1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface 4 // 5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> 6 // 7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: 8 // 9 // Copyright (C) 2020 MediaTek Inc. 10 // Author: Weijie Gao <weijie.gao@mediatek.com> 11 // 12 // This controller organize the page data as several interleaved sectors 13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) 14 // +---------+------+------+---------+------+------+-----+ 15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | 16 // +---------+------+------+---------+------+------+-----+ 17 // With auto-format turned on, DMA only returns this part: 18 // +---------+---------+-----+ 19 // | Sector1 | Sector2 | ... | 20 // +---------+---------+-----+ 21 // The FDM data will be filled to the registers, and ECC parity data isn't 22 // accessible. 23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA 24 // in it's original order shown in the first table. ECC can't be turned on when 25 // auto-format is off. 26 // 27 // However, Linux SPI-NAND driver expects the data returned as: 28 // +------+-----+ 29 // | Page | OOB | 30 // +------+-----+ 31 // where the page data is continuously stored instead of interleaved. 32 // So we assume all instructions matching the page_op template between ECC 33 // prepare_io_req and finish_io_req are for page cache r/w. 34 // Here's how this spi-mem driver operates when reading: 35 // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). 36 // 2. Perform page ops and let the controller fill the DMA bounce buffer with 37 // de-interleaved sector data and set FDM registers. 38 // 3. Return the data as: 39 // +---------+---------+-----+------+------+-----+ 40 // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | 41 // +---------+---------+-----+------+------+-----+ 42 // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, 43 // read the data with auto-format off into the bounce buffer and copy 44 // needed data to the buffer specified in the request. 45 // 46 // Write requests operates in a similar manner. 47 // As a limitation of this strategy, we won't be able to access any ECC parity 48 // data at all in Linux. 49 // 50 // Here's the bad block mark situation on MTK chips: 51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector 52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize] 53 // in the returned data, which is the BBM position expected by kernel. However, 54 // the conventional bad block mark is the first byte of the OOB, which is part 55 // of the last sector data in the interleaved layout. Instead of fixing their 56 // hardware, MTK decided to address this inconsistency in software. On these 57 // later chips, the BootROM expects the following: 58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at 59 // (page_size - (nsectors - 1) * spare_size) in the DMA buffer. 60 // 2. The original byte stored at that position in the DMA buffer will be stored 61 // as the first byte of the FDM section in the last sector. 62 // We can't disagree with the BootROM, so after de-interleaving, we need to 63 // perform the following swaps in read: 64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], 65 // which is the expected BBM position by kernel. 66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to 67 // [page_size - (nsectors - 1) * spare_size] 68 // Similarly, when writing, we need to perform swaps in the other direction. 69 70 #include <linux/kernel.h> 71 #include <linux/module.h> 72 #include <linux/init.h> 73 #include <linux/device.h> 74 #include <linux/mutex.h> 75 #include <linux/clk.h> 76 #include <linux/interrupt.h> 77 #include <linux/dma-mapping.h> 78 #include <linux/iopoll.h> 79 #include <linux/of_platform.h> 80 #include <linux/mtd/nand-ecc-mtk.h> 81 #include <linux/spi/spi.h> 82 #include <linux/spi/spi-mem.h> 83 #include <linux/mtd/nand.h> 84 85 // NFI registers 86 #define NFI_CNFG 0x000 87 #define CNFG_OP_MODE_S 12 88 #define CNFG_OP_MODE_CUST 6 89 #define CNFG_OP_MODE_PROGRAM 3 90 #define CNFG_AUTO_FMT_EN BIT(9) 91 #define CNFG_HW_ECC_EN BIT(8) 92 #define CNFG_DMA_BURST_EN BIT(2) 93 #define CNFG_READ_MODE BIT(1) 94 #define CNFG_DMA_MODE BIT(0) 95 96 #define NFI_PAGEFMT 0x0004 97 #define NFI_SPARE_SIZE_LS_S 16 98 #define NFI_FDM_ECC_NUM_S 12 99 #define NFI_FDM_NUM_S 8 100 #define NFI_SPARE_SIZE_S 4 101 #define NFI_SEC_SEL_512 BIT(2) 102 #define NFI_PAGE_SIZE_S 0 103 #define NFI_PAGE_SIZE_512_2K 0 104 #define NFI_PAGE_SIZE_2K_4K 1 105 #define NFI_PAGE_SIZE_4K_8K 2 106 #define NFI_PAGE_SIZE_8K_16K 3 107 108 #define NFI_CON 0x008 109 #define CON_SEC_NUM_S 12 110 #define CON_BWR BIT(9) 111 #define CON_BRD BIT(8) 112 #define CON_NFI_RST BIT(1) 113 #define CON_FIFO_FLUSH BIT(0) 114 115 #define NFI_INTR_EN 0x010 116 #define NFI_INTR_STA 0x014 117 #define NFI_IRQ_INTR_EN BIT(31) 118 #define NFI_IRQ_CUS_READ BIT(8) 119 #define NFI_IRQ_CUS_PG BIT(7) 120 121 #define NFI_CMD 0x020 122 #define NFI_CMD_DUMMY_READ 0x00 123 #define NFI_CMD_DUMMY_WRITE 0x80 124 125 #define NFI_STRDATA 0x040 126 #define STR_DATA BIT(0) 127 128 #define NFI_STA 0x060 129 #define NFI_NAND_FSM_7622 GENMASK(28, 24) 130 #define NFI_NAND_FSM_7986 GENMASK(29, 23) 131 #define NFI_FSM GENMASK(19, 16) 132 #define READ_EMPTY BIT(12) 133 134 #define NFI_FIFOSTA 0x064 135 #define FIFO_WR_REMAIN_S 8 136 #define FIFO_RD_REMAIN_S 0 137 138 #define NFI_ADDRCNTR 0x070 139 #define SEC_CNTR GENMASK(16, 12) 140 #define SEC_CNTR_S 12 141 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) 142 143 #define NFI_STRADDR 