xref: /linux/drivers/spi/spi-mtk-snfi.c (revision f2527d8f566a45fa00ee5abd04d1c9476d4d704f)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4 //
5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6 //
7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8 //
9 // Copyright (C) 2020 MediaTek Inc.
10 // Author: Weijie Gao <weijie.gao@mediatek.com>
11 //
12 // This controller organize the page data as several interleaved sectors
13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14 // +---------+------+------+---------+------+------+-----+
15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16 // +---------+------+------+---------+------+------+-----+
17 // With auto-format turned on, DMA only returns this part:
18 // +---------+---------+-----+
19 // | Sector1 | Sector2 | ... |
20 // +---------+---------+-----+
21 // The FDM data will be filled to the registers, and ECC parity data isn't
22 // accessible.
23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24 // in it's original order shown in the first table. ECC can't be turned on when
25 // auto-format is off.
26 //
27 // However, Linux SPI-NAND driver expects the data returned as:
28 // +------+-----+
29 // | Page | OOB |
30 // +------+-----+
31 // where the page data is continuously stored instead of interleaved.
32 // So we assume all instructions matching the page_op template between ECC
33 // prepare_io_req and finish_io_req are for page cache r/w.
34 // Here's how this spi-mem driver operates when reading:
35 //  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36 //  2. Perform page ops and let the controller fill the DMA bounce buffer with
37 //     de-interleaved sector data and set FDM registers.
38 //  3. Return the data as:
39 //     +---------+---------+-----+------+------+-----+
40 //     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41 //     +---------+---------+-----+------+------+-----+
42 //  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43 //     read the data with auto-format off into the bounce buffer and copy
44 //     needed data to the buffer specified in the request.
45 //
46 // Write requests operates in a similar manner.
47 // As a limitation of this strategy, we won't be able to access any ECC parity
48 // data at all in Linux.
49 //
50 // Here's the bad block mark situation on MTK chips:
51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector
52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53 // in the returned data, which is the BBM position expected by kernel. However,
54 // the conventional bad block mark is the first byte of the OOB, which is part
55 // of the last sector data in the interleaved layout. Instead of fixing their
56 // hardware, MTK decided to address this inconsistency in software. On these
57 // later chips, the BootROM expects the following:
58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59 //    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60 // 2. The original byte stored at that position in the DMA buffer will be stored
61 //    as the first byte of the FDM section in the last sector.
62 // We can't disagree with the BootROM, so after de-interleaving, we need to
63 // perform the following swaps in read:
64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65 //    which is the expected BBM position by kernel.
66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67 //    [page_size - (nsectors - 1) * spare_size]
68 // Similarly, when writing, we need to perform swaps in the other direction.
69 
70 #include <linux/kernel.h>
71 #include <linux/module.h>
72 #include <linux/init.h>
73 #include <linux/device.h>
74 #include <linux/mutex.h>
75 #include <linux/clk.h>
76 #include <linux/interrupt.h>
77 #include <linux/dma-mapping.h>
78 #include <linux/iopoll.h>
79 #include <linux/of_platform.h>
80 #include <linux/mtd/nand-ecc-mtk.h>
81 #include <linux/spi/spi.h>
82 #include <linux/spi/spi-mem.h>
83 #include <linux/mtd/nand.h>
84 
85 // NFI registers
86 #define NFI_CNFG 0x000
87 #define CNFG_OP_MODE_S 12
88 #define CNFG_OP_MODE_CUST 6
89 #define CNFG_OP_MODE_PROGRAM 3
90 #define CNFG_AUTO_FMT_EN BIT(9)
91 #define CNFG_HW_ECC_EN BIT(8)
92 #define CNFG_DMA_BURST_EN BIT(2)
93 #define CNFG_READ_MODE BIT(1)
94 #define CNFG_DMA_MODE BIT(0)
95 
96 #define NFI_PAGEFMT 0x0004
97 #define NFI_SPARE_SIZE_LS_S 16
98 #define NFI_FDM_ECC_NUM_S 12
99 #define NFI_FDM_NUM_S 8
100 #define NFI_SPARE_SIZE_S 4
101 #define NFI_SEC_SEL_512 BIT(2)
102 #define NFI_PAGE_SIZE_S 0
103 #define NFI_PAGE_SIZE_512_2K 0
104 #define NFI_PAGE_SIZE_2K_4K 1
105 #define NFI_PAGE_SIZE_4K_8K 2
106 #define NFI_PAGE_SIZE_8K_16K 3
107 
108 #define NFI_CON 0x008
109 #define CON_SEC_NUM_S 12
110 #define CON_BWR BIT(9)
111 #define CON_BRD BIT(8)
112 #define CON_NFI_RST BIT(1)
113 #define CON_FIFO_FLUSH BIT(0)
114 
115 #define NFI_INTR_EN 0x010
116 #define NFI_INTR_STA 0x014
117 #define NFI_IRQ_INTR_EN BIT(31)
118 #define NFI_IRQ_CUS_READ BIT(8)
119 #define NFI_IRQ_CUS_PG BIT(7)
120 
121 #define NFI_CMD 0x020
122 #define NFI_CMD_DUMMY_READ 0x00
123 #define NFI_CMD_DUMMY_WRITE 0x80
124 
125 #define NFI_STRDATA 0x040
126 #define STR_DATA BIT(0)
127 
128 #define NFI_STA 0x060
129 #define NFI_NAND_FSM_7622 GENMASK(28, 24)
130 #define NFI_NAND_FSM_7986 GENMASK(29, 23)
131 #define NFI_FSM GENMASK(19, 16)
132 #define READ_EMPTY BIT(12)
133 
