xref: /linux/drivers/spi/spi-mtk-snfi.c (revision 13b25489b6f8bd73ed65f07928f7c27a481f1820)
1 // SPDX-License-Identifier: GPL-2.0
2 //
3 // Driver for the SPI-NAND mode of Mediatek NAND Flash Interface
4 //
5 // Copyright (c) 2022 Chuanhong Guo <gch981213@gmail.com>
6 //
7 // This driver is based on the SPI-NAND mtd driver from Mediatek SDK:
8 //
9 // Copyright (C) 2020 MediaTek Inc.
10 // Author: Weijie Gao <weijie.gao@mediatek.com>
11 //
12 // This controller organize the page data as several interleaved sectors
13 // like the following: (sizeof(FDM + ECC) = snf->nfi_cfg.spare_size)
14 // +---------+------+------+---------+------+------+-----+
15 // | Sector1 | FDM1 | ECC1 | Sector2 | FDM2 | ECC2 | ... |
16 // +---------+------+------+---------+------+------+-----+
17 // With auto-format turned on, DMA only returns this part:
18 // +---------+---------+-----+
19 // | Sector1 | Sector2 | ... |
20 // +---------+---------+-----+
21 // The FDM data will be filled to the registers, and ECC parity data isn't
22 // accessible.
23 // With auto-format off, all ((Sector+FDM+ECC)*nsectors) will be read over DMA
24 // in it's original order shown in the first table. ECC can't be turned on when
25 // auto-format is off.
26 //
27 // However, Linux SPI-NAND driver expects the data returned as:
28 // +------+-----+
29 // | Page | OOB |
30 // +------+-----+
31 // where the page data is continuously stored instead of interleaved.
32 // So we assume all instructions matching the page_op template between ECC
33 // prepare_io_req and finish_io_req are for page cache r/w.
34 // Here's how this spi-mem driver operates when reading:
35 //  1. Always set snf->autofmt = true in prepare_io_req (even when ECC is off).
36 //  2. Perform page ops and let the controller fill the DMA bounce buffer with
37 //     de-interleaved sector data and set FDM registers.
38 //  3. Return the data as:
39 //     +---------+---------+-----+------+------+-----+
40 //     | Sector1 | Sector2 | ... | FDM1 | FDM2 | ... |
41 //     +---------+---------+-----+------+------+-----+
42 //  4. For other matching spi_mem ops outside a prepare/finish_io_req pair,
43 //     read the data with auto-format off into the bounce buffer and copy
44 //     needed data to the buffer specified in the request.
45 //
46 // Write requests operates in a similar manner.
47 // As a limitation of this strategy, we won't be able to access any ECC parity
48 // data at all in Linux.
49 //
50 // Here's the bad block mark situation on MTK chips:
51 // In older chips like mt7622, MTK uses the first FDM byte in the first sector
52 // as the bad block mark. After de-interleaving, this byte appears at [pagesize]
53 // in the returned data, which is the BBM position expected by kernel. However,
54 // the conventional bad block mark is the first byte of the OOB, which is part
55 // of the last sector data in the interleaved layout. Instead of fixing their
56 // hardware, MTK decided to address this inconsistency in software. On these
57 // later chips, the BootROM expects the following:
58 // 1. The [pagesize] byte on a nand page is used as BBM, which will appear at
59 //    (page_size - (nsectors - 1) * spare_size) in the DMA buffer.
60 // 2. The original byte stored at that position in the DMA buffer will be stored
61 //    as the first byte of the FDM section in the last sector.
62 // We can't disagree with the BootROM, so after de-interleaving, we need to
63 // perform the following swaps in read:
64 // 1. Store the BBM at [page_size - (nsectors - 1) * spare_size] to [page_size],
65 //    which is the expected BBM position by kernel.
66 // 2. Store the page data byte at [pagesize + (nsectors-1) * fdm] back to
67 //    [page_size - (nsectors - 1) * spare_size]
68 // Similarly, when writing, we need to perform swaps in the other direction.
69 
70 #include <linux/kernel.h>
71 #include <linux/module.h>
72 #include <linux/init.h>
73 #include <linux/device.h>
74 #include <linux/mutex.h>
75 #include <linux/clk.h>
76 #include <linux/interrupt.h>
77 #include <linux/dma-mapping.h>
78 #include <linux/iopoll.h>
79 #include <linux/of.h>
80 #include <linux/platform_device.h>
81 #include <linux/mtd/nand-ecc-mtk.h>
82 #include <linux/spi/spi.h>
83 #include <linux/spi/spi-mem.h>
84 #include <linux/mtd/nand.h>
85 
86 // NFI registers
87 #define NFI_CNFG 0x000
88 #define CNFG_OP_MODE_S 12
89 #define CNFG_OP_MODE_CUST 6
90 #define CNFG_OP_MODE_PROGRAM 3
91 #define CNFG_AUTO_FMT_EN BIT(9)
92 #define CNFG_HW_ECC_EN BIT(8)
93 #define CNFG_DMA_BURST_EN BIT(2)
94 #define CNFG_READ_MODE BIT(1)
95 #define CNFG_DMA_MODE BIT(0)
96 
97 #define NFI_PAGEFMT 0x0004
98 #define NFI_SPARE_SIZE_LS_S 16
99 #define NFI_FDM_ECC_NUM_S 12
100 #define NFI_FDM_NUM_S 8
101 #define NFI_SPARE_SIZE_S 4
102 #define NFI_SEC_SEL_512 BIT(2)
103 #define NFI_PAGE_SIZE_S 0
104 #define NFI_PAGE_SIZE_512_2K 0
105 #define NFI_PAGE_SIZE_2K_4K 1
106 #define NFI_PAGE_SIZE_4K_8K 2
107 #define NFI_PAGE_SIZE_8K_16K 3
108 
109 #define NFI_CON 0x008
110 #define CON_SEC_NUM_S 12
111 #define CON_BWR BIT(9)
112 #define CON_BRD BIT(8)
113 #define CON_NFI_RST BIT(1)
114 #define CON_FIFO_FLUSH BIT(0)
115 
116 #define NFI_INTR_EN 0x010
117 #define NFI_INTR_STA 0x014
118 #define NFI_IRQ_INTR_EN BIT(31)
119 #define NFI_IRQ_CUS_READ BIT(8)
120 #define NFI_IRQ_CUS_PG BIT(7)
121 
122 #define NFI_CMD 0x020
123 #define NFI_CMD_DUMMY_READ 0x00
124 #define NFI_CMD_DUMMY_WRITE 0x80
125 
126 #define NFI_STRDATA 0x040
127 #define STR_DATA BIT(0)
128 
129 #define NFI_STA 0x060
130 #define NFI_NAND_FSM_7622 GENMASK(28, 24)
131 #define NFI_NAND_FSM_7986 GENMASK(29, 23)
132 #define NFI_FSM GENMASK(19, 16)
133 #define READ_EMPTY BIT(12)
134 
135 #define NFI_FIFOSTA 0x064
136 #define FIFO_WR_REMAIN_S 8
137 #define FIFO_RD_REMAIN_S 0
138 
139 #define NFI_ADDRCNTR 0x070
140 #define SEC_CNTR GENMASK(16, 12)
141 #define SEC_CNTR_S 12
142 #define NFI_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
143 
144 #define NFI_STRADDR 0x080
145 
146 #define NFI_BYTELEN 0x084
147 #define BUS_SEC_CNTR(val) (((val)&SEC_CNTR) >> SEC_CNTR_S)
148 
149 #define NFI_FDM0L 0x0a0
