1 // SPDX-License-Identifier: GPL-2.0 2 // 3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface 4 // 5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com> 6 // 7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK: 8 // 9 // Copyright (C) 2020 MediaTek Inc. 10 // Author: Weijie Gao <weijie.gao@mediatek.com> 11 // 12 // This controller organize the page data as several interleaved sectors 13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size) 14 // +---------+------+------+---------+------+------+-----+ 15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... | 16 // +---------+------+------+---------+------+------+-----+ 17 // With auto-format turned on, DMA only returns this part: 18 // +---------+---------+-----+ 19 // | Sector1 | Sector2 | ... | 20 // +---------+---------+-----+ 21 // The FDM data will be filled to the registers, and ECC parity data isn't 22 // accessible. 23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA 24 // in it's original order shown in the first table. ECC can't be turned on when 25 // auto-format is off. 26 // 27 // However, Linux SPI-NAND driver expects the data returned as: 28 // +------+-----+ 29 // | Page | OOB | 30 // +------+-----+ 31 // where the page data is continuously stored instead of interleaved. 32 // So we assume all instructions matching the page_op template between ECC 33 // prepare_io_req and finish_io_req are for page cache r/w. 34 // Here's how this spi-mem driver operates when reading: 35 // 1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off). 36 // 2. Perform page ops and let the controller fill the DMA bounce buffer with 37 // de-interleaved sector data and set FDM registers. 38 // 3. Return the data as: 39 // +---------+---------+-----+------+------+-----+ 40 // | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... | 41 // +---------+---------+-----+------+------+-----+ 42 // 4. For other matching spi_mem ops outside a prepare/finish_io_req pair, 43 // read the data with auto-format off into the bounce buffer and copy 44 // needed data to the buffer specified in the request. 45 // 46 // Write requests operates in a similar manner. 47 // As a limitation of this strategy, we won't be able to access any ECC parity 48 // data at all in Linux. 49 // 50 // Here's the bad block mark situation on MTK chips: 51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector 52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize] 53 // in the returned data, which is the BBM position expected by kernel. However, 54 // the conventional bad block mark is the first byte of the OOB, which is part 55 // of the last sector data in the interleaved layout. Instead of fixing their 56 // hardware, MTK decided to address this inconsistency in software. On these 57 // later chips, the BootROM expects the following: 58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at 59 // (page_size - (nsectors - 1) * spare_size) in the DMA buffer. 60 // 2. The original byte stored at that position in the DMA buffer will be stored 61 // as the first byte of the FDM section in the last sector. 62 // We can't disagree with the BootROM, so after de-interleaving, we need to 63 // perform the following swaps in read: 64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size], 65 // which is the expected BBM position by kernel. 66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to 67 // [page_size - (nsectors - 1) * spare_size] 68 // Similarly, when writing, we need to perform swaps in the other direction. 69 70 #include <linux/kernel.h> 71 #include <linux/module.h> 72 #include <linux/init.h> 73 #include <linux/device.h> 74 #include <linux/mutex.h> 75 #include <linux/clk.h> 76 #include <linux/interrupt.h> 77 #include <linux/dma-mapping.h> 78 #include <linux/iopoll.h> 79 #include <linux/of.h> 80 #include <linux/platform_device.h> 81 #include <linux/mtd/nand-ecc-mtk.h> 82 #include <linux/spi/spi.h> 83 #include <linux/spi/spi-mem.h> 84 #include <linux/mtd/nand.h> 85 86 // NFI registers 87 #define NFI_CNFG 0x000 88 #define CNFG_OP_MODE_S 12 89 #define CNFG_OP_MODE_CUST 6 90 #define CNFG_OP_MODE_PROGRAM 3 91 #define CNFG_AUTO_FMT_EN BIT(9) 92 #define CNFG_HW_ECC_EN BIT(8) 93 #define CNFG_DMA_BURST_EN BIT(2) 94 #define CNFG_READ_MODE BIT(1) 95 #define CNFG_DMA_MODE BIT(0) 96 97 #define NFI_PAGEFMT 0x0004 98 #define NFI_SPARE_SIZE_LS_S 16 99 #define NFI_FDM_ECC_NUM_S 12 100 #define NFI_FDM_NUM_S 8 101 #define NFI_SPARE_SIZE_S 4 102 #define NFI_SEC_SEL_512 BIT(2) 103 #define NFI_PAGE_SIZE_S 0 104 #define NFI_PAGE_SIZE_512_2K 0 105 #define NFI_PAGE_SIZE_2K_4K 1 106 #define NFI_PAGE_SIZE_4K_8K 2 107 #define NFI_PAGE_SIZE_8K_16K 3 108 109 #define NFI_CON 0x008 110 #define CON_SEC_NUM_S 12 111 #define CON_BWR BIT(9) 112 #define CON_BRD BIT(8) 113 #define CON_NFI_RST BIT(1) 114 #define CON_FIFO_FLUSH BIT(0) 115 116 #define NFI_INTR_EN 0x010 117 #define NFI_INTR_STA 0x014 118 #define NFI_IRQ_INTR_EN BIT(31) 119 #define NFI_IRQ_CUS_READ BIT(8) 120 #define NFI_IRQ_CUS_PG BIT(7) 121 122 #define NFI_CMD 0x020 123 #define NFI_CMD_DUMMY_READ 0x00 124 #define NFI_CMD_DUMMY_WRITE 0x80 125 126 #define NFI_STRDATA 0x040 127 #define STR_DATA BIT(0) 128 129 #define NFI_STA 0x060 130 #define NFI_NAND_FSM_7622 GENMASK(28, 24) 131 #define NFI_NAND_FSM_7986 GENMASK(29, 23) 132 #define NFI_FSM GENMASK(19, 16) 133 #define READ_EMPTY BIT(12) 134 135 #define NFI_FIFOSTA 0x064 136 #define FIFO_WR_REMAIN_S 8 137 #define FIFO_RD_REMAIN_S 0 138 139 #define NFI_ADDRCNTR 0x070 140 #define SEC_CNTR GENMASK(16, 12) 141 #define SEC_CNTR_S 12 142 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) 143 144 #define NFI_STRADDR 0x080 145 146 #define NFI_BYTELEN 0x084 147 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S) 