134 #define NFI_FIFOSTA 0x064
135 #define FIFO_WR_REMAIN_S 8
136 #define FIFO_RD_REMAIN_S 0
137 
138 #define NFI_ADDRCNTR 0x070
139 #define SEC_CNTR GENMASK(16, 12)
140 #define SEC_CNTR_S 12
141 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
142 
143 #define NFI_STRADDR 0x080
144 
145 #define NFI_BYTELEN 0x084
146 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
147 
148 #define NFI_FDM0L 0x0a0
149 #define NFI_FDM0M 0x0a4
150 #define NFI_FDML(n) (NFI_FDM0L + (n)*8)
151 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
152 
153 #define NFI_DEBUG_CON1 0x220
154 #define WBUF_EN BIT(2)
155 
156 #define NFI_MASTERSTA 0x224
157 #define MAS_ADDR GENMASK(11, 9)
158 #define MAS_RD GENMASK(8, 6)
159 #define MAS_WR GENMASK(5, 3)
160 #define MAS_RDDLY GENMASK(2, 0)
161 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
162 #define NFI_MASTERSTA_MASK_7986 3
163 
164 // SNFI registers
165 #define SNF_MAC_CTL 0x500
166 #define MAC_XIO_SEL BIT(4)
167 #define SF_MAC_EN BIT(3)
168 #define SF_TRIG BIT(2)
169 #define WIP_READY BIT(1)
170 #define WIP BIT(0)
171 
172 #define SNF_MAC_OUTL 0x504
173 #define SNF_MAC_INL 0x508
174 
175 #define SNF_RD_CTL2 0x510
176 #define DATA_READ_DUMMY_S 8
177 #define DATA_READ_MAX_DUMMY 0xf
178 #define DATA_READ_CMD_S 0
179 
180 #define SNF_RD_CTL3 0x514
181 
182 #define SNF_PG_CTL1 0x524
183 #define PG_LOAD_CMD_S 8
184 
185 #define SNF_PG_CTL2 0x528
186 
187 #define SNF_MISC_CTL 0x538
188 #define SW_RST BIT(28)
189 #define FIFO_RD_LTC_S 25
190 #define PG_LOAD_X4_EN BIT(20)
191 #define DATA_READ_MODE_S 16
192 #define DATA_READ_MODE GENMASK(18, 16)
193 #define DATA_READ_MODE_X1 0
194 #define DATA_READ_MODE_X2 1
195 #define DATA_READ_MODE_X4 2
196 #define DATA_READ_MODE_DUAL 5
197 #define DATA_READ_MODE_QUAD 6
198 #define PG_LOAD_CUSTOM_EN BIT(7)
199 #define DATARD_CUSTOM_EN BIT(6)
200 #define CS_DESELECT_CYC_S 0
201 
202 #define SNF_MISC_CTL2 0x53c
203 #define PROGRAM_LOAD_BYTE_NUM_S 16
204 #define READ_DATA_BYTE_NUM_S 11
205 
206 #define SNF_DLY_CTL3 0x548
207 #define SFCK_SAM_DLY_S 0
208 
209 #define SNF_STA_CTL1 0x550
210 #define CUS_PG_DONE BIT(28)
211 #define CUS_READ_DONE BIT(27)
212 #define SPI_STATE_S 0
213 #define SPI_STATE GENMASK(3, 0)
214 
215 #define SNF_CFG 0x55c
216 #define SPI_MODE BIT(0)
217 
218 #define SNF_GPRAM 0x800
219 #define SNF_GPRAM_SIZE 0xa0
220 
221 #define SNFI_POLL_INTERVAL 1000000
222 
223 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
224 
225 static const u8 mt7986_spare_sizes[] = {
226 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
227 	74
228 };
229 
230 struct mtk_snand_caps {
231 	u16 sector_size;
232 	u16 max_sectors;
233 	u16 fdm_size;
234 	u16 fdm_ecc_size;
235 	u16 fifo_size;
236 
237 	bool bbm_swap;
238 	bool empty_page_check;
239 	u32 mastersta_mask;
240 	u32 nandfsm_mask;
241 
242 	const u8 *spare_sizes;
243 	u32 num_spare_size;
244 };
245 
246 static const struct mtk_snand_caps mt7622_snand_caps = {
247 	.sector_size = 512,
248 	.max_sectors = 8,
249 	.fdm_size = 8,
250 	.fdm_ecc_size = 1,
251 	.fifo_size = 32,
252 	.bbm_swap = false,
253 	.empty_page_check = false,
254 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
255 	.nandfsm_mask = NFI_NAND_FSM_7622,
256 	.spare_sizes = mt7622_spare_sizes,
257 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
258 };
259 
260 static const struct mtk_snand_caps mt7629_snand_caps = {
261 	.sector_size = 512,
262 	.max_sectors = 8,
263 	.fdm_size = 8,
264 	.fdm_ecc_size = 1,
265 	.fifo_size = 32,
266 	.bbm_swap = true,
267 	.empty_page_check = false,
268 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
269 	.nandfsm_mask = NFI_NAND_FSM_7622,
270 	.spare_sizes = mt7622_spare_sizes,
271 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
272 };
273 
274 static const struct mtk_snand_caps mt7986_snand_caps = {
275 	.sector_size = 1024,
276 	.max_sectors = 8,
277 	.fdm_size = 8,
278 	.fdm_ecc_size = 1,
279 	.fifo_size = 64,
280 	.bbm_swap = true,
281 	.empty_page_check = true,
282 	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
283 	.nandfsm_mask = NFI_NAND_FSM_7986,
284 	.spare_sizes = mt7986_spare_sizes,
285 	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
286 };
287 
288 struct mtk_snand_conf {
289 	size_t page_size;
290 	size_t oob_size;
291 	u8 nsectors;
292 	u8 spare_size;
293 };
294 
295 struct mtk_snand {
296 	struct spi_controller *ctlr;
297 	struct device *dev;
298 	struct clk *nfi_clk;
299 	struct clk *pad_clk;
300 	void __iomem *nfi_base;
301 	int irq;
302 	struct completion op_done;
303 	const struct mtk_snand_caps *caps;
304 	struct mtk_ecc_config *ecc_cfg;
305 	struct mtk_ecc *ecc;
306 	struct mtk_snand_conf nfi_cfg;
307 	struct mtk_ecc_stats ecc_stats;
308 	struct nand_ecc_engine ecc_eng;
309 	bool autofmt;
310 	u8 *buf;
311 	size_t buf_len;
312 };
313 
314 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
315 {
316 	struct nand_ecc_engine *eng = nand->ecc.engine;
317 
318 	return container_of(eng, struct mtk_snand, ecc_eng);
319 }
320 
321 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
322 {
323 	if (snf->buf_len >= size)
324 		return 0;
325 	kfree(snf->buf);
326 	snf->buf = kmalloc(size, GFP_KERNEL);
327 	if (!snf->buf)
328 		return -ENOMEM;
329 	snf->buf_len = size;
330 	memset(snf->buf, 0xff, snf->buf_len);
331 	return 0;
332 }
333 
334 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