150 #define NFI_FDM0M 0x0a4
151 #define NFI_FDML(n) (NFI_FDM0L + (n)*8)
152 #define NFI_FDMM(n) (NFI_FDM0M + (n)*8)
153 
154 #define NFI_DEBUG_CON1 0x220
155 #define WBUF_EN BIT(2)
156 
157 #define NFI_MASTERSTA 0x224
158 #define MAS_ADDR GENMASK(11, 9)
159 #define MAS_RD GENMASK(8, 6)
160 #define MAS_WR GENMASK(5, 3)
161 #define MAS_RDDLY GENMASK(2, 0)
162 #define NFI_MASTERSTA_MASK_7622 (MAS_ADDR | MAS_RD | MAS_WR | MAS_RDDLY)
163 #define NFI_MASTERSTA_MASK_7986 3
164 
165 // SNFI registers
166 #define SNF_MAC_CTL 0x500
167 #define MAC_XIO_SEL BIT(4)
168 #define SF_MAC_EN BIT(3)
169 #define SF_TRIG BIT(2)
170 #define WIP_READY BIT(1)
171 #define WIP BIT(0)
172 
173 #define SNF_MAC_OUTL 0x504
174 #define SNF_MAC_INL 0x508
175 
176 #define SNF_RD_CTL2 0x510
177 #define DATA_READ_DUMMY_S 8
178 #define DATA_READ_MAX_DUMMY 0xf
179 #define DATA_READ_CMD_S 0
180 
181 #define SNF_RD_CTL3 0x514
182 
183 #define SNF_PG_CTL1 0x524
184 #define PG_LOAD_CMD_S 8
185 
186 #define SNF_PG_CTL2 0x528
187 
188 #define SNF_MISC_CTL 0x538
189 #define SW_RST BIT(28)
190 #define FIFO_RD_LTC_S 25
191 #define PG_LOAD_X4_EN BIT(20)
192 #define DATA_READ_MODE_S 16
193 #define DATA_READ_MODE GENMASK(18, 16)
194 #define DATA_READ_MODE_X1 0
195 #define DATA_READ_MODE_X2 1
196 #define DATA_READ_MODE_X4 2
197 #define DATA_READ_MODE_DUAL 5
198 #define DATA_READ_MODE_QUAD 6
199 #define DATA_READ_LATCH_LAT GENMASK(9, 8)
200 #define DATA_READ_LATCH_LAT_S 8
201 #define PG_LOAD_CUSTOM_EN BIT(7)
202 #define DATARD_CUSTOM_EN BIT(6)
203 #define CS_DESELECT_CYC_S 0
204 
205 #define SNF_MISC_CTL2 0x53c
206 #define PROGRAM_LOAD_BYTE_NUM_S 16
207 #define READ_DATA_BYTE_NUM_S 11
208 
209 #define SNF_DLY_CTL3 0x548
210 #define SFCK_SAM_DLY_S 0
211 #define SFCK_SAM_DLY GENMASK(5, 0)
212 #define SFCK_SAM_DLY_TOTAL 9
213 #define SFCK_SAM_DLY_RANGE 47
214 
215 #define SNF_STA_CTL1 0x550
216 #define CUS_PG_DONE BIT(28)
217 #define CUS_READ_DONE BIT(27)
218 #define SPI_STATE_S 0
219 #define SPI_STATE GENMASK(3, 0)
220 
221 #define SNF_CFG 0x55c
222 #define SPI_MODE BIT(0)
223 
224 #define SNF_GPRAM 0x800
225 #define SNF_GPRAM_SIZE 0xa0
226 
227 #define SNFI_POLL_INTERVAL 1000000
228 
229 static const u8 mt7622_spare_sizes[] = { 16, 26, 27, 28 };
230 
231 static const u8 mt7986_spare_sizes[] = {
232 	16, 26, 27, 28, 32, 36, 40, 44, 48, 49, 50, 51, 52, 62, 61, 63, 64, 67,
233 	74
234 };
235 
236 struct mtk_snand_caps {
237 	u16 sector_size;
238 	u16 max_sectors;
239 	u16 fdm_size;
240 	u16 fdm_ecc_size;
241 	u16 fifo_size;
242 
243 	bool bbm_swap;
244 	bool empty_page_check;
245 	u32 mastersta_mask;
246 	u32 nandfsm_mask;
247 
248 	const u8 *spare_sizes;
249 	u32 num_spare_size;
250 };
251 
252 static const struct mtk_snand_caps mt7622_snand_caps = {
253 	.sector_size = 512,
254 	.max_sectors = 8,
255 	.fdm_size = 8,
256 	.fdm_ecc_size = 1,
257 	.fifo_size = 32,
258 	.bbm_swap = false,
259 	.empty_page_check = false,
260 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
261 	.nandfsm_mask = NFI_NAND_FSM_7622,
262 	.spare_sizes = mt7622_spare_sizes,
263 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
264 };
265 
266 static const struct mtk_snand_caps mt7629_snand_caps = {
267 	.sector_size = 512,
268 	.max_sectors = 8,
269 	.fdm_size = 8,
270 	.fdm_ecc_size = 1,
271 	.fifo_size = 32,
272 	.bbm_swap = true,
273 	.empty_page_check = false,
274 	.mastersta_mask = NFI_MASTERSTA_MASK_7622,
275 	.nandfsm_mask = NFI_NAND_FSM_7622,
276 	.spare_sizes = mt7622_spare_sizes,
277 	.num_spare_size = ARRAY_SIZE(mt7622_spare_sizes)
278 };
279 
280 static const struct mtk_snand_caps mt7986_snand_caps = {
281 	.sector_size = 1024,
282 	.max_sectors = 8,
283 	.fdm_size = 8,
284 	.fdm_ecc_size = 1,
285 	.fifo_size = 64,
286 	.bbm_swap = true,
287 	.empty_page_check = true,
288 	.mastersta_mask = NFI_MASTERSTA_MASK_7986,
289 	.nandfsm_mask = NFI_NAND_FSM_7986,
290 	.spare_sizes = mt7986_spare_sizes,
291 	.num_spare_size = ARRAY_SIZE(mt7986_spare_sizes)
292 };
293 
294 struct mtk_snand_conf {
295 	size_t page_size;
296 	size_t oob_size;
297 	u8 nsectors;
298 	u8 spare_size;
299 };
300 
301 struct mtk_snand {
302 	struct spi_controller *ctlr;
303 	struct device *dev;
304 	struct clk *nfi_clk;
305 	struct clk *pad_clk;
306 	struct clk *nfi_hclk;
307 	void __iomem *nfi_base;
308 	int irq;
309 	struct completion op_done;
310 	const struct mtk_snand_caps *caps;
311 	struct mtk_ecc_config *ecc_cfg;
312 	struct mtk_ecc *ecc;
313 	struct mtk_snand_conf nfi_cfg;
314 	struct mtk_ecc_stats ecc_stats;
315 	struct nand_ecc_engine ecc_eng;
316 	bool autofmt;
317 	u8 *buf;
318 	size_t buf_len;
319 };
320 
321 static struct mtk_snand *nand_to_mtk_snand(struct nand_device *nand)
322 {
323 	struct nand_ecc_engine *eng = nand->ecc.engine;
324 
325 	return container_of(eng, struct mtk_snand, ecc_eng);
326 }
327 
328 static inline int snand_prepare_bouncebuf(struct mtk_snand *snf, size_t size)
329 {
330 	if (snf->buf_len >= size)
331 		return 0;
332 	kfree(snf->buf);
333 	snf->buf = kmalloc(size, GFP_KERNEL);
334 	if (!snf->buf)
335 		return -ENOMEM;
336 	snf->buf_len = size;
337 	memset(snf->buf, 0xff, snf->buf_len);
338 	return 0;
339 }
340 
341 static inline u32 nfi_read32(struct mtk_snand *snf, u32 reg)
342 {
343 	return readl(snf->nfi_base + reg);
344 }
345 
346 static inline void nfi_write32(struct mtk_snand *snf, u32 reg, u32 val)
347 {
348 	writel(val, snf->nfi_base + reg);
349 }
350 
351 static inline void nfi_write16(struct mtk_snand *snf, u32 reg, u16 val)
352 {
353 	writew(val, snf->nfi_base + reg);
354 }
355 
356 static inline void nfi_rmw32(struct mtk_snand *snf, u32 reg, u32 clr, u32 set)
357 {
358 	u32 val;
359 
360 	val = readl(snf->nfi_base + reg);
361 	val &= ~clr;
362 	val |= set;
363 	writel(val, snf->nfi_base + reg);
364 }
365 
366 static void nfi_read_data(struct mtk_snand *snf, u32 reg, u8 *data, u32 len)
367 {
368 	u32 i, val = 0, es = sizeof(u32);
369 
370 	for (i = reg; i < reg + len; i++) {
371 		if (i == reg || i % es == 0)
372 			val = nfi_read32(snf, i & ~(es - 1));
373 
374 		*data++ = (u8)(val >> (8 * (i % es)));
375 	}
376 }
377 
378 static int mtk_nfi_reset(struct mtk_snand *snf)