0x080 144 145 #define NFI_BYTELEN 0x084 146 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) 147 148 #define NFI_FDM0L 0x0a0 149 #define NFI_FDM0M 0x0a4 150 #define NFI_FDML(n) (NFI_FDM0L + (n)*8) 151 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) 152 153 #define NFI_DEBUG_CON1 0x220 154 #define WBUF_EN BIT(2) 155 156 #define NFI_MASTERSTA 0x224 157 #define MAS_ADDR GENMASK(11, 9) 158 #define MAS_RD GENMASK(8, 6) 159 #define MAS_WR GENMASK(5, 3) 160 #define MAS_RDDLY GENMASK(2, 0) 161 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) 162 #define NFI_MASTERSTA_MASK_7986 3 163 164 // SNFI registers 165 #define SNF_MAC_CTL 0x500 166 #define MAC_XIO_SEL BIT(4) 167 #define SF_MAC_EN BIT(3) 168 #define SF_TRIG BIT(2) 169 #define WIP_READY BIT(1) 170 #define WIP BIT(0) 171 172 #define SNF_MAC_OUTL 0x504 173 #define SNF_MAC_INL 0x508 174 175 #define SNF_RD_CTL2 0x510 176 #define DATA_READ_DUMMY_S 8 177 #define DATA_READ_MAX_DUMMY 0xf 178 #define DATA_READ_CMD_S 0 179 180 #define SNF_RD_CTL3 0x514 181 182 #define SNF_PG_CTL1 0x524 183 #define PG_LOAD_CMD_S 8 184 185 #define SNF_PG_CTL2 0x528 186 187 #define SNF_MISC_CTL 0x538 188 #define SW_RST BIT(28) 189 #define FIFO_RD_LTC_S 25 190 #define PG_LOAD_X4_EN BIT(20) 191 #define DATA_READ_MODE_S 16 192 #define DATA_READ_MODE GENMASK(18, 16) 193 #define DATA_READ_MODE_X1 0 194 #define DATA_READ_MODE_X2 1 195 #define DATA_READ_MODE_X4 2 196 #define DATA_READ_MODE_DUAL 5 197 #define DATA_READ_MODE_QUAD 6 198 #define PG_LOAD_CUSTOM_EN BIT(7) 199 #define DATARD_CUSTOM_EN BIT(6) 200 #define CS_DESELECT_CYC_S 0 201 202 #define SNF_MISC_CTL2 0x53c 203 #define PROGRAM_LOAD_BYTE_NUM_S 16 204 #define READ_DATA_BYTE_NUM_S 11 205 206 #define SNF_DLY_CTL3 0x548 207 #define SFCK_SAM_DLY_S 0 208 209 #define SNF_STA_CTL1 0x550 210 #define CUS_PG_DONE BIT(28) 211 #define CUS_READ_DONE BIT(27) 212 #define SPI_STATE_S 0 213 #define SPI_STATE GENMASK(3, 0) 214 215 #define SNF_CFG 0x55c 216 #define SPI_MODE BIT(0) 217 218 #define SNF_GPRAM 0x800 219 #define SNF_GPRAM_SIZE 0xa0 220 221 #define SNFI_POLL_INTERVAL 1000000 222 223 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; 224 225 static const u8 mt7986_spare_sizes[] = { 226 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, 227 74 228 }; 229 230 struct mtk_snand_caps { 231 u16 sector_size; 232 u16 max_sectors; 233 u16 fdm_size; 234 u16 fdm_ecc_size; 235 u16 fifo_size; 236 237 bool bbm_swap; 238 bool empty_page_check; 239 u32 mastersta_mask; 240 u32 nandfsm_mask; 241 242 const u8 *spare_sizes; 243 u32 num_spare_size; 244 }; 245 246 static const struct mtk_snand_caps mt7622_snand_caps = { 247 .sector_size = 512, 248 .max_sectors = 8, 249 .fdm_size = 8, 250 .fdm_ecc_size = 1, 251 .fifo_size = 32, 252 .bbm_swap = false, 253 .empty_page_check = false, 254 .mastersta_mask = NFI_MASTERSTA_MASK_7622, 255 .nandfsm_mask = NFI_NAND_FSM_7622, 256 .spare_sizes = mt7622_spare_sizes, 257 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) 258 }; 259 260 static const struct mtk_snand_caps mt7629_snand_caps = { 261 .sector_size = 512, 262 .max_sectors = 8, 263 .fdm_size = 8, 264 .fdm_ecc_size = 1, 265 .fifo_size = 32, 266 .bbm_swap = true, 267 .empty_page_check = false, 268 .mastersta_mask = NFI_MASTERSTA_MASK_7622, 269 .nandfsm_mask = NFI_NAND_FSM_7622, 270 .spare_sizes = mt7622_spare_sizes, 271 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) 272 }; 273 274 static const struct mtk_snand_caps mt7986_snand_caps = { 275 .sector_size = 1024, 276 .max_sectors = 8, 277 .fdm_size = 8, 278 .fdm_ecc_size = 1, 279 .fifo_size = 64, 280 .bbm_swap = true, 281 .empty_page_check = true, 282 .mastersta_mask = NFI_MASTERSTA_MASK_7986, 283 .nandfsm_mask = NFI_NAND_FSM_7986, 284 .spare_sizes = mt7986_spare_sizes, 285 .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) 286 }; 287 288 struct mtk_snand_conf { 289 size_t page_size; 290 size_t oob_size; 291 u8 nsectors; 292 u8 spare_size; 293 }; 294 295 struct mtk_snand { 296 struct spi_controller *ctlr; 297 struct device *dev; 298 struct clk *nfi_clk; 299 struct clk *pad_clk; 300 void __iomem *nfi_base; 301 int irq; 302 struct completion op_done; 303 const struct mtk_snand_caps *caps; 304 struct mtk_ecc_config *ecc_cfg; 305 struct mtk_ecc *ecc; 306 struct mtk_snand_conf nfi_cfg; 307 struct mtk_ecc_stats ecc_stats; 308 struct nand_ecc_engine ecc_eng; 309 bool autofmt; 310 u8 *buf; 311 size_t buf_len; 312 }; 313 314 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) 315 { 316 struct nand_ecc_engine *eng = nand->ecc.engine; 317 318 return container_of(eng, struct mtk_snand, ecc_eng); 319 } 320 321 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) 322 { 323 if (snf->buf_len >= size) 324 return 0; 325 kfree(snf->buf); 326 snf->buf = kmalloc(size, GFP_KERNEL); 327 if (!snf->buf) 328 return -ENOMEM; 329 snf->buf_len = size; 330 memset(snf->buf, 0xff, snf->buf_len); 331 return 0; 332 } 333 334 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) 335 { 336 return readl(snf->nfi_base + reg); 337 } 338 339 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) 340 { 341 writel(val, snf->nfi_base + reg); 342 } 343 344 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) 345 { 346 writew(val, snf->nfi_base + reg); 347 } 348 349 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) 350 { 351 u32 val; 352 353 val = readl(snf->nfi_base + reg); 354 val &= ~clr; 355 val |= set; 356 writel(val, snf->nfi_base + reg); 357 } 358 359 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) 360 { 361 u32 i, val = 0, es = sizeof(u32); 362 363 for (i = reg; i < reg + len; i++) { 364 if (i == reg || i % es == 0) 365 val = nfi_read32(snf, i & ~(es - 1)); 366 367 *data++ = (u8)(val >> (8 * (i % es))); 368 } 369 } 370 371 static int mtk_nfi_reset(struct mtk_snand *snf) 372 { 373 u32 val, fifo_mask; 374 int ret; 375 376 nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); 377 378 ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, 379 !