335 {
336 	return readl(snf->nfi_base + reg);
337 }
338 
339 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
340 {
341 	writel(val, snf->nfi_base + reg);
342 }
343 
344 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
345 {
346 	writew(val, snf->nfi_base + reg);
347 }
348 
349 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
350 {
351 	u32 val;
352 
353 	val = readl(snf->nfi_base + reg);
354 	val &= ~clr;
355 	val |= set;
356 	writel(val, snf->nfi_base + reg);
357 }
358 
359 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
360 {
361 	u32 i, val = 0, es = sizeof(u32);
362 
363 	for (i = reg; i < reg + len; i++) {
364 		if (i == reg || i % es == 0)
365 			val = nfi_read32(snf, i & ~(es - 1));
366 
367 		*data++ = (u8)(val >> (8 * (i % es)));
368 	}
369 }
370 
371 static int mtk_nfi_reset(struct mtk_snand *snf)
372 {
373 	u32 val, fifo_mask;
374 	int ret;
375 
376 	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
377 
378 	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
379 				 !(val & snf->caps->mastersta_mask), 0,
380 				 SNFI_POLL_INTERVAL);
381 	if (ret) {
382 		dev_err(snf->dev, "NFI master is still busy after reset\n");
383 		return ret;
384 	}
385 
386 	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
387 				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
388 				 SNFI_POLL_INTERVAL);
389 	if (ret) {
390 		dev_err(snf->dev, "Failed to reset NFI\n");
391 		return ret;
392 	}
393 
394 	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
395 		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
396 	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
397 				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
398 	if (ret) {
399 		dev_err(snf->dev, "NFI FIFOs are not empty\n");
400 		return ret;
401 	}
402 
403 	return 0;
404 }
405 
406 static int mtk_snand_mac_reset(struct mtk_snand *snf)
407 {
408 	int ret;
409 	u32 val;
410 
411 	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
412 
413 	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
414 				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
415 	if (ret)
416 		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
417 
418 	nfi_write32(snf, SNF_MISC_CTL,
419 		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
420 
421 	return ret;
422 }
423 
424 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
425 {
426 	int ret;
427 	u32 val;
428 
429 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
430 	nfi_write32(snf, SNF_MAC_OUTL, outlen);
431 	nfi_write32(snf, SNF_MAC_INL, inlen);
432 
433 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
434 
435 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
436 				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
437 	if (ret) {
438 		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
439 		goto cleanup;
440 	}
441 
442 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
443 				 0, SNFI_POLL_INTERVAL);
444 	if (ret)
445 		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
446 
447 cleanup:
448 	nfi_write32(snf, SNF_MAC_CTL, 0);
449 
450 	return ret;
451 }
452 
453 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
454 {
455 	u32 rx_len = 0;
456 	u32 reg_offs = 0;
457 	u32 val = 0;
458 	const u8 *tx_buf = NULL;
459 	u8 *rx_buf = NULL;
460 	int i, ret;
461 	u8 b;
462 
463 	if (op->data.dir == SPI_MEM_DATA_IN) {
464 		rx_len = op->data.nbytes;
465 		rx_buf = op->data.buf.in;
466 	} else {
467 		tx_buf = op->data.buf.out;
468 	}
469 
470 	mtk_snand_mac_reset(snf);
471 
472 	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
473 		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
474 		val |= b << (8 * (reg_offs % 4));
475 		if (reg_offs % 4 == 3) {
476 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
477 			val = 0;
478 		}
479 	}
480 
481 	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
482 		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
483 		val |= b << (8 * (reg_offs % 4));
484 		if (reg_offs % 4 == 3) {
485 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
486 			val = 0;
487 		}
488 	}
489 
490 	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
491 		if (reg_offs % 4 == 3) {
492 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
493 			val = 0;
494 		}
495 	}
496 
497 	if (op->data.dir == SPI_MEM_DATA_OUT) {
498 		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
499 			val |= tx_buf[i] << (8 * (reg_offs % 4));
500 			if (reg_offs % 4 == 3) {
501 				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
502 				val = 0;
503 			}
504 		}
505 	}
506 
507 	if (reg_offs % 4)
508 		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
509 
510 	for (i = 0; i < reg_offs; i += 4)
511 		dev_dbg(snf->dev, "%d: %08X", i,
512 			nfi_read32(snf, SNF_GPRAM + i));
513 
514 	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
515 
516 	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
517 	if (ret)
518 		return ret;
519 
520 	if (!rx_len)
521 		return 0;
522 
523 	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
524 	return 0;
525 }
526 
527 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
528 				   u32 oob_size)
529 {
530 	int spare_idx = -1;
531 	u32 spare_size, spare_size_shift, pagesize_idx;
532 	u32 sector_size_512;
533 	u8 nsectors;
534 	int i;
535 
536 	// skip if it's already configured as required.