148 149 #define NFI_FDM0L 0x0a0 150 #define NFI_FDM0M 0x0a4 151 #define NFI_FDML(n) (NFI_FDM0L + (n)*8) 152 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8) 153 154 #define NFI_DEBUG_CON1 0x220 155 #define WBUF_EN BIT(2) 156 157 #define NFI_MASTERSTA 0x224 158 #define MAS_ADDR GENMASK(11, 9) 159 #define MAS_RD GENMASK(8, 6) 160 #define MAS_WR GENMASK(5, 3) 161 #define MAS_RDDLY GENMASK(2, 0) 162 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY) 163 #define NFI_MASTERSTA_MASK_7986 3 164 165 // SNFI registers 166 #define SNF_MAC_CTL 0x500 167 #define MAC_XIO_SEL BIT(4) 168 #define SF_MAC_EN BIT(3) 169 #define SF_TRIG BIT(2) 170 #define WIP_READY BIT(1) 171 #define WIP BIT(0) 172 173 #define SNF_MAC_OUTL 0x504 174 #define SNF_MAC_INL 0x508 175 176 #define SNF_RD_CTL2 0x510 177 #define DATA_READ_DUMMY_S 8 178 #define DATA_READ_MAX_DUMMY 0xf 179 #define DATA_READ_CMD_S 0 180 181 #define SNF_RD_CTL3 0x514 182 183 #define SNF_PG_CTL1 0x524 184 #define PG_LOAD_CMD_S 8 185 186 #define SNF_PG_CTL2 0x528 187 188 #define SNF_MISC_CTL 0x538 189 #define SW_RST BIT(28) 190 #define FIFO_RD_LTC_S 25 191 #define PG_LOAD_X4_EN BIT(20) 192 #define DATA_READ_MODE_S 16 193 #define DATA_READ_MODE GENMASK(18, 16) 194 #define DATA_READ_MODE_X1 0 195 #define DATA_READ_MODE_X2 1 196 #define DATA_READ_MODE_X4 2 197 #define DATA_READ_MODE_DUAL 5 198 #define DATA_READ_MODE_QUAD 6 199 #define DATA_READ_LATCH_LAT GENMASK(9, 8) 200 #define DATA_READ_LATCH_LAT_S 8 201 #define PG_LOAD_CUSTOM_EN BIT(7) 202 #define DATARD_CUSTOM_EN BIT(6) 203 #define CS_DESELECT_CYC_S 0 204 205 #define SNF_MISC_CTL2 0x53c 206 #define PROGRAM_LOAD_BYTE_NUM_S 16 207 #define READ_DATA_BYTE_NUM_S 11 208 209 #define SNF_DLY_CTL3 0x548 210 #define SFCK_SAM_DLY_S 0 211 #define SFCK_SAM_DLY GENMASK(5, 0) 212 #define SFCK_SAM_DLY_TOTAL 9 213 #define SFCK_SAM_DLY_RANGE 47 214 215 #define SNF_STA_CTL1 0x550 216 #define CUS_PG_DONE BIT(28) 217 #define CUS_READ_DONE BIT(27) 218 #define SPI_STATE_S 0 219 #define SPI_STATE GENMASK(3, 0) 220 221 #define SNF_CFG 0x55c 222 #define SPI_MODE BIT(0) 223 224 #define SNF_GPRAM 0x800 225 #define SNF_GPRAM_SIZE 0xa0 226 227 #define SNFI_POLL_INTERVAL 1000000 228 229 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 }; 230 231 static const u8 mt7986_spare_sizes[] = { 232 16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67, 233 74 234 }; 235 236 struct mtk_snand_caps { 237 u16 sector_size; 238 u16 max_sectors; 239 u16 fdm_size; 240 u16 fdm_ecc_size; 241 u16 fifo_size; 242 243 bool bbm_swap; 244 bool empty_page_check; 245 u32 mastersta_mask; 246 u32 nandfsm_mask; 247 248 const u8 *spare_sizes; 249 u32 num_spare_size; 250 }; 251 252 static const struct mtk_snand_caps mt7622_snand_caps = { 253 .sector_size = 512, 254 .max_sectors = 8, 255 .fdm_size = 8, 256 .fdm_ecc_size = 1, 257 .fifo_size = 32, 258 .bbm_swap = false, 259 .empty_page_check = false, 260 .mastersta_mask = NFI_MASTERSTA_MASK_7622, 261 .nandfsm_mask = NFI_NAND_FSM_7622, 262 .spare_sizes = mt7622_spare_sizes, 263 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) 264 }; 265 266 static const struct mtk_snand_caps mt7629_snand_caps = { 267 .sector_size = 512, 268 .max_sectors = 8, 269 .fdm_size = 8, 270 .fdm_ecc_size = 1, 271 .fifo_size = 32, 272 .bbm_swap = true, 273 .empty_page_check = false, 274 .mastersta_mask = NFI_MASTERSTA_MASK_7622, 275 .nandfsm_mask = NFI_NAND_FSM_7622, 276 .spare_sizes = mt7622_spare_sizes, 277 .num_spare_size = ARRAY_SIZE(mt7622_spare_sizes) 278 }; 279 280 static const struct mtk_snand_caps mt7986_snand_caps = { 281 .sector_size = 1024, 282 .max_sectors = 8, 283 .fdm_size = 8, 284 .fdm_ecc_size = 1, 285 .fifo_size = 64, 286 .bbm_swap = true, 287 .empty_page_check = true, 288 .mastersta_mask = NFI_MASTERSTA_MASK_7986, 289 .nandfsm_mask = NFI_NAND_FSM_7986, 290 .spare_sizes = mt7986_spare_sizes, 291 .num_spare_size = ARRAY_SIZE(mt7986_spare_sizes) 292 }; 293 294 struct mtk_snand_conf { 295 size_t page_size; 296 size_t oob_size; 297 u8 nsectors; 298 u8 spare_size; 299 }; 300 301 struct mtk_snand { 302 struct spi_controller *ctlr; 303 struct device *dev; 304 struct clk *nfi_clk; 305 struct clk *pad_clk; 306 struct clk *nfi_hclk; 307 void __iomem *nfi_base; 308 int irq; 309 struct completion op_done; 310 const struct mtk_snand_caps *caps; 311 struct mtk_ecc_config *ecc_cfg; 312 struct mtk_ecc *ecc; 313 struct mtk_snand_conf nfi_cfg; 314 struct mtk_ecc_stats ecc_stats; 315 struct nand_ecc_engine ecc_eng; 316 bool autofmt; 317 u8 *buf; 318 size_t buf_len; 319 }; 320 321 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand) 322 { 323 struct nand_ecc_engine *eng = nand->ecc.engine; 324 325 return container_of(eng, struct mtk_snand, ecc_eng); 326 } 327 328 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size) 329 { 330 if (snf->buf_len >= size) 331 return 0; 332 kfree(snf->buf); 333 snf->buf = kmalloc(size, GFP_KERNEL); 334 if (!snf->buf) 335 return -ENOMEM; 336 snf->buf_len = size; 337 memset(snf->buf, 0xff, snf->buf_len); 338 return 0; 339 } 340 341 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg) 342 { 343 return readl(snf->nfi_base + reg); 344 } 345 346 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val) 347 { 348 writel(val, snf->nfi_base + reg); 349 } 350 351 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val) 352 { 353 writew(val, snf->nfi_base + reg); 354 } 355 356 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set) 357 { 358 u32 val; 359 360 val = readl(snf->nfi_base + reg); 361 val &= ~clr; 362 val |= set; 363 writel(val, snf->nfi_base + reg); 364 } 365 366 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len) 367 { 368 u32 i, val = 0, es = sizeof(u32); 369 370 for (i = reg; i < reg + len; i++) { 371 if (i == reg || i % es == 0) 372 val = nfi_read32(snf, i & ~(es - 1)); 373 374 *data++ = (u8)(val >> (8 * (i % es))); 375 } 376 } 377 378 static int mtk_nfi_reset(struct mtk_snand *snf) 379 { 380 u32 val, fifo_mask; 381 int ret; 382 383 nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST); 384 385 ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, 386 !