(val & snf->caps->mastersta_mask), 0, 380 SNFI_POLL_INTERVAL); 381 if (ret) { 382 dev_err(snf->dev, "NFI master is still busy after reset\n"); 383 return ret; 384 } 385 386 ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, 387 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, 388 SNFI_POLL_INTERVAL); 389 if (ret) { 390 dev_err(snf->dev, "Failed to reset NFI\n"); 391 return ret; 392 } 393 394 fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | 395 ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); 396 ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, 397 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); 398 if (ret) { 399 dev_err(snf->dev, "NFI FIFOs are not empty\n"); 400 return ret; 401 } 402 403 return 0; 404 } 405 406 static int mtk_snand_mac_reset(struct mtk_snand *snf) 407 { 408 int ret; 409 u32 val; 410 411 nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); 412 413 ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, 414 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); 415 if (ret) 416 dev_err(snf->dev, "Failed to reset SNFI MAC\n"); 417 418 nfi_write32(snf, SNF_MISC_CTL, 419 (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); 420 421 return ret; 422 } 423 424 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) 425 { 426 int ret; 427 u32 val; 428 429 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); 430 nfi_write32(snf, SNF_MAC_OUTL, outlen); 431 nfi_write32(snf, SNF_MAC_INL, inlen); 432 433 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); 434 435 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, 436 val & WIP_READY, 0, SNFI_POLL_INTERVAL); 437 if (ret) { 438 dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); 439 goto cleanup; 440 } 441 442 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), 443 0, SNFI_POLL_INTERVAL); 444 if (ret) 445 dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); 446 447 cleanup: 448 nfi_write32(snf, SNF_MAC_CTL, 0); 449 450 return ret; 451 } 452 453 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) 454 { 455 u32 rx_len = 0; 456 u32 reg_offs = 0; 457 u32 val = 0; 458 const u8 *tx_buf = NULL; 459 u8 *rx_buf = NULL; 460 int i, ret; 461 u8 b; 462 463 if (op->data.dir == SPI_MEM_DATA_IN) { 464 rx_len = op->data.nbytes; 465 rx_buf = op->data.buf.in; 466 } else { 467 tx_buf = op->data.buf.out; 468 } 469 470 mtk_snand_mac_reset(snf); 471 472 for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { 473 b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; 474 val |= b << (8 * (reg_offs % 4)); 475 if (reg_offs % 4 == 3) { 476 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 477 val = 0; 478 } 479 } 480 481 for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { 482 b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; 483 val |= b << (8 * (reg_offs % 4)); 484 if (reg_offs % 4 == 3) { 485 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 486 val = 0; 487 } 488 } 489 490 for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { 491 if (reg_offs % 4 == 3) { 492 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 493 val = 0; 494 } 495 } 496 497 if (op->data.dir == SPI_MEM_DATA_OUT) { 498 for (i = 0; i < op->data.nbytes; i++, reg_offs++) { 499 val |= tx_buf[i] << (8 * (reg_offs % 4)); 500 if (reg_offs % 4 == 3) { 501 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 502 val = 0; 503 } 504 } 505 } 506 507 if (reg_offs % 4) 508 nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); 509 510 for (i = 0; i < reg_offs; i += 4) 511 dev_dbg(snf->dev, "%d: %08X", i, 512 nfi_read32(snf, SNF_GPRAM + i)); 513 514 dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); 515 516 ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); 517 if (ret) 518 return ret; 519 520 if (!rx_len) 521 return 0; 522 523 nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); 524 return 0; 525 } 526 527 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, 528 u32 oob_size) 529 { 530 int spare_idx = -1; 531 u32 spare_size, spare_size_shift, pagesize_idx; 532 u32 sector_size_512; 533 u8 nsectors; 534 int i; 535 536 // skip if it's already configured as required. 537 if (snf->nfi_cfg.page_size == page_size && 538 snf->nfi_cfg.oob_size == oob_size) 539 return 0; 540 541 nsectors = page_size / snf->caps->sector_size; 542 if (nsectors > snf->caps->max_sectors) { 543 dev_err(snf->dev, "too many sectors required.\n"); 544 goto err; 545 } 546 547 if (snf->caps->sector_size == 512) { 548 sector_size_512 = NFI_SEC_SEL_512; 549 spare_size_shift = NFI_SPARE_SIZE_S; 550 } else { 551 sector_size_512 = 0; 552 spare_size_shift = NFI_SPARE_SIZE_LS_S; 553 } 554 555 switch (page_size) { 556 case SZ_512: 557 pagesize_idx = NFI_PAGE_SIZE_512_2K; 558 break; 559 case SZ_2K: 560 if (snf->caps->sector_size == 512) 561 pagesize_idx = NFI_PAGE_SIZE_2K_4K; 562 else 563 pagesize_idx = NFI_PAGE_SIZE_512_2K; 564 break; 565 case SZ_4K: 566 if (snf->caps->sector_size == 512) 567 pagesize_idx = NFI_PAGE_SIZE_4K_8K; 568 else 569 pagesize_idx = NFI_PAGE_SIZE_2K_4K; 570 break; 571 case SZ_8K: 572 if (snf->caps->sector_size == 512) 573 pagesize_idx = NFI_PAGE_SIZE_8K_16K; 574 else 575 pagesize_idx = NFI_PAGE_SIZE_4K_8K; 576 break; 577 case SZ_16K: 578 pagesize_idx = NFI_PAGE_SIZE_8K_16K; 579 break; 580 default: 581 dev_err(snf->dev, "unsupported page size.