537 	if (snf->nfi_cfg.page_size == page_size &&
538 	    snf->nfi_cfg.oob_size == oob_size)
539 		return 0;
540 
541 	nsectors = page_size / snf->caps->sector_size;
542 	if (nsectors > snf->caps->max_sectors) {
543 		dev_err(snf->dev, "too many sectors required.\n");
544 		goto err;
545 	}
546 
547 	if (snf->caps->sector_size == 512) {
548 		sector_size_512 = NFI_SEC_SEL_512;
549 		spare_size_shift = NFI_SPARE_SIZE_S;
550 	} else {
551 		sector_size_512 = 0;
552 		spare_size_shift = NFI_SPARE_SIZE_LS_S;
553 	}
554 
555 	switch (page_size) {
556 	case SZ_512:
557 		pagesize_idx = NFI_PAGE_SIZE_512_2K;
558 		break;
559 	case SZ_2K:
560 		if (snf->caps->sector_size == 512)
561 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
562 		else
563 			pagesize_idx = NFI_PAGE_SIZE_512_2K;
564 		break;
565 	case SZ_4K:
566 		if (snf->caps->sector_size == 512)
567 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
568 		else
569 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
570 		break;
571 	case SZ_8K:
572 		if (snf->caps->sector_size == 512)
573 			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
574 		else
575 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
576 		break;
577 	case SZ_16K:
578 		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
579 		break;
580 	default:
581 		dev_err(snf->dev, "unsupported page size.\n");
582 		goto err;
583 	}
584 
585 	spare_size = oob_size / nsectors;
586 	// If we're using the 1KB sector size, HW will automatically double the
587 	// spare size. We should only use half of the value in this case.
588 	if (snf->caps->sector_size == 1024)
589 		spare_size /= 2;
590 
591 	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
592 		if (snf->caps->spare_sizes[i] <= spare_size) {
593 			spare_size = snf->caps->spare_sizes[i];
594 			if (snf->caps->sector_size == 1024)
595 				spare_size *= 2;
596 			spare_idx = i;
597 			break;
598 		}
599 	}
600 
601 	if (spare_idx < 0) {
602 		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
603 		goto err;
604 	}
605 
606 	nfi_write32(snf, NFI_PAGEFMT,
607 		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
608 			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
609 			    (spare_idx << spare_size_shift) |
610 			    (pagesize_idx << NFI_PAGE_SIZE_S) |
611 			    sector_size_512);
612 
613 	snf->nfi_cfg.page_size = page_size;
614 	snf->nfi_cfg.oob_size = oob_size;
615 	snf->nfi_cfg.nsectors = nsectors;
616 	snf->nfi_cfg.spare_size = spare_size;
617 
618 	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
619 		snf->caps->sector_size, spare_size, nsectors);
620 	return snand_prepare_bouncebuf(snf, page_size + oob_size);
621 err:
622 	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
623 		oob_size);
624 	return -EOPNOTSUPP;
625 }
626 
627 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
628 				   struct mtd_oob_region *oobecc)
629 {
630 	// ECC area is not accessible
631 	return -ERANGE;
632 }
633 
634 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
635 				    struct mtd_oob_region *oobfree)
636 {
637 	struct nand_device *nand = mtd_to_nanddev(mtd);
638 	struct mtk_snand *ms = nand_to_mtk_snand(nand);
639 
640 	if (section >= ms->nfi_cfg.nsectors)
641 		return -ERANGE;
642 
643 	oobfree->length = ms->caps->fdm_size - 1;
644 	oobfree->offset = section * ms->caps->fdm_size + 1;
645 	return 0;
646 }
647 
648 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
649 	.ecc = mtk_snand_ooblayout_ecc,
650 	.free = mtk_snand_ooblayout_free,
651 };
652 
653 static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
654 {
655 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
656 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
657 	struct nand_ecc_props *reqs = &nand->ecc.requirements;
658 	struct nand_ecc_props *user = &nand->ecc.user_conf;
659 	struct mtd_info *mtd = nanddev_to_mtd(nand);
660 	int step_size = 0, strength = 0, desired_correction = 0, steps;
661 	bool ecc_user = false;
662 	int ret;
663 	u32 parity_bits, max_ecc_bytes;
664 	struct mtk_ecc_config *ecc_cfg;
665 
666 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
667 				      nand->memorg.oobsize);
668 	if (ret)
669 		return ret;
670 
671 	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
672 	if (!ecc_cfg)
673 		return -ENOMEM;
674 
675 	nand->ecc.ctx.priv = ecc_cfg;
676 
677 	if (user->step_size && user->strength) {
678 		step_size = user->step_size;
679 		strength = user->strength;
680 		ecc_user = true;
681 	} else if (reqs->step_size && reqs->strength) {
682 		step_size = reqs->step_size;
683 		strength = reqs->strength;
684 	}
685 
686 	if (step_size && strength) {
687 		steps = mtd->writesize / step_size;
688 		desired_correction = steps * strength;
689 		strength = desired_correction / snf->nfi_cfg.nsectors;
690 	}
691 
692 	ecc_cfg->mode = ECC_NFI_MODE;
693 	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
694 	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
695 
696 	// calculate the max possible strength under current page format
697 	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
698 	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
699 	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
700 	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
701 
702 	// if there's a user requested strength, find the minimum strength that
703 	// meets the requirement. Otherwise use the maximum strength which is
704 	// expected by BootROM.