379 {
380 	u32 val, fifo_mask;
381 	int ret;
382 
383 	nfi_write32(snf, NFI_CON, CON_FIFO_FLUSH | CON_NFI_RST);
384 
385 	ret = readw_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
386 				 !(val & snf->caps->mastersta_mask), 0,
387 				 SNFI_POLL_INTERVAL);
388 	if (ret) {
389 		dev_err(snf->dev, "NFI master is still busy after reset\n");
390 		return ret;
391 	}
392 
393 	ret = readl_poll_timeout(snf->nfi_base + NFI_STA, val,
394 				 !(val & (NFI_FSM | snf->caps->nandfsm_mask)), 0,
395 				 SNFI_POLL_INTERVAL);
396 	if (ret) {
397 		dev_err(snf->dev, "Failed to reset NFI\n");
398 		return ret;
399 	}
400 
401 	fifo_mask = ((snf->caps->fifo_size - 1) << FIFO_RD_REMAIN_S) |
402 		    ((snf->caps->fifo_size - 1) << FIFO_WR_REMAIN_S);
403 	ret = readw_poll_timeout(snf->nfi_base + NFI_FIFOSTA, val,
404 				 !(val & fifo_mask), 0, SNFI_POLL_INTERVAL);
405 	if (ret) {
406 		dev_err(snf->dev, "NFI FIFOs are not empty\n");
407 		return ret;
408 	}
409 
410 	return 0;
411 }
412 
413 static int mtk_snand_mac_reset(struct mtk_snand *snf)
414 {
415 	int ret;
416 	u32 val;
417 
418 	nfi_rmw32(snf, SNF_MISC_CTL, 0, SW_RST);
419 
420 	ret = readl_poll_timeout(snf->nfi_base + SNF_STA_CTL1, val,
421 				 !(val & SPI_STATE), 0, SNFI_POLL_INTERVAL);
422 	if (ret)
423 		dev_err(snf->dev, "Failed to reset SNFI MAC\n");
424 
425 	nfi_write32(snf, SNF_MISC_CTL,
426 		    (2 << FIFO_RD_LTC_S) | (10 << CS_DESELECT_CYC_S));
427 
428 	return ret;
429 }
430 
431 static int mtk_snand_mac_trigger(struct mtk_snand *snf, u32 outlen, u32 inlen)
432 {
433 	int ret;
434 	u32 val;
435 
436 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN);
437 	nfi_write32(snf, SNF_MAC_OUTL, outlen);
438 	nfi_write32(snf, SNF_MAC_INL, inlen);
439 
440 	nfi_write32(snf, SNF_MAC_CTL, SF_MAC_EN | SF_TRIG);
441 
442 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val,
443 				 val & WIP_READY, 0, SNFI_POLL_INTERVAL);
444 	if (ret) {
445 		dev_err(snf->dev, "Timed out waiting for WIP_READY\n");
446 		goto cleanup;
447 	}
448 
449 	ret = readl_poll_timeout(snf->nfi_base + SNF_MAC_CTL, val, !(val & WIP),
450 				 0, SNFI_POLL_INTERVAL);
451 	if (ret)
452 		dev_err(snf->dev, "Timed out waiting for WIP cleared\n");
453 
454 cleanup:
455 	nfi_write32(snf, SNF_MAC_CTL, 0);
456 
457 	return ret;
458 }
459 
460 static int mtk_snand_mac_io(struct mtk_snand *snf, const struct spi_mem_op *op)
461 {
462 	u32 rx_len = 0;
463 	u32 reg_offs = 0;
464 	u32 val = 0;
465 	const u8 *tx_buf = NULL;
466 	u8 *rx_buf = NULL;
467 	int i, ret;
468 	u8 b;
469 
470 	if (op->data.dir == SPI_MEM_DATA_IN) {
471 		rx_len = op->data.nbytes;
472 		rx_buf = op->data.buf.in;
473 	} else {
474 		tx_buf = op->data.buf.out;
475 	}
476 
477 	mtk_snand_mac_reset(snf);
478 
479 	for (i = 0; i < op->cmd.nbytes; i++, reg_offs++) {
480 		b = (op->cmd.opcode >> ((op->cmd.nbytes - i - 1) * 8)) & 0xff;
481 		val |= b << (8 * (reg_offs % 4));
482 		if (reg_offs % 4 == 3) {
483 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
484 			val = 0;
485 		}
486 	}
487 
488 	for (i = 0; i < op->addr.nbytes; i++, reg_offs++) {
489 		b = (op->addr.val >> ((op->addr.nbytes - i - 1) * 8)) & 0xff;
490 		val |= b << (8 * (reg_offs % 4));
491 		if (reg_offs % 4 == 3) {
492 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
493 			val = 0;
494 		}
495 	}
496 
497 	for (i = 0; i < op->dummy.nbytes; i++, reg_offs++) {
498 		if (reg_offs % 4 == 3) {
499 			nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
500 			val = 0;
501 		}
502 	}
503 
504 	if (op->data.dir == SPI_MEM_DATA_OUT) {
505 		for (i = 0; i < op->data.nbytes; i++, reg_offs++) {
506 			val |= tx_buf[i] << (8 * (reg_offs % 4));
507 			if (reg_offs % 4 == 3) {
508 				nfi_write32(snf, SNF_GPRAM + reg_offs - 3, val);
509 				val = 0;
510 			}
511 		}
512 	}
513 
514 	if (reg_offs % 4)
515 		nfi_write32(snf, SNF_GPRAM + (reg_offs & ~3), val);
516 
517 	for (i = 0; i < reg_offs; i += 4)
518 		dev_dbg(snf->dev, "%d: %08X", i,
519 			nfi_read32(snf, SNF_GPRAM + i));
520 
521 	dev_dbg(snf->dev, "SNF TX: %u RX: %u", reg_offs, rx_len);
522 
523 	ret = mtk_snand_mac_trigger(snf, reg_offs, rx_len);
524 	if (ret)
525 		return ret;
526 
527 	if (!rx_len)
528 		return 0;
529 
530 	nfi_read_data(snf, SNF_GPRAM + reg_offs, rx_buf, rx_len);
531 	return 0;
532 }
533 
534 static int mtk_snand_setup_pagefmt(struct mtk_snand *snf, u32 page_size,
535 				   u32 oob_size)
536 {
537 	int spare_idx = -1;
538 	u32 spare_size, spare_size_shift, pagesize_idx;
539 	u32 sector_size_512;
540 	u8 nsectors;
541 	int i;
542 
543 	// skip if it's already configured as required.
544 	if (snf->nfi_cfg.page_size == page_size &&
545 	    snf->nfi_cfg.oob_size == oob_size)
546 		return 0;
547 
548 	nsectors = page_size / snf->caps->sector_size;
549 	if (nsectors > snf->caps->max_sectors) {
550 		dev_err(snf->dev, "too many sectors required.\n");
551 		goto err;
552 	}
553 
554 	if (snf->caps->sector_size == 512) {
555 		sector_size_512 = NFI_SEC_SEL_512;
556 		spare_size_shift = NFI_SPARE_SIZE_S;
557 	} else {
558 		sector_size_512 = 0;
559 		spare_size_shift = NFI_SPARE_SIZE_LS_S;
560 	}
561 
562 	switch (page_size) {
563 	case SZ_512:
564 		pagesize_idx = NFI_PAGE_SIZE_512_2K;
565 		break;
566 	case SZ_2K:
567 		if (snf->caps->sector_size == 512)
568 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
569 		else
570 			pagesize_idx = NFI_PAGE_SIZE_512_2K;
571 		break;
572 	case SZ_4K:
573 		if (snf->caps->sector_size == 512)
574 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
575 		else
576 			pagesize_idx = NFI_PAGE_SIZE_2K_4K;
577 		break;
578 	case SZ_8K:
579 		if (snf->caps->sector_size == 512)
580 			pagesize_idx = NFI_PAGE_SIZE_8K_16K;
581 		else
582 			pagesize_idx = NFI_PAGE_SIZE_4K_8K;
583 		break;
584 	case SZ_16K:
585 		pagesize_idx = NFI_PAGE_SIZE_8K_16K;
586 		break;
587 	default:
588 		dev_err(snf->dev, "unsupported page size.\n");
589 		goto err;
590 	}
591 
592 	spare_size = oob_size / nsectors;
593 	// If we're using the 1KB sector size, HW will automatically double the
594 	// spare size. We should only use half of the value in this case.