\n"); 582 goto err; 583 } 584 585 spare_size = oob_size / nsectors; 586 // If we're using the 1KB sector size, HW will automatically double the 587 // spare size. We should only use half of the value in this case. 588 if (snf->caps->sector_size == 1024) 589 spare_size /= 2; 590 591 for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { 592 if (snf->caps->spare_sizes[i] <= spare_size) { 593 spare_size = snf->caps->spare_sizes[i]; 594 if (snf->caps->sector_size == 1024) 595 spare_size *= 2; 596 spare_idx = i; 597 break; 598 } 599 } 600 601 if (spare_idx < 0) { 602 dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); 603 goto err; 604 } 605 606 nfi_write32(snf, NFI_PAGEFMT, 607 (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | 608 (snf->caps->fdm_size << NFI_FDM_NUM_S) | 609 (spare_idx << spare_size_shift) | 610 (pagesize_idx << NFI_PAGE_SIZE_S) | 611 sector_size_512); 612 613 snf->nfi_cfg.page_size = page_size; 614 snf->nfi_cfg.oob_size = oob_size; 615 snf->nfi_cfg.nsectors = nsectors; 616 snf->nfi_cfg.spare_size = spare_size; 617 618 dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", 619 snf->caps->sector_size, spare_size, nsectors); 620 return snand_prepare_bouncebuf(snf, page_size + oob_size); 621 err: 622 dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, 623 oob_size); 624 return -EOPNOTSUPP; 625 } 626 627 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, 628 struct mtd_oob_region *oobecc) 629 { 630 // ECC area is not accessible 631 return -ERANGE; 632 } 633 634 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, 635 struct mtd_oob_region *oobfree) 636 { 637 struct nand_device *nand = mtd_to_nanddev(mtd); 638 struct mtk_snand *ms = nand_to_mtk_snand(nand); 639 640 if (section >= ms->nfi_cfg.nsectors) 641 return -ERANGE; 642 643 oobfree->length = ms->caps->fdm_size - 1; 644 oobfree->offset = section * ms->caps->fdm_size + 1; 645 return 0; 646 } 647 648 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { 649 .ecc = mtk_snand_ooblayout_ecc, 650 .free = mtk_snand_ooblayout_free, 651 }; 652 653 static int mtk_snand_ecc_init_ctx(struct nand_device *nand) 654 { 655 struct mtk_snand *snf = nand_to_mtk_snand(nand); 656 struct nand_ecc_props *conf = &nand->ecc.ctx.conf; 657 struct nand_ecc_props *reqs = &nand->ecc.requirements; 658 struct nand_ecc_props *user = &nand->ecc.user_conf; 659 struct mtd_info *mtd = nanddev_to_mtd(nand); 660 int step_size = 0, strength = 0, desired_correction = 0, steps; 661 bool ecc_user = false; 662 int ret; 663 u32 parity_bits, max_ecc_bytes; 664 struct mtk_ecc_config *ecc_cfg; 665 666 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, 667 nand->memorg.oobsize); 668 if (ret) 669 return ret; 670 671 ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); 672 if (!ecc_cfg) 673 return -ENOMEM; 674 675 nand->ecc.ctx.priv = ecc_cfg; 676 677 if (user->step_size && user->strength) { 678 step_size = user->step_size; 679 strength = user->strength; 680 ecc_user = true; 681 } else if (reqs->step_size && reqs->strength) { 682 step_size = reqs->step_size; 683 strength = reqs->strength; 684 } 685 686 if (step_size && strength) { 687 steps = mtd->writesize / step_size; 688 desired_correction = steps * strength; 689 strength = desired_correction / snf->nfi_cfg.nsectors; 690 } 691 692 ecc_cfg->mode = ECC_NFI_MODE; 693 ecc_cfg->sectors = snf->nfi_cfg.nsectors; 694 ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; 695 696 // calculate the max possible strength under current page format 697 parity_bits = mtk_ecc_get_parity_bits(snf->ecc); 698 max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; 699 ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; 700 mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); 701 702 // if there's a user requested strength, find the minimum strength that 703 // meets the requirement. Otherwise use the maximum strength which is 704 // expected by BootROM. 705 if (ecc_user && strength) { 706 u32 s_next = ecc_cfg->strength - 1; 707 708 while (1) { 709 mtk_ecc_adjust_strength(snf->ecc, &s_next); 710 if (s_next >= ecc_cfg->strength) 711 break; 712 if (s_next < strength) 713 break; 714 s_next = ecc_cfg->strength - 1; 715 } 716 } 717 718 mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); 719 720 conf->step_size = snf->caps->sector_size; 721 conf->strength = ecc_cfg->strength; 722 723 if (ecc_cfg->strength < strength) 724 dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", 725 strength); 726 dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", 727 ecc_cfg->strength, snf->caps->sector_size); 728 729 return 0; 730 } 731 732 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) 733 { 734 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); 735 736 kfree(ecc_cfg); 737 } 738 739 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, 740 struct nand_page_io_req *req) 741 { 742 struct mtk_snand *snf = nand_to_mtk_snand(nand); 743 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); 744 int ret; 745 746 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, 747 nand->memorg.oobsize); 748 if (ret) 749 return ret; 750 snf->autofmt = true; 751 snf->ecc_cfg = ecc_cfg; 752 return 0; 753 } 754 755 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, 756 struct nand_page_io_req *req) 757 { 758 struct mtk_snand *snf = nand_to_mtk_snand(nand); 759 struct mtd_info *mtd = nanddev_to_mtd(nand); 760 761 snf->ecc_cfg = NULL; 762 snf->autofmt = false; 763 if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) 764 return 0; 765 766 if (snf->ecc_stats.failed) 767 mtd->ecc_stats.failed += snf->ecc_stats.failed; 768 mtd->ecc_stats.corrected += snf->ecc_stats.corrected; 769 return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; 770 } 771 772 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { 773 .init_ctx = mtk_snand_ecc_init_ctx, 774 .