705 	if (ecc_user && strength) {
706 		u32 s_next = ecc_cfg->strength - 1;
707 
708 		while (1) {
709 			mtk_ecc_adjust_strength(snf->ecc, &s_next);
710 			if (s_next >= ecc_cfg->strength)
711 				break;
712 			if (s_next < strength)
713 				break;
714 			s_next = ecc_cfg->strength - 1;
715 		}
716 	}
717 
718 	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
719 
720 	conf->step_size = snf->caps->sector_size;
721 	conf->strength = ecc_cfg->strength;
722 
723 	if (ecc_cfg->strength < strength)
724 		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
725 			 strength);
726 	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
727 		 ecc_cfg->strength, snf->caps->sector_size);
728 
729 	return 0;
730 }
731 
732 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
733 {
734 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
735 
736 	kfree(ecc_cfg);
737 }
738 
739 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
740 					struct nand_page_io_req *req)
741 {
742 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
743 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
744 	int ret;
745 
746 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
747 				      nand->memorg.oobsize);
748 	if (ret)
749 		return ret;
750 	snf->autofmt = true;
751 	snf->ecc_cfg = ecc_cfg;
752 	return 0;
753 }
754 
755 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
756 				       struct nand_page_io_req *req)
757 {
758 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
759 	struct mtd_info *mtd = nanddev_to_mtd(nand);
760 
761 	snf->ecc_cfg = NULL;
762 	snf->autofmt = false;
763 	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
764 		return 0;
765 
766 	if (snf->ecc_stats.failed)
767 		mtd->ecc_stats.failed += snf->ecc_stats.failed;
768 	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
769 	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
770 }
771 
772 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
773 	.init_ctx = mtk_snand_ecc_init_ctx,
774 	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
775 	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
776 	.finish_io_req = mtk_snand_ecc_finish_io_req,
777 };
778 
779 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
780 {
781 	u32 vall, valm;
782 	u8 *oobptr = buf;
783 	int i, j;
784 
785 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
786 		vall = nfi_read32(snf, NFI_FDML(i));
787 		valm = nfi_read32(snf, NFI_FDMM(i));
788 
789 		for (j = 0; j < snf->caps->fdm_size; j++)
790 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
791 
792 		oobptr += snf->caps->fdm_size;
793 	}
794 }
795 
796 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
797 {
798 	u32 fdm_size = snf->caps->fdm_size;
799 	const u8 *oobptr = buf;
800 	u32 vall, valm;
801 	int i, j;
802 
803 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
804 		vall = 0;
805 		valm = 0;
806 
807 		for (j = 0; j < 8; j++) {
808 			if (j < 4)
809 				vall |= (j < fdm_size ? oobptr[j] : 0xff)
810 					<< (j * 8);
811 			else
812 				valm |= (j < fdm_size ? oobptr[j] : 0xff)
813 					<< ((j - 4) * 8);
814 		}
815 
816 		nfi_write32(snf, NFI_FDML(i), vall);
817 		nfi_write32(snf, NFI_FDMM(i), valm);
818 
819 		oobptr += fdm_size;
820 	}
821 }
822 
823 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
824 {
825 	u32 buf_bbm_pos, fdm_bbm_pos;
826 
827 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
828 		return;
829 
830 	// swap [pagesize] byte on nand with the first fdm byte
831 	// in the last sector.
832 	buf_bbm_pos = snf->nfi_cfg.page_size -
833 		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
834 	fdm_bbm_pos = snf->nfi_cfg.page_size +
835 		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
836 
837 	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
838 }
839 
840 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
841 {
842 	u32 fdm_bbm_pos1, fdm_bbm_pos2;
843 
844 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
845 		return;
846 
847 	// swap the first fdm byte in the first and the last sector.
848 	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
849 	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
850 		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
851 	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
852 }
853 
854 static int mtk_snand_read_page_cache(struct mtk_snand *snf,
855 				     const struct spi_mem_op *op)
856 {
857 	u8 *buf = snf->buf;
858 	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
859 	// the address part to be sent by the controller
860 	u32 op_addr = op->addr.val;
861 	// where to start copying data from bounce buffer
862 	u32 rd_offset = 0;
863 	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
864 	u32 op_mode = 0;
865 	u32 dma_len = snf->buf_len;
866 	int ret = 0;
867 	u32 rd_mode, rd_bytes, val;
868 	dma_addr_t buf_dma;
869 
870 	if (snf->autofmt) {
871 		u32 last_bit;
872 		u32 mask;
873 
874 		dma_len = snf->nfi_cfg.page_size;
875 		op_mode = CNFG_AUTO_FMT_EN;
876 		if (op->data.ecc)
877 			op_mode |= CNFG_HW_ECC_EN;
878 		// extract the plane bit:
879 		// Find the highest bit set in (pagesize+oobsize).
880 		// Bits higher than that in op->addr are kept and sent over SPI
881 		// Lower bits are used as an offset for copying data from DMA
882 		// bounce buffer.