(val & snf->caps->mastersta_mask), 0, 387 SNFI_POLL_INTERVAL); 388 if (ret) { 389 dev_err(snf->dev, "NFI master is still busy after reset\n"); 390 return ret; 391 } 392 393 ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val, 394 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0, 395 SNFI_POLL_INTERVAL); 396 if (ret) { 397 dev_err(snf->dev, "Failed to reset NFI\n"); 398 return ret; 399 } 400 401 fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) | 402 ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S); 403 ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val, 404 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL); 405 if (ret) { 406 dev_err(snf->dev, "NFI FIFOs are not empty\n"); 407 return ret; 408 } 409 410 return 0; 411 } 412 413 static int mtk_snand_mac_reset(struct mtk_snand *snf) 414 { 415 int ret; 416 u32 val; 417 418 nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST); 419 420 ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val, 421 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL); 422 if (ret) 423 dev_err(snf->dev, "Failed to reset SNFI MAC\n"); 424 425 nfi_write32(snf, SNF_MISC_CTL, 426 (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S)); 427 428 return ret; 429 } 430 431 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen) 432 { 433 int ret; 434 u32 val; 435 436 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN); 437 nfi_write32(snf, SNF_MAC_OUTL, outlen); 438 nfi_write32(snf, SNF_MAC_INL, inlen); 439 440 nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG); 441 442 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, 443 val & WIP_READY, 0, SNFI_POLL_INTERVAL); 444 if (ret) { 445 dev_err(snf->dev, "Timed out waiting for WIP_READY\n"); 446 goto cleanup; 447 } 448 449 ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP), 450 0, SNFI_POLL_INTERVAL); 451 if (ret) 452 dev_err(snf->dev, "Timed out waiting for WIP cleared\n"); 453 454 cleanup: 455 nfi_write32(snf, SNF_MAC_CTL, 0); 456 457 return ret; 458 } 459 460 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op) 461 { 462 u32 rx_len = 0; 463 u32 reg_offs = 0; 464 u32 val = 0; 465 const u8 *tx_buf = NULL; 466 u8 *rx_buf = NULL; 467 int i, ret; 468 u8 b; 469 470 if (op->data.dir == SPI_MEM_DATA_IN) { 471 rx_len = op->data.nbytes; 472 rx_buf = op->data.buf.in; 473 } else { 474 tx_buf = op->data.buf.out; 475 } 476 477 mtk_snand_mac_reset(snf); 478 479 for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) { 480 b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff; 481 val |= b << (8 * (reg_offs % 4)); 482 if (reg_offs % 4 == 3) { 483 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 484 val = 0; 485 } 486 } 487 488 for (i = 0; i < op->addr.nbytes; i++, reg_offs++) { 489 b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff; 490 val |= b << (8 * (reg_offs % 4)); 491 if (reg_offs % 4 == 3) { 492 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 493 val = 0; 494 } 495 } 496 497 for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) { 498 if (reg_offs % 4 == 3) { 499 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 500 val = 0; 501 } 502 } 503 504 if (op->data.dir == SPI_MEM_DATA_OUT) { 505 for (i = 0; i < op->data.nbytes; i++, reg_offs++) { 506 val |= tx_buf[i] << (8 * (reg_offs % 4)); 507 if (reg_offs % 4 == 3) { 508 nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val); 509 val = 0; 510 } 511 } 512 } 513 514 if (reg_offs % 4) 515 nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val); 516 517 for (i = 0; i < reg_offs; i += 4) 518 dev_dbg(snf->dev, "%d: %08X", i, 519 nfi_read32(snf, SNF_GPRAM + i)); 520 521 dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len); 522 523 ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len); 524 if (ret) 525 return ret; 526 527 if (!rx_len) 528 return 0; 529 530 nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len); 531 return 0; 532 } 533 534 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size, 535 u32 oob_size) 536 { 537 int spare_idx = -1; 538 u32 spare_size, spare_size_shift, pagesize_idx; 539 u32 sector_size_512; 540 u8 nsectors; 541 int i; 542 543 // skip if it's already configured as required. 544 if (snf->nfi_cfg.page_size == page_size && 545 snf->nfi_cfg.oob_size == oob_size) 546 return 0; 547 548 nsectors = page_size / snf->caps->sector_size; 549 if (nsectors > snf->caps->max_sectors) { 550 dev_err(snf->dev, "too many sectors required.\n"); 551 goto err; 552 } 553 554 if (snf->caps->sector_size == 512) { 555 sector_size_512 = NFI_SEC_SEL_512; 556 spare_size_shift = NFI_SPARE_SIZE_S; 557 } else { 558 sector_size_512 = 0; 559 spare_size_shift = NFI_SPARE_SIZE_LS_S; 560 } 561 562 switch (page_size) { 563 case SZ_512: 564 pagesize_idx = NFI_PAGE_SIZE_512_2K; 565 break; 566 case SZ_2K: 567 if (snf->caps->sector_size == 512) 568 pagesize_idx = NFI_PAGE_SIZE_2K_4K; 569 else 570 pagesize_idx = NFI_PAGE_SIZE_512_2K; 571 break; 572 case SZ_4K: 573 if (snf->caps->sector_size == 512) 574 pagesize_idx = NFI_PAGE_SIZE_4K_8K; 575 else 576 pagesize_idx = NFI_PAGE_SIZE_2K_4K; 577 break; 578 case SZ_8K: 579 if (snf->caps->sector_size == 512) 580 pagesize_idx = NFI_PAGE_SIZE_8K_16K; 581 else 582 pagesize_idx = NFI_PAGE_SIZE_4K_8K; 583 break; 584 case SZ_16K: 585 pagesize_idx = NFI_PAGE_SIZE_8K_16K; 586 break; 587 default: 588 dev_err(snf->dev, "unsupported page size.