595 	if (snf->caps->sector_size == 1024)
596 		spare_size /= 2;
597 
598 	for (i = snf->caps->num_spare_size - 1; i >= 0; i--) {
599 		if (snf->caps->spare_sizes[i] <= spare_size) {
600 			spare_size = snf->caps->spare_sizes[i];
601 			if (snf->caps->sector_size == 1024)
602 				spare_size *= 2;
603 			spare_idx = i;
604 			break;
605 		}
606 	}
607 
608 	if (spare_idx < 0) {
609 		dev_err(snf->dev, "unsupported spare size: %u\n", spare_size);
610 		goto err;
611 	}
612 
613 	nfi_write32(snf, NFI_PAGEFMT,
614 		    (snf->caps->fdm_ecc_size << NFI_FDM_ECC_NUM_S) |
615 			    (snf->caps->fdm_size << NFI_FDM_NUM_S) |
616 			    (spare_idx << spare_size_shift) |
617 			    (pagesize_idx << NFI_PAGE_SIZE_S) |
618 			    sector_size_512);
619 
620 	snf->nfi_cfg.page_size = page_size;
621 	snf->nfi_cfg.oob_size = oob_size;
622 	snf->nfi_cfg.nsectors = nsectors;
623 	snf->nfi_cfg.spare_size = spare_size;
624 
625 	dev_dbg(snf->dev, "page format: (%u + %u) * %u\n",
626 		snf->caps->sector_size, spare_size, nsectors);
627 	return snand_prepare_bouncebuf(snf, page_size + oob_size);
628 err:
629 	dev_err(snf->dev, "page size %u + %u is not supported\n", page_size,
630 		oob_size);
631 	return -EOPNOTSUPP;
632 }
633 
634 static int mtk_snand_ooblayout_ecc(struct mtd_info *mtd, int section,
635 				   struct mtd_oob_region *oobecc)
636 {
637 	// ECC area is not accessible
638 	return -ERANGE;
639 }
640 
641 static int mtk_snand_ooblayout_free(struct mtd_info *mtd, int section,
642 				    struct mtd_oob_region *oobfree)
643 {
644 	struct nand_device *nand = mtd_to_nanddev(mtd);
645 	struct mtk_snand *ms = nand_to_mtk_snand(nand);
646 
647 	if (section >= ms->nfi_cfg.nsectors)
648 		return -ERANGE;
649 
650 	oobfree->length = ms->caps->fdm_size - 1;
651 	oobfree->offset = section * ms->caps->fdm_size + 1;
652 	return 0;
653 }
654 
655 static const struct mtd_ooblayout_ops mtk_snand_ooblayout = {
656 	.ecc = mtk_snand_ooblayout_ecc,
657 	.free = mtk_snand_ooblayout_free,
658 };
659 
660 static int mtk_snand_ecc_init_ctx(struct nand_device *nand)
661 {
662 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
663 	struct nand_ecc_props *conf = &nand->ecc.ctx.conf;
664 	struct nand_ecc_props *reqs = &nand->ecc.requirements;
665 	struct nand_ecc_props *user = &nand->ecc.user_conf;
666 	struct mtd_info *mtd = nanddev_to_mtd(nand);
667 	int step_size = 0, strength = 0, desired_correction = 0, steps;
668 	bool ecc_user = false;
669 	int ret;
670 	u32 parity_bits, max_ecc_bytes;
671 	struct mtk_ecc_config *ecc_cfg;
672 
673 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
674 				      nand->memorg.oobsize);
675 	if (ret)
676 		return ret;
677 
678 	ecc_cfg = kzalloc(sizeof(*ecc_cfg), GFP_KERNEL);
679 	if (!ecc_cfg)
680 		return -ENOMEM;
681 
682 	nand->ecc.ctx.priv = ecc_cfg;
683 
684 	if (user->step_size && user->strength) {
685 		step_size = user->step_size;
686 		strength = user->strength;
687 		ecc_user = true;
688 	} else if (reqs->step_size && reqs->strength) {
689 		step_size = reqs->step_size;
690 		strength = reqs->strength;
691 	}
692 
693 	if (step_size && strength) {
694 		steps = mtd->writesize / step_size;
695 		desired_correction = steps * strength;
696 		strength = desired_correction / snf->nfi_cfg.nsectors;
697 	}
698 
699 	ecc_cfg->mode = ECC_NFI_MODE;
700 	ecc_cfg->sectors = snf->nfi_cfg.nsectors;
701 	ecc_cfg->len = snf->caps->sector_size + snf->caps->fdm_ecc_size;
702 
703 	// calculate the max possible strength under current page format
704 	parity_bits = mtk_ecc_get_parity_bits(snf->ecc);
705 	max_ecc_bytes = snf->nfi_cfg.spare_size - snf->caps->fdm_size;
706 	ecc_cfg->strength = max_ecc_bytes * 8 / parity_bits;
707 	mtk_ecc_adjust_strength(snf->ecc, &ecc_cfg->strength);
708 
709 	// if there's a user requested strength, find the minimum strength that
710 	// meets the requirement. Otherwise use the maximum strength which is
711 	// expected by BootROM.