883 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
884 		mask = (1 << last_bit) - 1;
885 		rd_offset = op_addr & mask;
886 		op_addr &= ~mask;
887 
888 		// check if we can dma to the caller memory
889 		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
890 			buf = op->data.buf.in;
891 	}
892 	mtk_snand_mac_reset(snf);
893 	mtk_nfi_reset(snf);
894 
895 	// command and dummy cycles
896 	nfi_write32(snf, SNF_RD_CTL2,
897 		    (dummy_clk << DATA_READ_DUMMY_S) |
898 			    (op->cmd.opcode << DATA_READ_CMD_S));
899 
900 	// read address
901 	nfi_write32(snf, SNF_RD_CTL3, op_addr);
902 
903 	// Set read op_mode
904 	if (op->data.buswidth == 4)
905 		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
906 						   DATA_READ_MODE_X4;
907 	else if (op->data.buswidth == 2)
908 		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
909 						   DATA_READ_MODE_X2;
910 	else
911 		rd_mode = DATA_READ_MODE_X1;
912 	rd_mode <<= DATA_READ_MODE_S;
913 	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
914 		  rd_mode | DATARD_CUSTOM_EN);
915 
916 	// Set bytes to read
917 	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
918 		   snf->nfi_cfg.nsectors;
919 	nfi_write32(snf, SNF_MISC_CTL2,
920 		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
921 
922 	// NFI read prepare
923 	nfi_write16(snf, NFI_CNFG,
924 		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
925 			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
926 
927 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
928 
929 	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
930 	ret = dma_mapping_error(snf->dev, buf_dma);
931 	if (ret) {
932 		dev_err(snf->dev, "DMA mapping failed.\n");
933 		goto cleanup;
934 	}
935 	nfi_write32(snf, NFI_STRADDR, buf_dma);
936 	if (op->data.ecc) {
937 		snf->ecc_cfg->op = ECC_DECODE;
938 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
939 		if (ret)
940 			goto cleanup_dma;
941 	}
942 	// Prepare for custom read interrupt
943 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
944 	reinit_completion(&snf->op_done);
945 
946 	// Trigger NFI into custom mode
947 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
948 
949 	// Start DMA read
950 	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
951 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
952 
953 	if (!wait_for_completion_timeout(
954 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
955 		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
956 		ret = -ETIMEDOUT;
957 		goto cleanup;
958 	}
959 
960 	// Wait for BUS_SEC_CNTR returning expected value
961 	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
962 				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
963 				 SNFI_POLL_INTERVAL);
964 	if (ret) {
965 		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
966 		goto cleanup2;
967 	}
968 
969 	// Wait for bus becoming idle
970 	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
971 				 !(val & snf->caps->mastersta_mask), 0,
972 				 SNFI_POLL_INTERVAL);
973 	if (ret) {
974 		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
975 		goto cleanup2;
976 	}
977 
978 	if (op->data.ecc) {
979 		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
980 		if (ret) {
981 			dev_err(snf->dev, "wait ecc done timeout\n");
982 			goto cleanup2;
983 		}
984 		// save status before disabling ecc
985 		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
986 				  snf->nfi_cfg.nsectors);
987 	}
988 
989 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
990 
991 	if (snf->autofmt) {
992 		mtk_snand_read_fdm(snf, buf_fdm);
993 		if (snf->caps->bbm_swap) {
994 			mtk_snand_bm_swap(snf, buf);
995 			mtk_snand_fdm_bm_swap(snf);
996 		}
997 	}
998 
999 	// copy data back
1000 	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1001 		memset(op->data.buf.in, 0xff, op->data.nbytes);
1002 		snf->ecc_stats.bitflips = 0;
1003 		snf->ecc_stats.failed = 0;
1004 		snf->ecc_stats.corrected = 0;
1005 	} else {
1006 		if (buf == op->data.buf.in) {
1007 			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1008 			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1009 
1010 			if (req_left)
1011 				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1012 				       buf_fdm,
1013 				       cap_len < req_left ? cap_len : req_left);
1014 		} else if (rd_offset < snf->buf_len) {
1015 			u32 cap_len = snf->buf_len - rd_offset;
1016 
1017 			if (op->data.nbytes < cap_len)
1018 				cap_len = op->data.nbytes;
1019 			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1020 		}
1021 	}
1022 cleanup2:
1023 	if (op->data.ecc)
1024 		mtk_ecc_disable(snf->ecc);
1025 cleanup_dma:
1026 	// unmap dma only if any error happens. (otherwise it's done before
1027 	// data copying)
1028 	if (ret)
1029 		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1030 cleanup:
1031 	// Stop read
1032 	nfi_write32(snf, NFI_CON, 0);
1033 	nfi_write16(snf, NFI_CNFG, 0);
1034 
1035 	// Clear SNF done flag
1036 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1037 	nfi_write32(snf, SNF_STA_CTL1, 0);
1038 
1039 	// Disable interrupt
1040 	nfi_read32(snf, NFI_INTR_STA);
1041 	nfi_write32(snf, NFI_INTR_EN, 0);
1042 
1043 	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1044 	return ret;
1045 }
1046 
1047 static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1048 				      const struct spi_mem_op *op)
1049 {
1050 	// the address part to be sent by the controller
1051 	u32 op_addr = op->addr.val;
1052 	// where to start copying data from bounce buffer
1053 	u32 wr_offset = 0;
1054 	u32 op_mode = 0;
1055 	int ret = 0;
1056 	u32 wr_mode = 0;
1057 	u32 dma_len = snf->buf_len;
1058 	u32 wr_bytes, val;
1059 	size_t cap_len;
1060 	dma_addr_t buf_dma;
1061 
1062 	if (snf->autofmt) {
1063 		u32 last_bit;
1064 		u32 mask;
1065 
1066 		dma_len = snf->nfi_cfg.page_size;
1067 		op_mode = CNFG_AUTO_FMT_EN;
1068 		if (op->data.ecc)
1069 			op_mode |= CNFG_HW_ECC_EN;
1070 
1071 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1072 		mask = (1 << last_bit) - 1;
1073 		wr_offset = op_addr & mask;
1074 		op_addr &= ~mask;
1075 	}
1076 	mtk_snand_mac_reset(snf);
1077 	mtk_nfi_reset(snf);
1078 
1079 	if (wr_offset)
1080 		memset(snf->buf, 0xff, wr_offset);
1081 
1082 	cap_len = snf->buf_len - wr_offset;
1083 	if (op->data.nbytes < cap_len)
1084 		cap_len = op->data.nbytes;