\n"); 589 goto err; 590 } 591 592 spare_size = oob_size / nsectors; 593 // If we're using the 1KB sector size, HW will automatically double the 594 // spare size. We should only use half of the value in this case. 595 if (snf->caps->sector_size == 1024) 596 spare_size /= 2; 597 598 for (i = snf->caps->num_spare_size - 1; i >= 0; i--) { 599 if (snf->caps->spare_sizes[i] <= spare_size) { 600 spare_size = snf->caps->spare_sizes[i]; 601 if (snf->caps->sector_size == 1024) 602 spare_size *= 2; 603 spare_idx = i; 604 break; 605 } 606 } 607 608 if (spare_idx < 0) { 609 dev_err(snf->dev, "unsupported spare size: %u\n", spare_size); 610 goto err; 611 } 612 613 nfi_write32(snf, NFI_PAGEFMT, 614 (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) | 615 (snf->caps->fdm_size << NFI_FDM_NUM_S) | 616 (spare_idx << spare_size_shift) | 617 (pagesize_idx << NFI_PAGE_SIZE_S) | 618 sector_size_512); 619 620 snf->nfi_cfg.page_size = page_size; 621 snf->nfi_cfg.oob_size = oob_size; 622 snf->nfi_cfg.nsectors = nsectors; 623 snf->nfi_cfg.spare_size = spare_size; 624 625 dev_dbg(snf->dev, "page format: (%u + %u) * %u\n", 626 snf->caps->sector_size, spare_size, nsectors); 627 return snand_prepare_bouncebuf(snf, page_size + oob_size); 628 err: 629 dev_err(snf->dev, "page size %u + %u is not supported\n", page_size, 630 oob_size); 631 return -EOPNOTSUPP; 632 } 633 634 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section, 635 struct mtd_oob_region *oobecc) 636 { 637 // ECC area is not accessible 638 return -ERANGE; 639 } 640 641 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section, 642 struct mtd_oob_region *oobfree) 643 { 644 struct nand_device *nand = mtd_to_nanddev(mtd); 645 struct mtk_snand *ms = nand_to_mtk_snand(nand); 646 647 if (section >= ms->nfi_cfg.nsectors) 648 return -ERANGE; 649 650 oobfree->length = ms->caps->fdm_size - 1; 651 oobfree->offset = section * ms->caps->fdm_size + 1; 652 return 0; 653 } 654 655 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = { 656 .ecc = mtk_snand_ooblayout_ecc, 657 .free = mtk_snand_ooblayout_free, 658 }; 659 660 static int mtk_snand_ecc_init_ctx(struct nand_device *nand) 661 { 662 struct mtk_snand *snf = nand_to_mtk_snand(nand); 663 struct nand_ecc_props *conf = &nand->ecc.ctx.conf; 664 struct nand_ecc_props *reqs = &nand->ecc.requirements; 665 struct nand_ecc_props *user = &nand->ecc.user_conf; 666 struct mtd_info *mtd = nanddev_to_mtd(nand); 667 int step_size = 0, strength = 0, desired_correction = 0, steps; 668 bool ecc_user = false; 669 int ret; 670 u32 parity_bits, max_ecc_bytes; 671 struct mtk_ecc_config *ecc_cfg; 672 673 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, 674 nand->memorg.oobsize); 675 if (ret) 676 return ret; 677 678 ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL); 679 if (!ecc_cfg) 680 return -ENOMEM; 681 682 nand->ecc.ctx.priv = ecc_cfg; 683 684 if (user->step_size && user->strength) { 685 step_size = user->step_size; 686 strength = user->strength; 687 ecc_user = true; 688 } else if (reqs->step_size && reqs->strength) { 689 step_size = reqs->step_size; 690 strength = reqs->strength; 691 } 692 693 if (step_size && strength) { 694 steps = mtd->writesize / step_size; 695 desired_correction = steps * strength; 696 strength = desired_correction / snf->nfi_cfg.nsectors; 697 } 698 699 ecc_cfg->mode = ECC_NFI_MODE; 700 ecc_cfg->sectors = snf->nfi_cfg.nsectors; 701 ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size; 702 703 // calculate the max possible strength under current page format 704 parity_bits = mtk_ecc_get_parity_bits(snf->ecc); 705 max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size; 706 ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits; 707 mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength); 708 709 // if there's a user requested strength, find the minimum strength that 710 // meets the requirement. Otherwise use the maximum strength which is 711 // expected by BootROM. 712 if (ecc_user && strength) { 713 u32 s_next = ecc_cfg->strength - 1; 714 715 while (1) { 716 mtk_ecc_adjust_strength(snf->ecc, &s_next); 717 if (s_next >= ecc_cfg->strength) 718 break; 719 if (s_next < strength) 720 break; 721 s_next = ecc_cfg->strength - 1; 722 } 723 } 724 725 mtd_set_ooblayout(mtd, &mtk_snand_ooblayout); 726 727 conf->step_size = snf->caps->sector_size; 728 conf->strength = ecc_cfg->strength; 729 730 if (ecc_cfg->strength < strength) 731 dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n", 732 strength); 733 dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n", 734 ecc_cfg->strength, snf->caps->sector_size); 735 736 return 0; 737 } 738 739 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand) 740 { 741 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); 742 743 kfree(ecc_cfg); 744 } 745 746 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand, 747 struct nand_page_io_req *req) 748 { 749 struct mtk_snand *snf = nand_to_mtk_snand(nand); 750 struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand); 751 int ret; 752 753 ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize, 754 nand->memorg.oobsize); 755 if (ret) 756 return ret; 757 snf->autofmt = true; 758 snf->ecc_cfg = ecc_cfg; 759 return 0; 760 } 761 762 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand, 763 struct nand_page_io_req *req) 764 { 765 struct mtk_snand *snf = nand_to_mtk_snand(nand); 766 struct mtd_info *mtd = nanddev_to_mtd(nand); 767 768 snf->ecc_cfg = NULL; 769 snf->autofmt = false; 770 if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ)) 771 return 0; 772 773 if (snf->ecc_stats.failed) 774 mtd->ecc_stats.failed += snf->ecc_stats.failed; 775 mtd->ecc_stats.corrected += snf->ecc_stats.corrected; 776 return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips; 777 } 778 779 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = { 780 .init_ctx = mtk_snand_ecc_init_ctx, 781 .cleanup_ctx = mtk_snand_ecc_cleanup_ctx, 782 .prepare_io_req = mtk_snand_ecc_prepare_io_req, 783 .finish_io_req = mtk_snand_ecc_finish_io_req, 784 }; 785 786 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf) 787 { 788 u32 vall, valm; 789 u8 *oobptr = buf; 790 int i, j; 791 792 for (i = 0; i < snf->nfi_cfg.nsectors; i++) { 793 vall = nfi_read32(snf, NFI_FDML(i)); 794 valm = nfi_read32(snf, NFI_FDMM(i)); 795 796 for (j = 0; j < snf->caps->fdm_size; j++) 797 oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8); 798 799 oobptr += snf->caps->fdm_size; 800 } 801 } 802 803 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf) 804 { 805 u32 fdm_size = snf->caps->fdm_size; 806 const u8 *oobptr = buf; 807 u32 vall, valm; 808 int i, j; 809 810 for (i = 0; i < snf->nfi_cfg.nsectors; i++) { 811 vall = 0; 812 valm = 0; 813 814 for (j = 0; j < 8; j++) { 815 if (j < 4) 816 vall |= (j < fdm_size ? oobptr[j] : 0xff) 817 << (j * 8); 818 else 819 valm |= (j < fdm_size ? oobptr[j] : 0xff) 820 << ((j - 4) * 8); 821 } 822 823 nfi_write32(snf, NFI_FDML(i), vall); 824 nfi_write32(snf, NFI_FDMM(i), valm); 825 826 oobptr += fdm_size; 827 } 828 } 829 830 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf) 831 { 832 u32 buf_bbm_pos, fdm_bbm_pos; 833 834 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) 835 return; 836 837 // swap [pagesize] byte on nand with the first fdm byte 838 // in the last sector. 839 buf_bbm_pos = snf->nfi_cfg.page_size - 840 (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size; 841 fdm_bbm_pos = snf->nfi_cfg.page_size + 842 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; 843 844 swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]); 845 } 846 847 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf) 848 { 849 u32 fdm_bbm_pos1, fdm_bbm_pos2; 850 851 if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1) 852 return; 853 854 // swap the first fdm byte in the first and the last sector. 855 fdm_bbm_pos1 = snf->nfi_cfg.page_size; 856 fdm_bbm_pos2 = snf->nfi_cfg.page_size + 857 (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size; 858 swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]); 859 } 860 861 static int mtk_snand_read_page_cache(struct mtk_snand *snf, 862 const struct spi_mem_op *op) 863 { 864 u8 *buf = snf->buf; 865 u8 *buf_fdm = buf + snf->nfi_cfg.page_size; 866 // the address part to be sent by the controller 867 u32 op_addr = op->addr.val; 868 // where to start copying data from bounce buffer 869 u32 rd_offset = 0; 870 u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth); 871 u32 op_mode = 0; 872 u32 dma_len = snf->buf_len; 873 int ret = 0; 874 u32 rd_mode, rd_bytes, val; 875 dma_addr_t buf_dma; 876 877 if (snf->autofmt) { 878 u32 last_bit; 879 u32 mask; 880 881 dma_len = snf->nfi_cfg.page_size; 882 op_mode = CNFG_AUTO_FMT_EN; 883 if (op->data.ecc) 884 op_mode |= CNFG_HW_ECC_EN; 885 // extract the plane bit: 886 // Find the highest bit set in (pagesize+oobsize). 887 // Bits higher than that in op->addr are kept and sent over SPI 888 // Lower bits are used as an offset for copying data from DMA 889 // bounce buffer. 890 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); 891 mask = (1 << last_bit) - 1; 892 rd_offset = op_addr & mask; 893 op_addr &= ~mask; 894 895 // check if we can dma to the caller memory 896 if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size) 897 buf = op->data.buf.in; 898 } 899 mtk_snand_mac_reset(snf); 900 mtk_nfi_reset(snf); 901 902 // command and dummy cycles 903 nfi_write32(snf, SNF_RD_CTL2, 904 (dummy_clk << DATA_READ_DUMMY_S) | 905 (op->cmd.opcode << DATA_READ_CMD_S)); 906 907 // read address 908 nfi_write32(snf, SNF_RD_CTL3, op_addr); 909 910 // Set read op_mode 911 if (op->data.buswidth == 4) 912 rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD : 913 DATA_READ_MODE_X4; 914 else if (op->data.buswidth == 2) 915 rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL : 916 DATA_READ_MODE_X2; 917 else 918 rd_mode = DATA_READ_MODE_X1; 919 rd_mode <<= DATA_READ_MODE_S; 920 nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE, 921 rd_mode | DATARD_CUSTOM_EN); 922 923 // Set bytes to read 924 rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * 925 snf->nfi_cfg.nsectors; 926 nfi_write32(snf, SNF_MISC_CTL2, 927 (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes); 928 929 // NFI read prepare 930 nfi_write16(snf, NFI_CNFG, 931 (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN | 932 CNFG_READ_MODE | CNFG_DMA_MODE | op_mode); 933 934 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); 935 936 buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE); 937 ret = dma_mapping_error(snf->dev, buf_dma); 938 if (ret) { 939 dev_err(snf->dev, "DMA mapping failed.\n"); 940 goto cleanup; 941 } 942 nfi_write32(snf, NFI_STRADDR, buf_dma); 943 if (op->data.ecc) { 944 snf->ecc_cfg->op = ECC_DECODE; 945 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); 946 if (ret) 947 goto cleanup_dma; 948 } 949 // Prepare for custom read interrupt 950 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ); 951 reinit_completion(&snf->op_done); 952 953 // Trigger NFI into custom mode 954 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ); 955 956 // Start DMA read 957 nfi_rmw32(snf, NFI_CON, 0, CON_BRD); 958 nfi_write16(snf, NFI_STRDATA, STR_DATA); 959 960 if (!wait_for_completion_timeout( 961 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { 962 dev_err(snf->dev, "DMA timed out for reading from cache.