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, 775 .prepare_io_req = mtk_snand_ecc_prepare_io_req, 776 .finish_io_req = mtk_snand_ecc_finish_io_req, 777 }; 778 779 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) 780 { 781 u32 vall, valm; 782 u8 *oobptr = buf; 783 int i, j; 784 785 for (i = 0; i < snf->nfi_cfg.nsectors; i++) { 786 vall = nfi_read32(snf, NFI_FDML(i)); 787 valm = nfi_read32(snf, NFI_FDMM(i)); 788 789 for (j = 0; j < snf->caps->fdm_size; j++) 790 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); 791 792 oobptr += snf->caps->fdm_size; 793 } 794 } 795 796 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) 797 { 798 u32 fdm_size = snf->caps->fdm_size; 799 const u8 *oobptr = buf; 800 u32 vall, valm; 801 int i, j; 802 803 for (i = 0; i < snf->nfi_cfg.nsectors; i++) { 804 vall = 0; 805 valm = 0; 806 807 for (j = 0; j < 8; j++) { 808 if (j < 4) 809 vall |= (j < fdm_size ? oobptr[j] : 0xff) 810 << (j * 8); 811 else 812 valm |= (j < fdm_size ? oobptr[j] : 0xff) 813 << ((j - 4) * 8); 814 } 815 816 nfi_write32(snf, NFI_FDML(i), vall); 817 nfi_write32(snf, NFI_FDMM(i), valm); 818 819 oobptr += fdm_size; 820 } 821 } 822 823 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) 824 { 825 u32 buf_bbm_pos, fdm_bbm_pos; 826 827 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) 828 return; 829 830 // swap [pagesize] byte on nand with the first fdm byte 831 // in the last sector. 832 buf_bbm_pos = snf->nfi_cfg.page_size - 833 (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; 834 fdm_bbm_pos = snf->nfi_cfg.page_size + 835 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; 836 837 swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); 838 } 839 840 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) 841 { 842 u32 fdm_bbm_pos1, fdm_bbm_pos2; 843 844 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) 845 return; 846 847 // swap the first fdm byte in the first and the last sector. 848 fdm_bbm_pos1 = snf->nfi_cfg.page_size; 849 fdm_bbm_pos2 = snf->nfi_cfg.page_size + 850 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; 851 swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); 852 } 853 854 static int mtk_snand_read_page_cache(struct mtk_snand *snf, 855 const struct spi_mem_op *op) 856 { 857 u8 *buf = snf->buf; 858 u8 *buf_fdm = buf + snf->nfi_cfg.page_size; 859 // the address part to be sent by the controller 860 u32 op_addr = op->addr.val; 861 // where to start copying data from bounce buffer 862 u32 rd_offset = 0; 863 u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); 864 u32 op_mode = 0; 865 u32 dma_len = snf->buf_len; 866 int ret = 0; 867 u32 rd_mode, rd_bytes, val; 868 dma_addr_t buf_dma; 869 870 if (snf->autofmt) { 871 u32 last_bit; 872 u32 mask; 873 874 dma_len = snf->nfi_cfg.page_size; 875 op_mode = CNFG_AUTO_FMT_EN; 876 if (op->data.ecc) 877 op_mode |= CNFG_HW_ECC_EN; 878 // extract the plane bit: 879 // Find the highest bit set in (pagesize+oobsize). 880 // Bits higher than that in op->addr are kept and sent over SPI 881 // Lower bits are used as an offset for copying data from DMA 882 // bounce buffer. 883 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); 884 mask = (1 << last_bit) - 1; 885 rd_offset = op_addr & mask; 886 op_addr &= ~mask; 887 888 // check if we can dma to the caller memory 889 if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) 890 buf = op->data.buf.in; 891 } 892 mtk_snand_mac_reset(snf); 893 mtk_nfi_reset(snf); 894 895 // command and dummy cycles 896 nfi_write32(snf, SNF_RD_CTL2, 897 (dummy_clk << DATA_READ_DUMMY_S) | 898 (op->cmd.opcode << DATA_READ_CMD_S)); 899 900 // read address 901 nfi_write32(snf, SNF_RD_CTL3, op_addr); 902 903 // Set read op_mode 904 if (op->data.buswidth == 4) 905 rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : 906 DATA_READ_MODE_X4; 907 else if (op->data.buswidth == 2) 908 rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : 909 DATA_READ_MODE_X2; 910 else 911 rd_mode = DATA_READ_MODE_X1; 912 rd_mode <<= DATA_READ_MODE_S; 913 nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, 914 rd_mode | DATARD_CUSTOM_EN); 915 916 // Set bytes to read 917 rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * 918 snf->nfi_cfg.nsectors; 919 nfi_write32(snf, SNF_MISC_CTL2, 920 (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); 921 922 // NFI read prepare 923 nfi_write16(snf, NFI_CNFG, 924 (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | 925 CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); 926 927 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); 928 929 buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); 930 ret = dma_mapping_error(snf->dev, buf_dma); 931 if (ret) { 932 dev_err(snf->dev, "DMA mapping failed.