1085 	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1086 	if (snf->autofmt) {
1087 		if (snf->caps->bbm_swap) {
1088 			mtk_snand_fdm_bm_swap(snf);
1089 			mtk_snand_bm_swap(snf, snf->buf);
1090 		}
1091 		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1092 	}
1093 
1094 	// Command
1095 	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1096 
1097 	// write address
1098 	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1099 
1100 	// Set read op_mode
1101 	if (op->data.buswidth == 4)
1102 		wr_mode = PG_LOAD_X4_EN;
1103 
1104 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1105 		  wr_mode | PG_LOAD_CUSTOM_EN);
1106 
1107 	// Set bytes to write
1108 	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1109 		   snf->nfi_cfg.nsectors;
1110 	nfi_write32(snf, SNF_MISC_CTL2,
1111 		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1112 
1113 	// NFI write prepare
1114 	nfi_write16(snf, NFI_CNFG,
1115 		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1116 			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1117 
1118 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1119 	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1120 	ret = dma_mapping_error(snf->dev, buf_dma);
1121 	if (ret) {
1122 		dev_err(snf->dev, "DMA mapping failed.\n");
1123 		goto cleanup;
1124 	}
1125 	nfi_write32(snf, NFI_STRADDR, buf_dma);
1126 	if (op->data.ecc) {
1127 		snf->ecc_cfg->op = ECC_ENCODE;
1128 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1129 		if (ret)
1130 			goto cleanup_dma;
1131 	}
1132 	// Prepare for custom write interrupt
1133 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1134 	reinit_completion(&snf->op_done);
1135 	;
1136 
1137 	// Trigger NFI into custom mode
1138 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1139 
1140 	// Start DMA write
1141 	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1142 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1143 
1144 	if (!wait_for_completion_timeout(
1145 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1146 		dev_err(snf->dev, "DMA timed out for program load.\n");
1147 		ret = -ETIMEDOUT;
1148 		goto cleanup_ecc;
1149 	}
1150 
1151 	// Wait for NFI_SEC_CNTR returning expected value
1152 	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1153 				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1154 				 SNFI_POLL_INTERVAL);
1155 	if (ret)
1156 		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1157 
1158 cleanup_ecc:
1159 	if (op->data.ecc)
1160 		mtk_ecc_disable(snf->ecc);
1161 cleanup_dma:
1162 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1163 cleanup:
1164 	// Stop write
1165 	nfi_write32(snf, NFI_CON, 0);
1166 	nfi_write16(snf, NFI_CNFG, 0);
1167 
1168 	// Clear SNF done flag
1169 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1170 	nfi_write32(snf, SNF_STA_CTL1, 0);
1171 
1172 	// Disable interrupt
1173 	nfi_read32(snf, NFI_INTR_STA);
1174 	nfi_write32(snf, NFI_INTR_EN, 0);
1175 
1176 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1177 
1178 	return ret;
1179 }
1180 
1181 /**
1182  * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1183  * @op spi-mem op to check
1184  *
1185  * Check whether op can be executed with read_from_cache or program_load
1186  * mode in the controller.
1187  * This controller can execute typical Read From Cache and Program Load
1188  * instructions found on SPI-NAND with 2-byte address.
1189  * DTR and cmd buswidth & nbytes should be checked before calling this.
1190  *
1191  * Return: true if the op matches the instruction template
1192  */
1193 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1194 {
1195 	if (op->addr.nbytes != 2)
1196 		return false;
1197 
1198 	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1199 	    op->addr.buswidth != 4)
1200 		return false;
1201 
1202 	// match read from page instructions
1203 	if (op->data.dir == SPI_MEM_DATA_IN) {
1204 		// check dummy cycle first
1205 		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1206 		    DATA_READ_MAX_DUMMY)
1207 			return false;
1208 		// quad io / quad out
1209 		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1210 		    op->data.buswidth == 4)
1211 			return true;
1212 
1213 		// dual io / dual out
1214 		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1215 		    op->data.buswidth == 2)
1216 			return true;
1217 
1218 		// standard spi
1219 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1220 			return true;
1221 	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1222 		// check dummy cycle first
1223 		if (op->dummy.nbytes)
1224 			return false;
1225 		// program load quad out
1226 		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1227 			return true;
1228 		// standard spi
1229 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1230 			return true;
1231 	}
1232 	return false;
1233 }
1234 
1235 static bool mtk_snand_supports_op(struct spi_mem *mem,
1236 				  const struct spi_mem_op *op)
1237 {
1238 	if (!spi_mem_default_supports_op(mem, op))
1239 		return false;
1240 	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1241 		return false;
1242 	if (mtk_snand_is_page_ops(op))
1243 		return true;
1244 	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1245 		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1246 		(op->data.nbytes == 0 || op->data.buswidth == 1));
1247 }
1248 
1249 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1250 {
1251 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1252 	// page ops transfer size must be exactly ((sector_size + spare_size) *
1253 	// nsectors). Limit the op size if the caller requests more than that.
1254 	// exec_op will read more than needed and discard the leftover if the
1255 	// caller requests less data.
1256 	if (mtk_snand_is_page_ops(op)) {
1257 		size_t l;
1258 		// skip adjust_op_size for page ops
1259 		if (ms->autofmt)
1260 			return 0;
1261 		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1262 		l *= ms->nfi_cfg.nsectors;
1263 		if (op->data.nbytes > l)
1264 			op->data.nbytes = l;
1265 	} else {
1266 		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1267 
1268 		if (hl >= SNF_GPRAM_SIZE)
1269 			return -EOPNOTSUPP;
1270 		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1271 			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1272 	}
1273 	return 0;
1274 }
1275 
1276 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1277 {