\n"); 963 ret = -ETIMEDOUT; 964 goto cleanup; 965 } 966 967 // Wait for BUS_SEC_CNTR returning expected value 968 ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val, 969 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, 970 SNFI_POLL_INTERVAL); 971 if (ret) { 972 dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n"); 973 goto cleanup2; 974 } 975 976 // Wait for bus becoming idle 977 ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val, 978 !(val & snf->caps->mastersta_mask), 0, 979 SNFI_POLL_INTERVAL); 980 if (ret) { 981 dev_err(snf->dev, "Timed out waiting for bus becoming idle\n"); 982 goto cleanup2; 983 } 984 985 if (op->data.ecc) { 986 ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE); 987 if (ret) { 988 dev_err(snf->dev, "wait ecc done timeout\n"); 989 goto cleanup2; 990 } 991 // save status before disabling ecc 992 mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats, 993 snf->nfi_cfg.nsectors); 994 } 995 996 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); 997 998 if (snf->autofmt) { 999 mtk_snand_read_fdm(snf, buf_fdm); 1000 if (snf->caps->bbm_swap) { 1001 mtk_snand_bm_swap(snf, buf); 1002 mtk_snand_fdm_bm_swap(snf); 1003 } 1004 } 1005 1006 // copy data back 1007 if (nfi_read32(snf, NFI_STA) & READ_EMPTY) { 1008 memset(op->data.buf.in, 0xff, op->data.nbytes); 1009 snf->ecc_stats.bitflips = 0; 1010 snf->ecc_stats.failed = 0; 1011 snf->ecc_stats.corrected = 0; 1012 } else { 1013 if (buf == op->data.buf.in) { 1014 u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size; 1015 u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size; 1016 1017 if (req_left) 1018 memcpy(op->data.buf.in + snf->nfi_cfg.page_size, 1019 buf_fdm, 1020 cap_len < req_left ? cap_len : req_left); 1021 } else if (rd_offset < snf->buf_len) { 1022 u32 cap_len = snf->buf_len - rd_offset; 1023 1024 if (op->data.nbytes < cap_len) 1025 cap_len = op->data.nbytes; 1026 memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len); 1027 } 1028 } 1029 cleanup2: 1030 if (op->data.ecc) 1031 mtk_ecc_disable(snf->ecc); 1032 cleanup_dma: 1033 // unmap dma only if any error happens. (otherwise it's done before 1034 // data copying) 1035 if (ret) 1036 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE); 1037 cleanup: 1038 // Stop read 1039 nfi_write32(snf, NFI_CON, 0); 1040 nfi_write16(snf, NFI_CNFG, 0); 1041 1042 // Clear SNF done flag 1043 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE); 1044 nfi_write32(snf, SNF_STA_CTL1, 0); 1045 1046 // Disable interrupt 1047 nfi_read32(snf, NFI_INTR_STA); 1048 nfi_write32(snf, NFI_INTR_EN, 0); 1049 1050 nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0); 1051 return ret; 1052 } 1053 1054 static int mtk_snand_write_page_cache(struct mtk_snand *snf, 1055 const struct spi_mem_op *op) 1056 { 1057 // the address part to be sent by the controller 1058 u32 op_addr = op->addr.val; 1059 // where to start copying data from bounce buffer 1060 u32 wr_offset = 0; 1061 u32 op_mode = 0; 1062 int ret = 0; 1063 u32 wr_mode = 0; 1064 u32 dma_len = snf->buf_len; 1065 u32 wr_bytes, val; 1066 size_t cap_len; 1067 dma_addr_t buf_dma; 1068 1069 if (snf->autofmt) { 1070 u32 last_bit; 1071 u32 mask; 1072 1073 dma_len = snf->nfi_cfg.page_size; 1074 op_mode = CNFG_AUTO_FMT_EN; 1075 if (op->data.ecc) 1076 op_mode |= CNFG_HW_ECC_EN; 1077 1078 last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size); 1079 mask = (1 << last_bit) - 1; 1080 wr_offset = op_addr & mask; 1081 op_addr &= ~mask; 1082 } 1083 mtk_snand_mac_reset(snf); 1084 mtk_nfi_reset(snf); 1085 1086 if (wr_offset) 1087 memset(snf->buf, 0xff, wr_offset); 1088 1089 cap_len = snf->buf_len - wr_offset; 1090 if (op->data.nbytes < cap_len) 1091 cap_len = op->data.nbytes; 1092 memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len); 1093 if (snf->autofmt) { 1094 if (snf->caps->bbm_swap) { 1095 mtk_snand_fdm_bm_swap(snf); 1096 mtk_snand_bm_swap(snf, snf->buf); 1097 } 1098 mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size); 1099 } 1100 1101 // Command 1102 nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S)); 1103 1104 // write address 1105 nfi_write32(snf, SNF_PG_CTL2, op_addr); 1106 1107 // Set read op_mode 1108 if (op->data.buswidth == 4) 1109 wr_mode = PG_LOAD_X4_EN; 1110 1111 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN, 1112 wr_mode | PG_LOAD_CUSTOM_EN); 1113 1114 // Set bytes to write 1115 wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) * 1116 snf->nfi_cfg.nsectors; 1117 nfi_write32(snf, SNF_MISC_CTL2, 1118 (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes); 1119 1120 // NFI write prepare 1121 nfi_write16(snf, NFI_CNFG, 1122 (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) | 1123 CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode); 1124 1125 nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S)); 1126 buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE); 1127 ret = dma_mapping_error(snf->dev, buf_dma); 1128 if (ret) { 1129 dev_err(snf->dev, "DMA mapping failed.\n"); 1130 goto cleanup; 1131 } 1132 nfi_write32(snf, NFI_STRADDR, buf_dma); 1133 if (op->data.ecc) { 1134 snf->ecc_cfg->op = ECC_ENCODE; 1135 ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg); 1136 if (ret) 1137 goto cleanup_dma; 1138 } 1139 // Prepare for custom write interrupt 1140 nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG); 1141 reinit_completion(&snf->op_done); 1142 ; 1143 1144 // Trigger NFI into custom mode 1145 nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE); 1146 1147 // Start DMA write 1148 nfi_rmw32(snf, NFI_CON, 0, CON_BWR); 1149 nfi_write16(snf, NFI_STRDATA, STR_DATA); 1150 1151 if (!wait_for_completion_timeout( 1152 &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) { 1153 dev_err(snf->dev, "DMA timed out for program load.