\n"); 933 goto cleanup; 934 } 935 nfi_write32(snf, NFI_STRADDR, buf_dma); 936 if (op->data.ecc) { 937 snf->ecc_cfg->op = ECC_DECODE; 938 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); 939 if (ret) 940 goto cleanup_dma; 941 } 942 // Prepare for custom read interrupt 943 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); 944 reinit_completion(&snf->op_done); 945 946 // Trigger NFI into custom mode 947 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); 948 949 // Start DMA read 950 nfi_rmw32(snf, NFI_CON, 0, CON_BRD); 951 nfi_write16(snf, NFI_STRDATA, STR_DATA); 952 953 if (!wait_for_completion_timeout( 954 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { 955 dev_err(snf->dev, "DMA timed out for reading from cache.\n"); 956 ret = -ETIMEDOUT; 957 goto cleanup; 958 } 959 960 // Wait for BUS_SEC_CNTR returning expected value 961 ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, 962 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, 963 SNFI_POLL_INTERVAL); 964 if (ret) { 965 dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); 966 goto cleanup2; 967 } 968 969 // Wait for bus becoming idle 970 ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, 971 !(val & snf->caps->mastersta_mask), 0, 972 SNFI_POLL_INTERVAL); 973 if (ret) { 974 dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); 975 goto cleanup2; 976 } 977 978 if (op->data.ecc) { 979 ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); 980 if (ret) { 981 dev_err(snf->dev, "wait ecc done timeout\n"); 982 goto cleanup2; 983 } 984 // save status before disabling ecc 985 mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, 986 snf->nfi_cfg.nsectors); 987 } 988 989 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); 990 991 if (snf->autofmt) { 992 mtk_snand_read_fdm(snf, buf_fdm); 993 if (snf->caps->bbm_swap) { 994 mtk_snand_bm_swap(snf, buf); 995 mtk_snand_fdm_bm_swap(snf); 996 } 997 } 998 999 // copy data back 1000 if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { 1001 memset(op->data.buf.in, 0xff, op->data.nbytes); 1002 snf->ecc_stats.bitflips = 0; 1003 snf->ecc_stats.failed = 0; 1004 snf->ecc_stats.corrected = 0; 1005 } else { 1006 if (buf == op->data.buf.in) { 1007 u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; 1008 u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; 1009 1010 if (req_left) 1011 memcpy(op->data.buf.in + snf->nfi_cfg.page_size, 1012 buf_fdm, 1013 cap_len < req_left ? cap_len : req_left); 1014 } else if (rd_offset < snf->buf_len) { 1015 u32 cap_len = snf->buf_len - rd_offset; 1016 1017 if (op->data.nbytes < cap_len) 1018 cap_len = op->data.nbytes; 1019 memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); 1020 } 1021 } 1022 cleanup2: 1023 if (op->data.ecc) 1024 mtk_ecc_disable(snf->ecc); 1025 cleanup_dma: 1026 // unmap dma only if any error happens. (otherwise it's done before 1027 // data copying) 1028 if (ret) 1029 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); 1030 cleanup: 1031 // Stop read 1032 nfi_write32(snf, NFI_CON, 0); 1033 nfi_write16(snf, NFI_CNFG, 0); 1034 1035 // Clear SNF done flag 1036 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); 1037 nfi_write32(snf, SNF_STA_CTL1, 0); 1038 1039 // Disable interrupt 1040 nfi_read32(snf, NFI_INTR_STA); 1041 nfi_write32(snf, NFI_INTR_EN, 0); 1042 1043 nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); 1044 return ret; 1045 } 1046 1047 static int mtk_snand_write_page_cache(struct mtk_snand *snf, 1048 const struct spi_mem_op *op) 1049 { 1050 // the address part to be sent by the controller 1051 u32 op_addr = op->addr.val; 1052 // where to start copying data from bounce buffer 1053 u32 wr_offset = 0; 1054 u32 op_mode = 0; 1055 int ret = 0; 1056 u32 wr_mode = 0; 1057 u32 dma_len = snf->buf_len; 1058 u32 wr_bytes, val; 1059 size_t cap_len; 1060 dma_addr_t buf_dma; 1061 1062 if (snf->autofmt) { 1063 u32 last_bit; 1064 u32 mask; 1065 1066 dma_len = snf->nfi_cfg.page_size; 1067 op_mode = CNFG_AUTO_FMT_EN; 1068 if (op->data.ecc) 1069 op_mode |= CNFG_HW_ECC_EN; 1070 1071 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); 1072 mask = (1 << last_bit) - 1; 1073 wr_offset = op_addr & mask; 1074 op_addr &= ~mask; 1075 } 1076 mtk_snand_mac_reset(snf); 1077 mtk_nfi_reset(snf); 1078 1079 if (wr_offset) 1080 memset(snf->buf, 0xff, wr_offset); 1081 1082 cap_len = snf->buf_len - wr_offset; 1083 if (op->data.nbytes < cap_len) 1084 cap_len = op->data.nbytes; 1085 memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); 1086 if (snf->autofmt) { 1087 if (snf->caps->bbm_swap) { 1088 mtk_snand_fdm_bm_swap(snf); 1089 mtk_snand_bm_swap(snf, snf->buf); 1090 } 1091 mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); 1092 } 1093 1094 // Command 1095 nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); 1096 1097 // write address 1098 nfi_write32(snf, SNF_PG_CTL2, op_addr); 1099 1100 // Set read op_mode 1101 if (op->data.buswidth == 4) 1102 wr_mode = PG_LOAD_X4_EN; 1103 1104 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, 1105 wr_mode | PG_LOAD_CUSTOM_EN); 1106 1107 // Set bytes to write 1108 wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * 1109 snf->nfi_cfg.nsectors; 1110 nfi_write32(snf, SNF_MISC_CTL2, 1111 (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); 1112 1113 // NFI write prepare 1114 nfi_write16(snf, NFI_CNFG, 1115 (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | 1116 CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); 1117 1118 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); 1119 buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); 1120 ret = dma_mapping_error(snf->dev, buf_dma); 1121 if (ret) { 1122 dev_err(snf->dev, "DMA mapping failed.