712 	if (ecc_user && strength) {
713 		u32 s_next = ecc_cfg->strength - 1;
714 
715 		while (1) {
716 			mtk_ecc_adjust_strength(snf->ecc, &s_next);
717 			if (s_next >= ecc_cfg->strength)
718 				break;
719 			if (s_next < strength)
720 				break;
721 			s_next = ecc_cfg->strength - 1;
722 		}
723 	}
724 
725 	mtd_set_ooblayout(mtd, &mtk_snand_ooblayout);
726 
727 	conf->step_size = snf->caps->sector_size;
728 	conf->strength = ecc_cfg->strength;
729 
730 	if (ecc_cfg->strength < strength)
731 		dev_warn(snf->dev, "unable to fulfill ECC of %u bits.\n",
732 			 strength);
733 	dev_info(snf->dev, "ECC strength: %u bits per %u bytes\n",
734 		 ecc_cfg->strength, snf->caps->sector_size);
735 
736 	return 0;
737 }
738 
739 static void mtk_snand_ecc_cleanup_ctx(struct nand_device *nand)
740 {
741 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
742 
743 	kfree(ecc_cfg);
744 }
745 
746 static int mtk_snand_ecc_prepare_io_req(struct nand_device *nand,
747 					struct nand_page_io_req *req)
748 {
749 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
750 	struct mtk_ecc_config *ecc_cfg = nand_to_ecc_ctx(nand);
751 	int ret;
752 
753 	ret = mtk_snand_setup_pagefmt(snf, nand->memorg.pagesize,
754 				      nand->memorg.oobsize);
755 	if (ret)
756 		return ret;
757 	snf->autofmt = true;
758 	snf->ecc_cfg = ecc_cfg;
759 	return 0;
760 }
761 
762 static int mtk_snand_ecc_finish_io_req(struct nand_device *nand,
763 				       struct nand_page_io_req *req)
764 {
765 	struct mtk_snand *snf = nand_to_mtk_snand(nand);
766 	struct mtd_info *mtd = nanddev_to_mtd(nand);
767 
768 	snf->ecc_cfg = NULL;
769 	snf->autofmt = false;
770 	if ((req->mode == MTD_OPS_RAW) || (req->type != NAND_PAGE_READ))
771 		return 0;
772 
773 	if (snf->ecc_stats.failed)
774 		mtd->ecc_stats.failed += snf->ecc_stats.failed;
775 	mtd->ecc_stats.corrected += snf->ecc_stats.corrected;
776 	return snf->ecc_stats.failed ? -EBADMSG : snf->ecc_stats.bitflips;
777 }
778 
779 static struct nand_ecc_engine_ops mtk_snfi_ecc_engine_ops = {
780 	.init_ctx = mtk_snand_ecc_init_ctx,
781 	.cleanup_ctx = mtk_snand_ecc_cleanup_ctx,
782 	.prepare_io_req = mtk_snand_ecc_prepare_io_req,
783 	.finish_io_req = mtk_snand_ecc_finish_io_req,
784 };
785 
786 static void mtk_snand_read_fdm(struct mtk_snand *snf, u8 *buf)
787 {
788 	u32 vall, valm;
789 	u8 *oobptr = buf;
790 	int i, j;
791 
792 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
793 		vall = nfi_read32(snf, NFI_FDML(i));
794 		valm = nfi_read32(snf, NFI_FDMM(i));
795 
796 		for (j = 0; j < snf->caps->fdm_size; j++)
797 			oobptr[j] = (j >= 4 ? valm : vall) >> ((j % 4) * 8);
798 
799 		oobptr += snf->caps->fdm_size;
800 	}
801 }
802 
803 static void mtk_snand_write_fdm(struct mtk_snand *snf, const u8 *buf)
804 {
805 	u32 fdm_size = snf->caps->fdm_size;
806 	const u8 *oobptr = buf;
807 	u32 vall, valm;
808 	int i, j;
809 
810 	for (i = 0; i < snf->nfi_cfg.nsectors; i++) {
811 		vall = 0;
812 		valm = 0;
813 
814 		for (j = 0; j < 8; j++) {
815 			if (j < 4)
816 				vall |= (j < fdm_size ? oobptr[j] : 0xff)
817 					<< (j * 8);
818 			else
819 				valm |= (j < fdm_size ? oobptr[j] : 0xff)
820 					<< ((j - 4) * 8);
821 		}
822 
823 		nfi_write32(snf, NFI_FDML(i), vall);
824 		nfi_write32(snf, NFI_FDMM(i), valm);
825 
826 		oobptr += fdm_size;
827 	}
828 }
829 
830 static void mtk_snand_bm_swap(struct mtk_snand *snf, u8 *buf)
831 {
832 	u32 buf_bbm_pos, fdm_bbm_pos;
833 
834 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
835 		return;
836 
837 	// swap [pagesize] byte on nand with the first fdm byte
838 	// in the last sector.
839 	buf_bbm_pos = snf->nfi_cfg.page_size -
840 		      (snf->nfi_cfg.nsectors - 1) * snf->nfi_cfg.spare_size;
841 	fdm_bbm_pos = snf->nfi_cfg.page_size +
842 		      (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
843 
844 	swap(snf->buf[fdm_bbm_pos], buf[buf_bbm_pos]);
845 }
846 
847 static void mtk_snand_fdm_bm_swap(struct mtk_snand *snf)
848 {
849 	u32 fdm_bbm_pos1, fdm_bbm_pos2;
850 
851 	if (!snf->caps->bbm_swap || snf->nfi_cfg.nsectors == 1)
852 		return;
853 
854 	// swap the first fdm byte in the first and the last sector.
855 	fdm_bbm_pos1 = snf->nfi_cfg.page_size;
856 	fdm_bbm_pos2 = snf->nfi_cfg.page_size +
857 		       (snf->nfi_cfg.nsectors - 1) * snf->caps->fdm_size;
858 	swap(snf->buf[fdm_bbm_pos1], snf->buf[fdm_bbm_pos2]);
859 }
860 
861 static int mtk_snand_read_page_cache(struct mtk_snand *snf,
862 				     const struct spi_mem_op *op)
863 {
864 	u8 *buf = snf->buf;
865 	u8 *buf_fdm = buf + snf->nfi_cfg.page_size;
866 	// the address part to be sent by the controller
867 	u32 op_addr = op->addr.val;
868 	// where to start copying data from bounce buffer
869 	u32 rd_offset = 0;
870 	u32 dummy_clk = (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth);
871 	u32 op_mode = 0;
872 	u32 dma_len = snf->buf_len;
873 	int ret = 0;
874 	u32 rd_mode, rd_bytes, val;
875 	dma_addr_t buf_dma;
876 
877 	if (snf->autofmt) {
878 		u32 last_bit;
879 		u32 mask;
880 
881 		dma_len = snf->nfi_cfg.page_size;
882 		op_mode = CNFG_AUTO_FMT_EN;
883 		if (op->data.ecc)
884 			op_mode |= CNFG_HW_ECC_EN;
885 		// extract the plane bit:
886 		// Find the highest bit set in (pagesize+oobsize).
887 		// Bits higher than that in op->addr are kept and sent over SPI
888 		// Lower bits are used as an offset for copying data from DMA
889 		// bounce buffer.
890 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
891 		mask = (1 << last_bit) - 1;
892 		rd_offset = op_addr & mask;
893 		op_addr &= ~mask;
894 
895 		// check if we can dma to the caller memory
896 		if (rd_offset == 0 && op->data.nbytes >= snf->nfi_cfg.page_size)
897 			buf = op->data.buf.in;
898 	}
899 	mtk_snand_mac_reset(snf);
900 	mtk_nfi_reset(snf);
901 
902 	// command and dummy cycles
903 	nfi_write32(snf, SNF_RD_CTL2,
904 		    (dummy_clk << DATA_READ_DUMMY_S) |
905 			    (op->cmd.opcode << DATA_READ_CMD_S));
906 
907 	// read address
908 	nfi_write32(snf, SNF_RD_CTL3, op_addr);
909 
910 	// Set read op_mode
911 	if (op->data.buswidth == 4)
912 		rd_mode = op->addr.buswidth == 4 ? DATA_READ_MODE_QUAD :
913 						   DATA_READ_MODE_X4;
914 	else if (op->data.buswidth == 2)
