 SET_RUNTIME_PM_OPS(mxic_spi_runtime_suspend, 751 mxic_spi_runtime_resume, NULL) 752 }; 753 754 static int mxic_spi_probe(struct platform_device *pdev) 755 { 756 struct spi_controller *host; 757 struct resource *res; 758 struct mxic_spi *mxic; 759 int ret; 760 761 host = devm_spi_alloc_host(&pdev->dev, sizeof(struct mxic_spi)); 762 if (!host) 763 return -ENOMEM; 764 765 platform_set_drvdata(pdev, host); 766 767 mxic = spi_controller_get_devdata(host); 768 mxic->dev = &pdev->dev; 769 770 host->dev.of_node = pdev->dev.of_node; 771 772 mxic->ps_clk = devm_clk_get(&pdev->dev, "ps_clk"); 773 if (IS_ERR(mxic->ps_clk)) 774 return PTR_ERR(mxic->ps_clk); 775 776 mxic->send_clk = devm_clk_get(&pdev->dev, "send_clk"); 777 if (IS_ERR(mxic->send_clk)) 778 return PTR_ERR(mxic->send_clk); 779 780 mxic->send_dly_clk = devm_clk_get(&pdev->dev, "send_dly_clk"); 781 if (IS_ERR(mxic->send_dly_clk)) 782 return PTR_ERR(mxic->send_dly_clk); 783 784 mxic->regs = devm_platform_ioremap_resource_byname(pdev, "regs"); 785 if (IS_ERR(mxic->regs)) 786 return PTR_ERR(mxic->regs); 787 788 res = platform_get_resource_byname(pdev, IORESOURCE_MEM, "dirmap"); 789 mxic->linear.map = devm_ioremap_resource(&pdev->dev, res); 790 if (!IS_ERR(mxic->linear.map)) { 791 mxic->linear.dma = res->start; 792 mxic->linear.size = resource_size(res); 793 } else { 794 mxic->linear.map = NULL; 795 } 796 797 pm_runtime_enable(&pdev->dev); 798 host->auto_runtime_pm = true; 799 800 host->num_chipselect = 1; 801 host->mem_ops = &mxic_spi_mem_ops; 802 host->mem_caps = &mxic_spi_mem_caps; 803 804 host->set_cs = mxic_spi_set_cs; 805 host->transfer_one = mxic_spi_transfer_one; 806 host->bits_per_word_mask = SPI_BPW_MASK(8); 807 host->mode_bits = SPI_CPOL | SPI_CPHA | 808 SPI_RX_DUAL | SPI_TX_DUAL | 809 SPI_RX_QUAD | SPI_TX_QUAD | 810 SPI_RX_OCTAL | SPI_TX_OCTAL; 811 812 mxic_spi_hw_init(mxic); 813 814 ret = mxic_spi_mem_ecc_probe(pdev, mxic); 815 if (ret == -EPROBE_DEFER) { 816 pm_runtime_disable(&pdev->dev); 817 return ret; 818 } 819 820 ret = spi_register_controller(host); 821 if (ret) { 822 dev_err(&pdev->dev, "spi_register_controller failed\n"); 823 pm_runtime_disable(&pdev->dev); 824 mxic_spi_mem_ecc_remove(mxic); 825 } 826 827 return ret; 828 } 829 830 static void mxic_spi_remove(struct platform_device *pdev) 831 { 832 struct spi_controller *host = platform_get_drvdata(pdev); 833 struct mxic_spi *mxic = spi_controller_get_devdata(host); 834 835 pm_runtime_disable(&pdev->dev); 836 mxic_spi_mem_ecc_remove(mxic); 837 spi_unregister_controller(host); 838 } 839 840 static const struct of_device_id mxic_spi_of_ids[] = { 841 { .compatible = "mxicy,mx25f0a-spi", }, 842 { /* sentinel */ } 843 }; 844 MODULE_DEVICE_TABLE(of, mxic_spi_of_ids); 845 846 static struct platform_driver mxic_spi_driver = { 847 .probe = mxic_spi_probe, 848 .remove = mxic_spi_remove, 849 .driver = { 850 .name = "mxic-spi", 851 .of_match_table = mxic_spi_of_ids, 852 .pm = &mxic_spi_dev_pm_ops, 853 }, 854 }; 855 module_platform_driver(mxic_spi_driver); 856 857 MODULE_AUTHOR("Mason Yang <masonccyang@mxic.com.tw>"); 858 MODULE_DESCRIPTION("MX25F0A SPI controller driver"); 859 MODULE_LICENSE("GPL v2"); 860