\n"); 1123 goto cleanup; 1124 } 1125 nfi_write32(snf, NFI_STRADDR, buf_dma); 1126 if (op->data.ecc) { 1127 snf->ecc_cfg->op = ECC_ENCODE; 1128 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); 1129 if (ret) 1130 goto cleanup_dma; 1131 } 1132 // Prepare for custom write interrupt 1133 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); 1134 reinit_completion(&snf->op_done); 1135 ; 1136 1137 // Trigger NFI into custom mode 1138 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); 1139 1140 // Start DMA write 1141 nfi_rmw32(snf, NFI_CON, 0, CON_BWR); 1142 nfi_write16(snf, NFI_STRDATA, STR_DATA); 1143 1144 if (!wait_for_completion_timeout( 1145 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { 1146 dev_err(snf->dev, "DMA timed out for program load.\n"); 1147 ret = -ETIMEDOUT; 1148 goto cleanup_ecc; 1149 } 1150 1151 // Wait for NFI_SEC_CNTR returning expected value 1152 ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, 1153 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, 1154 SNFI_POLL_INTERVAL); 1155 if (ret) 1156 dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); 1157 1158 cleanup_ecc: 1159 if (op->data.ecc) 1160 mtk_ecc_disable(snf->ecc); 1161 cleanup_dma: 1162 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); 1163 cleanup: 1164 // Stop write 1165 nfi_write32(snf, NFI_CON, 0); 1166 nfi_write16(snf, NFI_CNFG, 0); 1167 1168 // Clear SNF done flag 1169 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); 1170 nfi_write32(snf, SNF_STA_CTL1, 0); 1171 1172 // Disable interrupt 1173 nfi_read32(snf, NFI_INTR_STA); 1174 nfi_write32(snf, NFI_INTR_EN, 0); 1175 1176 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); 1177 1178 return ret; 1179 } 1180 1181 /** 1182 * mtk_snand_is_page_ops() - check if the op is a controller supported page op. 1183 * @op spi-mem op to check 1184 * 1185 * Check whether op can be executed with read_from_cache or program_load 1186 * mode in the controller. 1187 * This controller can execute typical Read From Cache and Program Load 1188 * instructions found on SPI-NAND with 2-byte address. 1189 * DTR and cmd buswidth & nbytes should be checked before calling this. 1190 * 1191 * Return: true if the op matches the instruction template 1192 */ 1193 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) 1194 { 1195 if (op->addr.nbytes != 2) 1196 return false; 1197 1198 if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && 1199 op->addr.buswidth != 4) 1200 return false; 1201 1202 // match read from page instructions 1203 if (op->data.dir == SPI_MEM_DATA_IN) { 1204 // check dummy cycle first 1205 if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > 1206 DATA_READ_MAX_DUMMY) 1207 return false; 1208 // quad io / quad out 1209 if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && 1210 op->data.buswidth == 4) 1211 return true; 1212 1213 // dual io / dual out 1214 if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && 1215 op->data.buswidth == 2) 1216 return true; 1217 1218 // standard spi 1219 if (op->addr.buswidth == 1 && op->data.buswidth == 1) 1220 return true; 1221 } else if (op->data.dir == SPI_MEM_DATA_OUT) { 1222 // check dummy cycle first 1223 if (op->dummy.nbytes) 1224 return false; 1225 // program load quad out 1226 if (op->addr.buswidth == 1 && op->data.buswidth == 4) 1227 return true; 1228 // standard spi 1229 if (op->addr.buswidth == 1 && op->data.buswidth == 1) 1230 return true; 1231 } 1232 return false; 1233 } 1234 1235 static bool mtk_snand_supports_op(struct spi_mem *mem, 1236 const struct spi_mem_op *op) 1237 { 1238 if (!spi_mem_default_supports_op(mem, op)) 1239 return false; 1240 if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) 1241 return false; 1242 if (mtk_snand_is_page_ops(op)) 1243 return true; 1244 return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && 1245 (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && 1246 (op->data.nbytes == 0 || op->data.buswidth == 1)); 1247 } 1248 1249 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 1250 { 1251 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); 1252 // page ops transfer size must be exactly ((sector_size + spare_size) * 1253 // nsectors). Limit the op size if the caller requests more than that. 1254 // exec_op will read more than needed and discard the leftover if the 1255 // caller requests less data. 1256 if (mtk_snand_is_page_ops(op)) { 1257 size_t l; 1258 // skip adjust_op_size for page ops 1259 if (ms->autofmt) 1260 return 0; 1261 l = ms->caps->sector_size + ms->nfi_cfg.spare_size; 1262 l *= ms->nfi_cfg.nsectors; 1263 if (op->data.nbytes > l) 1264 op->data.nbytes = l; 1265 } else { 1266 size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 1267 1268 if (hl >= SNF_GPRAM_SIZE) 1269 return -EOPNOTSUPP; 1270 if (op->data.nbytes > SNF_GPRAM_SIZE - hl) 1271 op->data.nbytes = SNF_GPRAM_SIZE - hl; 1272 } 1273 return 0; 1274 } 1275 1276 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 1277 { 1278 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master); 1279 1280 dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, 1281 op->addr.val, op->addr.buswidth, op->addr.nbytes, 1282 op->data.buswidth, op->data.nbytes); 1283 if (mtk_snand_is_page_ops(op)) { 1284 if (op->data.dir == SPI_MEM_DATA_IN) 1285 return mtk_snand_read_page_cache(ms, op); 1286 else 1287 return mtk_snand_write_page_cache(ms, op); 1288 } else { 1289 return mtk_snand_mac_io(ms, op); 1290 } 1291 } 1292 1293 static const struct spi_controller_mem_ops mtk_snand_mem_ops = { 1294 .adjust_op_size = mtk_snand_adjust_op_size, 1295 .supports_op = mtk_snand_supports_op, 1296 .exec_op = mtk_snand_exec_op, 1297 }; 1298 1299 static const struct spi_controller_mem_caps mtk_snand_mem_caps = { 1300 .ecc = true, 1301 }; 1302 1303 static irqreturn_t mtk_snand_irq(int irq, void *id) 1304 { 1305 struct mtk_snand *snf = id; 1306 u32 sta, ien; 1307 1308 sta = nfi_read32(snf, NFI_INTR_STA); 1309 ien = nfi_read32(snf, NFI_INTR_EN); 1310 1311 if (!