915 		rd_mode = op->addr.buswidth == 2 ? DATA_READ_MODE_DUAL :
916 						   DATA_READ_MODE_X2;
917 	else
918 		rd_mode = DATA_READ_MODE_X1;
919 	rd_mode <<= DATA_READ_MODE_S;
920 	nfi_rmw32(snf, SNF_MISC_CTL, DATA_READ_MODE,
921 		  rd_mode | DATARD_CUSTOM_EN);
922 
923 	// Set bytes to read
924 	rd_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
925 		   snf->nfi_cfg.nsectors;
926 	nfi_write32(snf, SNF_MISC_CTL2,
927 		    (rd_bytes << PROGRAM_LOAD_BYTE_NUM_S) | rd_bytes);
928 
929 	// NFI read prepare
930 	nfi_write16(snf, NFI_CNFG,
931 		    (CNFG_OP_MODE_CUST << CNFG_OP_MODE_S) | CNFG_DMA_BURST_EN |
932 			    CNFG_READ_MODE | CNFG_DMA_MODE | op_mode);
933 
934 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
935 
936 	buf_dma = dma_map_single(snf->dev, buf, dma_len, DMA_FROM_DEVICE);
937 	ret = dma_mapping_error(snf->dev, buf_dma);
938 	if (ret) {
939 		dev_err(snf->dev, "DMA mapping failed.\n");
940 		goto cleanup;
941 	}
942 	nfi_write32(snf, NFI_STRADDR, buf_dma);
943 	if (op->data.ecc) {
944 		snf->ecc_cfg->op = ECC_DECODE;
945 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
946 		if (ret)
947 			goto cleanup_dma;
948 	}
949 	// Prepare for custom read interrupt
950 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_READ);
951 	reinit_completion(&snf->op_done);
952 
953 	// Trigger NFI into custom mode
954 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_READ);
955 
956 	// Start DMA read
957 	nfi_rmw32(snf, NFI_CON, 0, CON_BRD);
958 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
959 
960 	if (!wait_for_completion_timeout(
961 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
962 		dev_err(snf->dev, "DMA timed out for reading from cache.\n");
963 		ret = -ETIMEDOUT;
964 		goto cleanup;
965 	}
966 
967 	// Wait for BUS_SEC_CNTR returning expected value
968 	ret = readl_poll_timeout(snf->nfi_base + NFI_BYTELEN, val,
969 				 BUS_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
970 				 SNFI_POLL_INTERVAL);
971 	if (ret) {
972 		dev_err(snf->dev, "Timed out waiting for BUS_SEC_CNTR\n");
973 		goto cleanup2;
974 	}
975 
976 	// Wait for bus becoming idle
977 	ret = readl_poll_timeout(snf->nfi_base + NFI_MASTERSTA, val,
978 				 !(val & snf->caps->mastersta_mask), 0,
979 				 SNFI_POLL_INTERVAL);
980 	if (ret) {
981 		dev_err(snf->dev, "Timed out waiting for bus becoming idle\n");
982 		goto cleanup2;
983 	}
984 
985 	if (op->data.ecc) {
986 		ret = mtk_ecc_wait_done(snf->ecc, ECC_DECODE);
987 		if (ret) {
988 			dev_err(snf->dev, "wait ecc done timeout\n");
989 			goto cleanup2;
990 		}
991 		// save status before disabling ecc
992 		mtk_ecc_get_stats(snf->ecc, &snf->ecc_stats,
993 				  snf->nfi_cfg.nsectors);
994 	}
995 
996 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
997 
998 	if (snf->autofmt) {
999 		mtk_snand_read_fdm(snf, buf_fdm);
1000 		if (snf->caps->bbm_swap) {
1001 			mtk_snand_bm_swap(snf, buf);
1002 			mtk_snand_fdm_bm_swap(snf);
1003 		}
1004 	}
1005 
1006 	// copy data back
1007 	if (nfi_read32(snf, NFI_STA) & READ_EMPTY) {
1008 		memset(op->data.buf.in, 0xff, op->data.nbytes);
1009 		snf->ecc_stats.bitflips = 0;
1010 		snf->ecc_stats.failed = 0;
1011 		snf->ecc_stats.corrected = 0;
1012 	} else {
1013 		if (buf == op->data.buf.in) {
1014 			u32 cap_len = snf->buf_len - snf->nfi_cfg.page_size;
1015 			u32 req_left = op->data.nbytes - snf->nfi_cfg.page_size;
1016 
1017 			if (req_left)
1018 				memcpy(op->data.buf.in + snf->nfi_cfg.page_size,
1019 				       buf_fdm,
1020 				       cap_len < req_left ? cap_len : req_left);
1021 		} else if (rd_offset < snf->buf_len) {
1022 			u32 cap_len = snf->buf_len - rd_offset;
1023 
1024 			if (op->data.nbytes < cap_len)
1025 				cap_len = op->data.nbytes;
1026 			memcpy(op->data.buf.in, snf->buf + rd_offset, cap_len);
1027 		}
1028 	}
1029 cleanup2:
1030 	if (op->data.ecc)
1031 		mtk_ecc_disable(snf->ecc);
1032 cleanup_dma:
1033 	// unmap dma only if any error happens. (otherwise it's done before
1034 	// data copying)
1035 	if (ret)
1036 		dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_FROM_DEVICE);
1037 cleanup:
1038 	// Stop read
1039 	nfi_write32(snf, NFI_CON, 0);
1040 	nfi_write16(snf, NFI_CNFG, 0);
1041 
1042 	// Clear SNF done flag
1043 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_READ_DONE);
1044 	nfi_write32(snf, SNF_STA_CTL1, 0);
1045 
1046 	// Disable interrupt
1047 	nfi_read32(snf, NFI_INTR_STA);
1048 	nfi_write32(snf, NFI_INTR_EN, 0);
1049 
1050 	nfi_rmw32(snf, SNF_MISC_CTL, DATARD_CUSTOM_EN, 0);
1051 	return ret;
1052 }
1053 
1054 static int mtk_snand_write_page_cache(struct mtk_snand *snf,
1055 				      const struct spi_mem_op *op)
1056 {
1057 	// the address part to be sent by the controller
1058 	u32 op_addr = op->addr.val;
1059 	// where to start copying data from bounce buffer
1060 	u32 wr_offset = 0;
1061 	u32 op_mode = 0;
1062 	int ret = 0;
1063 	u32 wr_mode = 0;
1064 	u32 dma_len = snf->buf_len;
1065 	u32 wr_bytes, val;
1066 	size_t cap_len;
1067 	dma_addr_t buf_dma;
1068 
1069 	if (snf->autofmt) {
1070 		u32 last_bit;
1071 		u32 mask;
1072 
1073 		dma_len = snf->nfi_cfg.page_size;
1074 		op_mode = CNFG_AUTO_FMT_EN;
1075 		if (op->data.ecc)
1076 			op_mode |= CNFG_HW_ECC_EN;
1077 
1078 		last_bit = fls(snf->nfi_cfg.page_size + snf->nfi_cfg.oob_size);
1079 		mask = (1 << last_bit) - 1;
1080 		wr_offset = op_addr & mask;
1081 		op_addr &= ~mask;
1082 	}
1083 	mtk_snand_mac_reset(snf);
1084 	mtk_nfi_reset(snf);
1085 
1086 	if (wr_offset)
1087 		memset(snf->buf, 0xff, wr_offset);
1088 
1089 	cap_len = snf->buf_len - wr_offset;
1090 	if (op->data.nbytes < cap_len)
1091 		cap_len = op->data.nbytes;
1092 	memcpy(snf->buf + wr_offset, op->data.buf.out, cap_len);
1093 	if (snf->autofmt) {
1094 		if (snf->caps->bbm_swap) {
1095 			mtk_snand_fdm_bm_swap(snf);
1096 			mtk_snand_bm_swap(snf, snf->buf);
1097 		}
1098 		mtk_snand_write_fdm(snf, snf->buf + snf->nfi_cfg.page_size);
1099 	}
1100 
1101 	// Command
1102 	nfi_write32(snf, SNF_PG_CTL1, (op->cmd.opcode << PG_LOAD_CMD_S));
1103 
1104 	// write address
1105 	nfi_write32(snf, SNF_PG_CTL2, op_addr);
1106 
1107 	// Set read op_mode
1108 	if (op->data.buswidth == 4)
1109 		wr_mode = PG_LOAD_X4_EN;
1110 
1111 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_X4_EN,