1278 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->master);
1279 
1280 	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1281 		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1282 		op->data.buswidth, op->data.nbytes);
1283 	if (mtk_snand_is_page_ops(op)) {
1284 		if (op->data.dir == SPI_MEM_DATA_IN)
1285 			return mtk_snand_read_page_cache(ms, op);
1286 		else
1287 			return mtk_snand_write_page_cache(ms, op);
1288 	} else {
1289 		return mtk_snand_mac_io(ms, op);
1290 	}
1291 }
1292 
1293 static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1294 	.adjust_op_size = mtk_snand_adjust_op_size,
1295 	.supports_op = mtk_snand_supports_op,
1296 	.exec_op = mtk_snand_exec_op,
1297 };
1298 
1299 static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1300 	.ecc = true,
1301 };
1302 
1303 static irqreturn_t mtk_snand_irq(int irq, void *id)
1304 {
1305 	struct mtk_snand *snf = id;
1306 	u32 sta, ien;
1307 
1308 	sta = nfi_read32(snf, NFI_INTR_STA);
1309 	ien = nfi_read32(snf, NFI_INTR_EN);
1310 
1311 	if (!(sta & ien))
1312 		return IRQ_NONE;
1313 
1314 	nfi_write32(snf, NFI_INTR_EN, 0);
1315 	complete(&snf->op_done);
1316 	return IRQ_HANDLED;
1317 }
1318 
1319 static const struct of_device_id mtk_snand_ids[] = {
1320 	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1321 	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1322 	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1323 	{},
1324 };
1325 
1326 MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1327 
1328 static int mtk_snand_enable_clk(struct mtk_snand *ms)
1329 {
1330 	int ret;
1331 
1332 	ret = clk_prepare_enable(ms->nfi_clk);
1333 	if (ret) {
1334 		dev_err(ms->dev, "unable to enable nfi clk\n");
1335 		return ret;
1336 	}
1337 	ret = clk_prepare_enable(ms->pad_clk);
1338 	if (ret) {
1339 		dev_err(ms->dev, "unable to enable pad clk\n");
1340 		goto err1;
1341 	}
1342 	return 0;
1343 err1:
1344 	clk_disable_unprepare(ms->nfi_clk);
1345 	return ret;
1346 }
1347 
1348 static void mtk_snand_disable_clk(struct mtk_snand *ms)
1349 {
1350 	clk_disable_unprepare(ms->pad_clk);
1351 	clk_disable_unprepare(ms->nfi_clk);
1352 }
1353 
1354 static int mtk_snand_probe(struct platform_device *pdev)
1355 {
1356 	struct device_node *np = pdev->dev.of_node;
1357 	const struct of_device_id *dev_id;
1358 	struct spi_controller *ctlr;
1359 	struct mtk_snand *ms;
1360 	int ret;
1361 
1362 	dev_id = of_match_node(mtk_snand_ids, np);
1363 	if (!dev_id)
1364 		return -EINVAL;
1365 
1366 	ctlr = devm_spi_alloc_master(&pdev->dev, sizeof(*ms));
1367 	if (!ctlr)
1368 		return -ENOMEM;
1369 	platform_set_drvdata(pdev, ctlr);
1370 
1371 	ms = spi_controller_get_devdata(ctlr);
1372 
1373 	ms->ctlr = ctlr;
1374 	ms->caps = dev_id->data;
1375 
1376 	ms->ecc = of_mtk_ecc_get(np);
1377 	if (IS_ERR(ms->ecc))
1378 		return PTR_ERR(ms->ecc);
1379 	else if (!ms->ecc)
1380 		return -ENODEV;
1381 
1382 	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1383 	if (IS_ERR(ms->nfi_base)) {
1384 		ret = PTR_ERR(ms->nfi_base);
1385 		goto release_ecc;
1386 	}
1387 
1388 	ms->dev = &pdev->dev;
1389 
1390 	ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk");
1391 	if (IS_ERR(ms->nfi_clk)) {
1392 		ret = PTR_ERR(ms->nfi_clk);
1393 		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1394 		goto release_ecc;
1395 	}
1396 
1397 	ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk");
1398 	if (IS_ERR(ms->pad_clk)) {
1399 		ret = PTR_ERR(ms->pad_clk);
1400 		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1401 		goto release_ecc;
1402 	}
1403 
1404 	ret = mtk_snand_enable_clk(ms);
1405 	if (ret)
1406 		goto release_ecc;
1407 
1408 	init_completion(&ms->op_done);
1409 
1410 	ms->irq = platform_get_irq(pdev, 0);
1411 	if (ms->irq < 0) {
1412 		ret = ms->irq;
1413 		goto disable_clk;
1414 	}
1415 	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1416 			       "mtk-snand", ms);
1417 	if (ret) {
1418 		dev_err(ms->dev, "failed to request snfi irq\n");
1419 		goto disable_clk;
1420 	}
1421 
1422 	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1423 	if (ret) {
1424 		dev_err(ms->dev, "failed to set dma mask\n");
1425 		goto disable_clk;
1426 	}
1427 
1428 	// switch to SNFI mode
1429 	nfi_write32(ms, SNF_CFG, SPI_MODE);
1430 
1431 	// setup an initial page format for ops matching page_cache_op template
1432 	// before ECC is called.
1433 	ret = mtk_snand_setup_pagefmt(ms, ms->caps->sector_size,
1434 				      ms->caps->spare_sizes[0]);
1435 	if (ret) {
1436 		dev_err(ms->dev, "failed to set initial page format\n");
1437 		goto disable_clk;
1438 	}
1439 
1440 	// setup ECC engine
1441 	ms->ecc_eng.dev = &pdev->dev;
1442 	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1443 	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1444 	ms->ecc_eng.priv = ms;
1445 
1446 	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1447 	if (ret) {
1448 		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1449 		goto disable_clk;
1450 	}
1451 
1452 	ctlr->num_chipselect = 1;
1453 	ctlr->mem_ops = &mtk_snand_mem_ops;
1454 	ctlr->mem_caps = &mtk_snand_mem_caps;
1455 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1456 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1457 	ctlr->dev.of_node = pdev->dev.of_node;
1458 	ret = spi_register_controller(ctlr);
1459 	if (ret) {
1460 		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1461 		goto disable_clk;
1462 	}
1463 
1464 	return 0;
1465 disable_clk:
1466 	mtk_snand_disable_clk(ms);
1467 release_ecc:
1468 	mtk_ecc_release(ms->ecc);
1469 	return ret;
1470 }
1471 
1472 static int mtk_snand_remove(struct platform_device *pdev)
1473 {
1474 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1475 	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1476 
1477 	spi_unregister_controller(ctlr);
1478 	mtk_snand_disable_clk(ms);
1479 	mtk_ecc_release(ms->ecc);
1480 	kfree(ms->buf);
1481 	return 0;
1482 }
1483 
1484 static struct platform_driver mtk_snand_driver = {
1485 	.probe = mtk_snand_probe,
1486 	.remove = mtk_snand_remove,
1487 	.driver = {
1488 		.name = "mtk-snand",
1489 		.of_match_table = mtk_snand_ids,
1490 	},
1491 };
1492 
1493 module_platform_driver(mtk_snand_driver);
1494 
1495 MODULE_LICENSE("GPL");
1496 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1497 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1498