(sta & ien)) 1312 return IRQ_NONE; 1313 1314 nfi_write32(snf, NFI_INTR_EN, 0); 1315 complete(&snf->op_done); 1316 return IRQ_HANDLED; 1317 } 1318 1319 static const struct of_device_id mtk_snand_ids[] = { 1320 { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, 1321 { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, 1322 { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, 1323 {}, 1324 }; 1325 1326 MODULE_DEVICE_TABLE(of, mtk_snand_ids); 1327 1328 static int mtk_snand_enable_clk(struct mtk_snand *ms) 1329 { 1330 int ret; 1331 1332 ret = clk_prepare_enable(ms->nfi_clk); 1333 if (ret) { 1334 dev_err(ms->dev, "unable to enable nfi clk\n"); 1335 return ret; 1336 } 1337 ret = clk_prepare_enable(ms->pad_clk); 1338 if (ret) { 1339 dev_err(ms->dev, "unable to enable pad clk\n"); 1340 goto err1; 1341 } 1342 return 0; 1343 err1: 1344 clk_disable_unprepare(ms->nfi_clk); 1345 return ret; 1346 } 1347 1348 static void mtk_snand_disable_clk(struct mtk_snand *ms) 1349 { 1350 clk_disable_unprepare(ms->pad_clk); 1351 clk_disable_unprepare(ms->nfi_clk); 1352 } 1353 1354 static int mtk_snand_probe(struct platform_device *pdev) 1355 { 1356 struct device_node *np = pdev->dev.of_node; 1357 const struct of_device_id *dev_id; 1358 struct spi_controller *ctlr; 1359 struct mtk_snand *ms; 1360 int ret; 1361 1362 dev_id = of_match_node(mtk_snand_ids, np); 1363 if (!dev_id) 1364 return -EINVAL; 1365 1366 ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms)); 1367 if (!ctlr) 1368 return -ENOMEM; 1369 platform_set_drvdata(pdev, ctlr); 1370 1371 ms = spi_controller_get_devdata(ctlr); 1372 1373 ms->ctlr = ctlr; 1374 ms->caps = dev_id->data; 1375 1376 ms->ecc = of_mtk_ecc_get(np); 1377 if (IS_ERR(ms->ecc)) 1378 return PTR_ERR(ms->ecc); 1379 else if (!ms->ecc) 1380 return -ENODEV; 1381 1382 ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); 1383 if (IS_ERR(ms->nfi_base)) { 1384 ret = PTR_ERR(ms->nfi_base); 1385 goto release_ecc; 1386 } 1387 1388 ms->dev = &pdev->dev; 1389 1390 ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); 1391 if (IS_ERR(ms->nfi_clk)) { 1392 ret = PTR_ERR(ms->nfi_clk); 1393 dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); 1394 goto release_ecc; 1395 } 1396 1397 ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); 1398 if (IS_ERR(ms->pad_clk)) { 1399 ret = PTR_ERR(ms->pad_clk); 1400 dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); 1401 goto release_ecc; 1402 } 1403 1404 ret = mtk_snand_enable_clk(ms); 1405 if (ret) 1406 goto release_ecc; 1407 1408 init_completion(&ms->op_done); 1409 1410 ms->irq = platform_get_irq(pdev, 0); 1411 if (ms->irq < 0) { 1412 ret = ms->irq; 1413 goto disable_clk; 1414 } 1415 ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, 1416 "mtk-snand", ms); 1417 if (ret) { 1418 dev_err(ms->dev, "failed to request snfi irq\n"); 1419 goto disable_clk; 1420 } 1421 1422 ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); 1423 if (ret) { 1424 dev_err(ms->dev, "failed to set dma mask\n"); 1425 goto disable_clk; 1426 } 1427 1428 // switch to SNFI mode 1429 nfi_write32(ms, SNF_CFG, SPI_MODE); 1430 1431 // setup an initial page format for ops matching page_cache_op template 1432 // before ECC is called. 1433 ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size, 1434 ms->caps->spare_sizes[0]); 1435 if (ret) { 1436 dev_err(ms->dev, "failed to set initial page format\n"); 1437 goto disable_clk; 1438 } 1439 1440 // setup ECC engine 1441 ms->ecc_eng.dev = &pdev->dev; 1442 ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; 1443 ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; 1444 ms->ecc_eng.priv = ms; 1445 1446 ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); 1447 if (ret) { 1448 dev_err(&pdev->dev, "failed to register ecc engine.\n"); 1449 goto disable_clk; 1450 } 1451 1452 ctlr->num_chipselect = 1; 1453 ctlr->mem_ops = &mtk_snand_mem_ops; 1454 ctlr->mem_caps = &mtk_snand_mem_caps; 1455 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1456 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; 1457 ctlr->dev.of_node = pdev->dev.of_node; 1458 ret = spi_register_controller(ctlr); 1459 if (ret) { 1460 dev_err(&pdev->dev, "spi_register_controller failed.\n"); 1461 goto disable_clk; 1462 } 1463 1464 return 0; 1465 disable_clk: 1466 mtk_snand_disable_clk(ms); 1467 release_ecc: 1468 mtk_ecc_release(ms->ecc); 1469 return ret; 1470 } 1471 1472 static int mtk_snand_remove(struct platform_device *pdev) 1473 { 1474 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1475 struct mtk_snand *ms = spi_controller_get_devdata(ctlr); 1476 1477 spi_unregister_controller(ctlr); 1478 mtk_snand_disable_clk(ms); 1479 mtk_ecc_release(ms->ecc); 1480 kfree(ms->buf); 1481 return 0; 1482 } 1483 1484 static struct platform_driver mtk_snand_driver = { 1485 .probe = mtk_snand_probe, 1486 .remove = mtk_snand_remove, 1487 .driver = { 1488 .name = "mtk-snand", 1489 .of_match_table = mtk_snand_ids, 1490 }, 1491 }; 1492 1493 module_platform_driver(mtk_snand_driver); 1494 1495 MODULE_LICENSE("GPL"); 1496 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); 1497 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); 1498