1112 		  wr_mode | PG_LOAD_CUSTOM_EN);
1113 
1114 	// Set bytes to write
1115 	wr_bytes = (snf->nfi_cfg.spare_size + snf->caps->sector_size) *
1116 		   snf->nfi_cfg.nsectors;
1117 	nfi_write32(snf, SNF_MISC_CTL2,
1118 		    (wr_bytes << PROGRAM_LOAD_BYTE_NUM_S) | wr_bytes);
1119 
1120 	// NFI write prepare
1121 	nfi_write16(snf, NFI_CNFG,
1122 		    (CNFG_OP_MODE_PROGRAM << CNFG_OP_MODE_S) |
1123 			    CNFG_DMA_BURST_EN | CNFG_DMA_MODE | op_mode);
1124 
1125 	nfi_write32(snf, NFI_CON, (snf->nfi_cfg.nsectors << CON_SEC_NUM_S));
1126 	buf_dma = dma_map_single(snf->dev, snf->buf, dma_len, DMA_TO_DEVICE);
1127 	ret = dma_mapping_error(snf->dev, buf_dma);
1128 	if (ret) {
1129 		dev_err(snf->dev, "DMA mapping failed.\n");
1130 		goto cleanup;
1131 	}
1132 	nfi_write32(snf, NFI_STRADDR, buf_dma);
1133 	if (op->data.ecc) {
1134 		snf->ecc_cfg->op = ECC_ENCODE;
1135 		ret = mtk_ecc_enable(snf->ecc, snf->ecc_cfg);
1136 		if (ret)
1137 			goto cleanup_dma;
1138 	}
1139 	// Prepare for custom write interrupt
1140 	nfi_write32(snf, NFI_INTR_EN, NFI_IRQ_INTR_EN | NFI_IRQ_CUS_PG);
1141 	reinit_completion(&snf->op_done);
1142 	;
1143 
1144 	// Trigger NFI into custom mode
1145 	nfi_write16(snf, NFI_CMD, NFI_CMD_DUMMY_WRITE);
1146 
1147 	// Start DMA write
1148 	nfi_rmw32(snf, NFI_CON, 0, CON_BWR);
1149 	nfi_write16(snf, NFI_STRDATA, STR_DATA);
1150 
1151 	if (!wait_for_completion_timeout(
1152 		    &snf->op_done, usecs_to_jiffies(SNFI_POLL_INTERVAL))) {
1153 		dev_err(snf->dev, "DMA timed out for program load.\n");
1154 		ret = -ETIMEDOUT;
1155 		goto cleanup_ecc;
1156 	}
1157 
1158 	// Wait for NFI_SEC_CNTR returning expected value
1159 	ret = readl_poll_timeout(snf->nfi_base + NFI_ADDRCNTR, val,
1160 				 NFI_SEC_CNTR(val) >= snf->nfi_cfg.nsectors, 0,
1161 				 SNFI_POLL_INTERVAL);
1162 	if (ret)
1163 		dev_err(snf->dev, "Timed out waiting for NFI_SEC_CNTR\n");
1164 
1165 cleanup_ecc:
1166 	if (op->data.ecc)
1167 		mtk_ecc_disable(snf->ecc);
1168 cleanup_dma:
1169 	dma_unmap_single(snf->dev, buf_dma, dma_len, DMA_TO_DEVICE);
1170 cleanup:
1171 	// Stop write
1172 	nfi_write32(snf, NFI_CON, 0);
1173 	nfi_write16(snf, NFI_CNFG, 0);
1174 
1175 	// Clear SNF done flag
1176 	nfi_rmw32(snf, SNF_STA_CTL1, 0, CUS_PG_DONE);
1177 	nfi_write32(snf, SNF_STA_CTL1, 0);
1178 
1179 	// Disable interrupt
1180 	nfi_read32(snf, NFI_INTR_STA);
1181 	nfi_write32(snf, NFI_INTR_EN, 0);
1182 
1183 	nfi_rmw32(snf, SNF_MISC_CTL, PG_LOAD_CUSTOM_EN, 0);
1184 
1185 	return ret;
1186 }
1187 
1188 /**
1189  * mtk_snand_is_page_ops() - check if the op is a controller supported page op.
1190  * @op: spi-mem op to check
1191  *
1192  * Check whether op can be executed with read_from_cache or program_load
1193  * mode in the controller.
1194  * This controller can execute typical Read From Cache and Program Load
1195  * instructions found on SPI-NAND with 2-byte address.
1196  * DTR and cmd buswidth & nbytes should be checked before calling this.
1197  *
1198  * Return: true if the op matches the instruction template
1199  */
1200 static bool mtk_snand_is_page_ops(const struct spi_mem_op *op)
1201 {
1202 	if (op->addr.nbytes != 2)
1203 		return false;
1204 
1205 	if (op->addr.buswidth != 1 && op->addr.buswidth != 2 &&
1206 	    op->addr.buswidth != 4)
1207 		return false;
1208 
1209 	// match read from page instructions
1210 	if (op->data.dir == SPI_MEM_DATA_IN) {
1211 		// check dummy cycle first
1212 		if (op->dummy.nbytes * BITS_PER_BYTE / op->dummy.buswidth >
1213 		    DATA_READ_MAX_DUMMY)
1214 			return false;
1215 		// quad io / quad out
1216 		if ((op->addr.buswidth == 4 || op->addr.buswidth == 1) &&
1217 		    op->data.buswidth == 4)
1218 			return true;
1219 
1220 		// dual io / dual out
1221 		if ((op->addr.buswidth == 2 || op->addr.buswidth == 1) &&
1222 		    op->data.buswidth == 2)
1223 			return true;
1224 
1225 		// standard spi
1226 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1227 			return true;
1228 	} else if (op->data.dir == SPI_MEM_DATA_OUT) {
1229 		// check dummy cycle first
1230 		if (op->dummy.nbytes)
1231 			return false;
1232 		// program load quad out
1233 		if (op->addr.buswidth == 1 && op->data.buswidth == 4)
1234 			return true;
1235 		// standard spi
1236 		if (op->addr.buswidth == 1 && op->data.buswidth == 1)
1237 			return true;
1238 	}
1239 	return false;
1240 }
1241 
1242 static bool mtk_snand_supports_op(struct spi_mem *mem,
1243 				  const struct spi_mem_op *op)
1244 {
1245 	if (!spi_mem_default_supports_op(mem, op))
1246 		return false;
1247 	if (op->cmd.nbytes != 1 || op->cmd.buswidth != 1)
1248 		return false;
1249 	if (mtk_snand_is_page_ops(op))
1250 		return true;
1251 	return ((op->addr.nbytes == 0 || op->addr.buswidth == 1) &&
1252 		(op->dummy.nbytes == 0 || op->dummy.buswidth == 1) &&
1253 		(op->data.nbytes == 0 || op->data.buswidth == 1));
1254 }
1255 
1256 static int mtk_snand_adjust_op_size(struct spi_mem *mem, struct spi_mem_op *op)
1257 {
1258 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1259 	// page ops transfer size must be exactly ((sector_size + spare_size) *
1260 	// nsectors). Limit the op size if the caller requests more than that.
1261 	// exec_op will read more than needed and discard the leftover if the
1262 	// caller requests less data.
1263 	if (mtk_snand_is_page_ops(op)) {
1264 		size_t l;
1265 		// skip adjust_op_size for page ops
1266 		if (ms->autofmt)
1267 			return 0;
1268 		l = ms->caps->sector_size + ms->nfi_cfg.spare_size;
1269 		l *= ms->nfi_cfg.nsectors;
1270 		if (op->data.nbytes > l)
1271 			op->data.nbytes = l;
1272 	} else {
1273 		size_t hl = op->cmd.nbytes + op->addr.nbytes + op->dummy.nbytes;
1274 
1275 		if (hl >= SNF_GPRAM_SIZE)
1276 			return -EOPNOTSUPP;
1277 		if (op->data.nbytes > SNF_GPRAM_SIZE - hl)
1278 			op->data.nbytes = SNF_GPRAM_SIZE - hl;
1279 	}
1280 	return 0;
1281 }
1282 
1283 static int mtk_snand_exec_op(struct spi_mem *mem, const struct spi_mem_op *op)
1284 {
1285 	struct mtk_snand *ms = spi_controller_get_devdata(mem->spi->controller);
1286 
1287 	dev_dbg(ms->dev, "OP %02x ADDR %08llX@%d:%u DATA %d:%u", op->cmd.opcode,
1288 		op->addr.val, op->addr.buswidth, op->addr.nbytes,