\n"); 1154 ret = -ETIMEDOUT; 1155 goto cleanup_ecc; 1156 } 1157 1158 // Wait for NFI_SEC_CNTR returning expected value 1159 ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val, 1160 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0, 1161 SNFI_POLL_INTERVAL); 1162 if (ret) 1163 dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n"); 1164 1165 cleanup_ecc: 1166 if (op->data.ecc) 1167 mtk_ecc_disable(snf->ecc); 1168 cleanup_dma: 1169 dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE); 1170 cleanup: 1171 // Stop write 1172 nfi_write32(snf, NFI_CON, 0); 1173 nfi_write16(snf, NFI_CNFG, 0); 1174 1175 // Clear SNF done flag 1176 nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE); 1177 nfi_write32(snf, SNF_STA_CTL1, 0); 1178 1179 // Disable interrupt 1180 nfi_read32(snf, NFI_INTR_STA); 1181 nfi_write32(snf, NFI_INTR_EN, 0); 1182 1183 nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0); 1184 1185 return ret; 1186 } 1187 1188 /** 1189 * mtk_snand_is_page_ops() - check if the op is a controller supported page op. 1190 * @op spi-mem op to check 1191 * 1192 * Check whether op can be executed with read_from_cache or program_load 1193 * mode in the controller. 1194 * This controller can execute typical Read From Cache and Program Load 1195 * instructions found on SPI-NAND with 2-byte address. 1196 * DTR and cmd buswidth & nbytes should be checked before calling this. 1197 * 1198 * Return: true if the op matches the instruction template 1199 */ 1200 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op) 1201 { 1202 if (op->addr.nbytes != 2) 1203 return false; 1204 1205 if (op->addr.buswidth != 1 && op->addr.buswidth != 2 && 1206 op->addr.buswidth != 4) 1207 return false; 1208 1209 // match read from page instructions 1210 if (op->data.dir == SPI_MEM_DATA_IN) { 1211 // check dummy cycle first 1212 if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth > 1213 DATA_READ_MAX_DUMMY) 1214 return false; 1215 // quad io / quad out 1216 if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) && 1217 op->data.buswidth == 4) 1218 return true; 1219 1220 // dual io / dual out 1221 if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) && 1222 op->data.buswidth == 2) 1223 return true; 1224 1225 // standard spi 1226 if (op->addr.buswidth == 1 && op->data.buswidth == 1) 1227 return true; 1228 } else if (op->data.dir == SPI_MEM_DATA_OUT) { 1229 // check dummy cycle first 1230 if (op->dummy.nbytes) 1231 return false; 1232 // program load quad out 1233 if (op->addr.buswidth == 1 && op->data.buswidth == 4) 1234 return true; 1235 // standard spi 1236 if (op->addr.buswidth == 1 && op->data.buswidth == 1) 1237 return true; 1238 } 1239 return false; 1240 } 1241 1242 static bool mtk_snand_supports_op(struct spi_mem *mem, 1243 const struct spi_mem_op *op) 1244 { 1245 if (!spi_mem_default_supports_op(mem, op)) 1246 return false; 1247 if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1) 1248 return false; 1249 if (mtk_snand_is_page_ops(op)) 1250 return true; 1251 return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) && 1252 (op->dummy.nbytes == 0 || op->dummy.buswidth == 1) && 1253 (op->data.nbytes == 0 || op->data.buswidth == 1)); 1254 } 1255 1256 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op) 1257 { 1258 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller); 1259 // page ops transfer size must be exactly ((sector_size + spare_size) * 1260 // nsectors). Limit the op size if the caller requests more than that. 1261 // exec_op will read more than needed and discard the leftover if the 1262 // caller requests less data. 1263 if (mtk_snand_is_page_ops(op)) { 1264 size_t l; 1265 // skip adjust_op_size for page ops 1266 if (ms->autofmt) 1267 return 0; 1268 l = ms->caps->sector_size + ms->nfi_cfg.spare_size; 1269 l *= ms->nfi_cfg.nsectors; 1270 if (op->data.nbytes > l) 1271 op->data.nbytes = l; 1272 } else { 1273 size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes; 1274 1275 if (hl >= SNF_GPRAM_SIZE) 1276 return -EOPNOTSUPP; 1277 if (op->data.nbytes > SNF_GPRAM_SIZE - hl) 1278 op->data.nbytes = SNF_GPRAM_SIZE - hl; 1279 } 1280 return 0; 1281 } 1282 1283 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op) 1284 { 1285 struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller); 1286 1287 dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode, 1288 op->addr.val, op->addr.buswidth, op->addr.nbytes, 1289 op->data.buswidth, op->data.nbytes); 1290 if (mtk_snand_is_page_ops(op)) { 1291 if (op->data.dir == SPI_MEM_DATA_IN) 1292 return mtk_snand_read_page_cache(ms, op); 1293 else 1294 return mtk_snand_write_page_cache(ms, op); 1295 } else { 1296 return mtk_snand_mac_io(ms, op); 1297 } 1298 } 1299 1300 static const struct spi_controller_mem_ops mtk_snand_mem_ops = { 1301 .adjust_op_size = mtk_snand_adjust_op_size, 1302 .supports_op = mtk_snand_supports_op, 1303 .exec_op = mtk_snand_exec_op, 1304 }; 1305 1306 static const struct spi_controller_mem_caps mtk_snand_mem_caps = { 1307 .ecc = true, 1308 }; 1309 1310 static irqreturn_t mtk_snand_irq(int irq, void *id) 1311 { 1312 struct mtk_snand *snf = id; 1313 u32 sta, ien; 1314 1315 sta = nfi_read32(snf, NFI_INTR_STA); 1316 ien = nfi_read32(snf, NFI_INTR_EN); 1317 1318 if (!(sta & ien)) 1319 return IRQ_NONE; 1320 1321 nfi_write32(snf, NFI_INTR_EN, 0); 1322 complete(&snf->op_done); 1323 return IRQ_HANDLED; 1324 } 1325 1326 static const struct of_device_id mtk_snand_ids[] = { 1327 { .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps }, 1328 { .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps }, 1329 { .