1289 		op->data.buswidth, op->data.nbytes);
1290 	if (mtk_snand_is_page_ops(op)) {
1291 		if (op->data.dir == SPI_MEM_DATA_IN)
1292 			return mtk_snand_read_page_cache(ms, op);
1293 		else
1294 			return mtk_snand_write_page_cache(ms, op);
1295 	} else {
1296 		return mtk_snand_mac_io(ms, op);
1297 	}
1298 }
1299 
1300 static const struct spi_controller_mem_ops mtk_snand_mem_ops = {
1301 	.adjust_op_size = mtk_snand_adjust_op_size,
1302 	.supports_op = mtk_snand_supports_op,
1303 	.exec_op = mtk_snand_exec_op,
1304 };
1305 
1306 static const struct spi_controller_mem_caps mtk_snand_mem_caps = {
1307 	.ecc = true,
1308 };
1309 
1310 static irqreturn_t mtk_snand_irq(int irq, void *id)
1311 {
1312 	struct mtk_snand *snf = id;
1313 	u32 sta, ien;
1314 
1315 	sta = nfi_read32(snf, NFI_INTR_STA);
1316 	ien = nfi_read32(snf, NFI_INTR_EN);
1317 
1318 	if (!(sta & ien))
1319 		return IRQ_NONE;
1320 
1321 	nfi_write32(snf, NFI_INTR_EN, 0);
1322 	complete(&snf->op_done);
1323 	return IRQ_HANDLED;
1324 }
1325 
1326 static const struct of_device_id mtk_snand_ids[] = {
1327 	{ .compatible = "mediatek,mt7622-snand", .data = &mt7622_snand_caps },
1328 	{ .compatible = "mediatek,mt7629-snand", .data = &mt7629_snand_caps },
1329 	{ .compatible = "mediatek,mt7986-snand", .data = &mt7986_snand_caps },
1330 	{},
1331 };
1332 
1333 MODULE_DEVICE_TABLE(of, mtk_snand_ids);
1334 
1335 static int mtk_snand_probe(struct platform_device *pdev)
1336 {
1337 	struct device_node *np = pdev->dev.of_node;
1338 	const struct of_device_id *dev_id;
1339 	struct spi_controller *ctlr;
1340 	struct mtk_snand *ms;
1341 	unsigned long spi_freq;
1342 	u32 val = 0;
1343 	int ret;
1344 
1345 	dev_id = of_match_node(mtk_snand_ids, np);
1346 	if (!dev_id)
1347 		return -EINVAL;
1348 
1349 	ctlr = devm_spi_alloc_host(&pdev->dev, sizeof(*ms));
1350 	if (!ctlr)
1351 		return -ENOMEM;
1352 	platform_set_drvdata(pdev, ctlr);
1353 
1354 	ms = spi_controller_get_devdata(ctlr);
1355 
1356 	ms->ctlr = ctlr;
1357 	ms->caps = dev_id->data;
1358 
1359 	ms->ecc = of_mtk_ecc_get(np);
1360 	if (IS_ERR(ms->ecc))
1361 		return PTR_ERR(ms->ecc);
1362 	else if (!ms->ecc)
1363 		return -ENODEV;
1364 
1365 	ms->nfi_base = devm_platform_ioremap_resource(pdev, 0);
1366 	if (IS_ERR(ms->nfi_base)) {
1367 		ret = PTR_ERR(ms->nfi_base);
1368 		goto release_ecc;
1369 	}
1370 
1371 	ms->dev = &pdev->dev;
1372 
1373 	ms->nfi_clk = devm_clk_get_enabled(&pdev->dev, "nfi_clk");
1374 	if (IS_ERR(ms->nfi_clk)) {
1375 		ret = PTR_ERR(ms->nfi_clk);
1376 		dev_err(&pdev->dev, "unable to get nfi_clk, err = %d\n", ret);
1377 		goto release_ecc;
1378 	}
1379 
1380 	ms->pad_clk = devm_clk_get_enabled(&pdev->dev, "pad_clk");
1381 	if (IS_ERR(ms->pad_clk)) {
1382 		ret = PTR_ERR(ms->pad_clk);
1383 		dev_err(&pdev->dev, "unable to get pad_clk, err = %d\n", ret);
1384 		goto release_ecc;
1385 	}
1386 
1387 	ms->nfi_hclk = devm_clk_get_optional_enabled(&pdev->dev, "nfi_hclk");
1388 	if (IS_ERR(ms->nfi_hclk)) {
1389 		ret = PTR_ERR(ms->nfi_hclk);
1390 		dev_err(&pdev->dev, "unable to get nfi_hclk, err = %d\n", ret);
1391 		goto release_ecc;
1392 	}
1393 
1394 	init_completion(&ms->op_done);
1395 
1396 	ms->irq = platform_get_irq(pdev, 0);
1397 	if (ms->irq < 0) {
1398 		ret = ms->irq;
1399 		goto release_ecc;
1400 	}
1401 	ret = devm_request_irq(ms->dev, ms->irq, mtk_snand_irq, 0x0,
1402 			       "mtk-snand", ms);
1403 	if (ret) {
1404 		dev_err(ms->dev, "failed to request snfi irq\n");
1405 		goto release_ecc;
1406 	}
1407 
1408 	ret = dma_set_mask(ms->dev, DMA_BIT_MASK(32));
1409 	if (ret) {
1410 		dev_err(ms->dev, "failed to set dma mask\n");
1411 		goto release_ecc;
1412 	}
1413 
1414 	// switch to SNFI mode
1415 	nfi_write32(ms, SNF_CFG, SPI_MODE);
1416 
1417 	ret = of_property_read_u32(np, "rx-sample-delay-ns", &val);
1418 	if (!ret)
1419 		nfi_rmw32(ms, SNF_DLY_CTL3, SFCK_SAM_DLY,
1420 			  val * SFCK_SAM_DLY_RANGE / SFCK_SAM_DLY_TOTAL);
1421 
1422 	ret = of_property_read_u32(np, "mediatek,rx-latch-latency-ns", &val);
1423 	if (!ret) {
1424 		spi_freq = clk_get_rate(ms->pad_clk);
1425 		val = DIV_ROUND_CLOSEST(val, NSEC_PER_SEC / spi_freq);
1426 		nfi_rmw32(ms, SNF_MISC_CTL, DATA_READ_LATCH_LAT,
1427 			  val << DATA_READ_LATCH_LAT_S);
1428 	}
1429 
1430 	// setup an initial page format for ops matching page_cache_op template
1431 	// before ECC is called.
1432 	ret = mtk_snand_setup_pagefmt(ms, SZ_2K, SZ_64);
1433 	if (ret) {
1434 		dev_err(ms->dev, "failed to set initial page format\n");
1435 		goto release_ecc;
1436 	}
1437 
1438 	// setup ECC engine
1439 	ms->ecc_eng.dev = &pdev->dev;
1440 	ms->ecc_eng.integration = NAND_ECC_ENGINE_INTEGRATION_PIPELINED;
1441 	ms->ecc_eng.ops = &mtk_snfi_ecc_engine_ops;
1442 	ms->ecc_eng.priv = ms;
1443 
1444 	ret = nand_ecc_register_on_host_hw_engine(&ms->ecc_eng);
1445 	if (ret) {
1446 		dev_err(&pdev->dev, "failed to register ecc engine.\n");
1447 		goto release_ecc;
1448 	}
1449 
1450 	ctlr->num_chipselect = 1;
1451 	ctlr->mem_ops = &mtk_snand_mem_ops;
1452 	ctlr->mem_caps = &mtk_snand_mem_caps;
1453 	ctlr->bits_per_word_mask = SPI_BPW_MASK(8);
1454 	ctlr->mode_bits = SPI_RX_DUAL | SPI_RX_QUAD | SPI_TX_DUAL | SPI_TX_QUAD;
1455 	ctlr->dev.of_node = pdev->dev.of_node;
1456 	ret = spi_register_controller(ctlr);
1457 	if (ret) {
1458 		dev_err(&pdev->dev, "spi_register_controller failed.\n");
1459 		goto release_ecc;
1460 	}
1461 
1462 	return 0;
1463 release_ecc:
1464 	mtk_ecc_release(ms->ecc);
1465 	return ret;
1466 }
1467 
1468 static void mtk_snand_remove(struct platform_device *pdev)
1469 {
1470 	struct spi_controller *ctlr = platform_get_drvdata(pdev);
1471 	struct mtk_snand *ms = spi_controller_get_devdata(ctlr);
1472 
1473 	spi_unregister_controller(ctlr);
1474 	mtk_ecc_release(ms->ecc);
1475 	kfree(ms->buf);
1476 }
1477 
1478 static struct platform_driver mtk_snand_driver = {
1479 	.probe = mtk_snand_probe,
1480 	.remove_new = mtk_snand_remove,
1481 	.driver = {
1482 		.name = "mtk-snand",
1483 		.of_match_table = mtk_snand_ids,
1484 	},
1485 };
1486 
1487 module_platform_driver(mtk_snand_driver);
1488 
1489 MODULE_LICENSE("GPL");
1490 MODULE_AUTHOR("Chuanhong Guo <gch981213@gmail.com>");
1491 MODULE_DESCRIPTION("MeidaTek SPI-NAND Flash Controller Driver");
1492