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps }, 1330 {}, 1331 }; 1332 1333 MODULE_DEVICE_TABLE(of, mtk_snand_ids); 1334 1335 static int mtk_snand_enable_clk(struct mtk_snand *ms) 1336 { 1337 int ret; 1338 1339 ret = clk_prepare_enable(ms->nfi_clk); 1340 if (ret) { 1341 dev_err(ms->dev, "unable to enable nfi clk\n"); 1342 return ret; 1343 } 1344 ret = clk_prepare_enable(ms->pad_clk); 1345 if (ret) { 1346 dev_err(ms->dev, "unable to enable pad clk\n"); 1347 goto err1; 1348 } 1349 ret = clk_prepare_enable(ms->nfi_hclk); 1350 if (ret) { 1351 dev_err(ms->dev, "unable to enable nfi hclk\n"); 1352 goto err2; 1353 } 1354 1355 return 0; 1356 1357 err2: 1358 clk_disable_unprepare(ms->pad_clk); 1359 err1: 1360 clk_disable_unprepare(ms->nfi_clk); 1361 return ret; 1362 } 1363 1364 static void mtk_snand_disable_clk(struct mtk_snand *ms) 1365 { 1366 clk_disable_unprepare(ms->nfi_hclk); 1367 clk_disable_unprepare(ms->pad_clk); 1368 clk_disable_unprepare(ms->nfi_clk); 1369 } 1370 1371 static int mtk_snand_probe(struct platform_device *pdev) 1372 { 1373 struct device_node *np = pdev->dev.of_node; 1374 const struct of_device_id *dev_id; 1375 struct spi_controller *ctlr; 1376 struct mtk_snand *ms; 1377 unsigned long spi_freq; 1378 u32 val = 0; 1379 int ret; 1380 1381 dev_id = of_match_node(mtk_snand_ids, np); 1382 if (!dev_id) 1383 return -EINVAL; 1384 1385 ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms)); 1386 if (!ctlr) 1387 return -ENOMEM; 1388 platform_set_drvdata(pdev, ctlr); 1389 1390 ms = spi_controller_get_devdata(ctlr); 1391 1392 ms->ctlr = ctlr; 1393 ms->caps = dev_id->data; 1394 1395 ms->ecc = of_mtk_ecc_get(np); 1396 if (IS_ERR(ms->ecc)) 1397 return PTR_ERR(ms->ecc); 1398 else if (!ms->ecc) 1399 return -ENODEV; 1400 1401 ms->nfi_base = devm_platform_ioremap_resource(pdev, 0); 1402 if (IS_ERR(ms->nfi_base)) { 1403 ret = PTR_ERR(ms->nfi_base); 1404 goto release_ecc; 1405 } 1406 1407 ms->dev = &pdev->dev; 1408 1409 ms->nfi_clk = devm_clk_get(&pdev->dev, "nfi_clk"); 1410 if (IS_ERR(ms->nfi_clk)) { 1411 ret = PTR_ERR(ms->nfi_clk); 1412 dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret); 1413 goto release_ecc; 1414 } 1415 1416 ms->pad_clk = devm_clk_get(&pdev->dev, "pad_clk"); 1417 if (IS_ERR(ms->pad_clk)) { 1418 ret = PTR_ERR(ms->pad_clk); 1419 dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret); 1420 goto release_ecc; 1421 } 1422 1423 ms->nfi_hclk = devm_clk_get_optional(&pdev->dev, "nfi_hclk"); 1424 if (IS_ERR(ms->nfi_hclk)) { 1425 ret = PTR_ERR(ms->nfi_hclk); 1426 dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret); 1427 goto release_ecc; 1428 } 1429 1430 ret = mtk_snand_enable_clk(ms); 1431 if (ret) 1432 goto release_ecc; 1433 1434 init_completion(&ms->op_done); 1435 1436 ms->irq = platform_get_irq(pdev, 0); 1437 if (ms->irq < 0) { 1438 ret = ms->irq; 1439 goto disable_clk; 1440 } 1441 ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0, 1442 "mtk-snand", ms); 1443 if (ret) { 1444 dev_err(ms->dev, "failed to request snfi irq\n"); 1445 goto disable_clk; 1446 } 1447 1448 ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32)); 1449 if (ret) { 1450 dev_err(ms->dev, "failed to set dma mask\n"); 1451 goto disable_clk; 1452 } 1453 1454 // switch to SNFI mode 1455 nfi_write32(ms, SNF_CFG, SPI_MODE); 1456 1457 ret = of_property_read_u32(np, "rx-sample-delay-ns", &val); 1458 if (!ret) 1459 nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY, 1460 val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL); 1461 1462 ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val); 1463 if (!ret) { 1464 spi_freq = clk_get_rate(ms->pad_clk); 1465 val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq); 1466 nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT, 1467 val << DATA_READ_LATCH_LAT_S); 1468 } 1469 1470 // setup an initial page format for ops matching page_cache_op template 1471 // before ECC is called. 1472 ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64); 1473 if (ret) { 1474 dev_err(ms->dev, "failed to set initial page format\n"); 1475 goto disable_clk; 1476 } 1477 1478 // setup ECC engine 1479 ms->ecc_eng.dev = &pdev->dev; 1480 ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED; 1481 ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops; 1482 ms->ecc_eng.priv = ms; 1483 1484 ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng); 1485 if (ret) { 1486 dev_err(&pdev->dev, "failed to register ecc engine.\n"); 1487 goto disable_clk; 1488 } 1489 1490 ctlr->num_chipselect = 1; 1491 ctlr->mem_ops = &mtk_snand_mem_ops; 1492 ctlr->mem_caps = &mtk_snand_mem_caps; 1493 ctlr->bits_per_word_mask = SPI_BPW_MASK(8); 1494 ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD; 1495 ctlr->dev.of_node = pdev->dev.of_node; 1496 ret = spi_register_controller(ctlr); 1497 if (ret) { 1498 dev_err(&pdev->dev, "spi_register_controller failed.\n"); 1499 goto disable_clk; 1500 } 1501 1502 return 0; 1503 disable_clk: 1504 mtk_snand_disable_clk(ms); 1505 release_ecc: 1506 mtk_ecc_release(ms->ecc); 1507 return ret; 1508 } 1509 1510 static void mtk_snand_remove(struct platform_device *pdev) 1511 { 1512 struct spi_controller *ctlr = platform_get_drvdata(pdev); 1513 struct mtk_snand *ms = spi_controller_get_devdata(ctlr); 1514 1515 spi_unregister_controller(ctlr); 1516 mtk_snand_disable_clk(ms); 1517 mtk_ecc_release(ms->ecc); 1518 kfree(ms->buf); 1519 } 1520 1521 static struct platform_driver mtk_snand_driver = { 1522 .probe = mtk_snand_probe, 1523 .remove_new = mtk_snand_remove, 1524 .driver = { 1525 .name = "mtk-snand", 1526 .of_match_table = mtk_snand_ids, 1527 }, 1528 }; 1529 1530 module_platform_driver(mtk_snand_driver); 1531 1532 MODULE_LICENSE("GPL"); 1533 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>"); 1534 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver"); 1535